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Abstract

In this work we discuss the multidimensional scoring approach proposed by Bargiotas and al.
[I. Bargiotas, J. Audiffren, N. Vayatis, P-P. Vidal, S. Buffat, A.P. Yelnik and Damien Ricard,
On the importance of local dynamics in statokinesigram: a multivariate approach for postural
control evaluation in elderly, PloS one, 13 (2018)] which locally characterizes statokinesigrams –
the trajectory of the center of pressure, which is highly correlated with static balance quality– on
small time intervals, or blocks. This approach highlights the local dynamics of the trajectories,
and we show that the resulting characterization can be used to provide a global score in order
to evaluate the postural control. We evaluate our approach using the statokinesigram of 126
community-dwelling elderly, and show that it provides an efficient tool to discriminate between
fallers and non-fallers.

Source Code

The reviewed source code (python3 language) and documentation for this algorithm are available
at the web page of this article,1 together with an online demo. The code is commented in-depth
and usage instructions are included in the main.py file of the archive.
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1 Introduction

Postural control is defined as the ability of individuals to maintain a controlled upright position.
It is achieved by combination of visual, proprioceptive, and vestibular systems [24]. Impairments
and disorders such as myoskeletal disorders, visual, balance or gait impairments throughout age may
progressively worsen the individual’s postural control, increasing consequently the risk of falling [29].
Falls are considered as one of the major causes of injury in elderly, leading to further restriction
in mobility, autonomy problems in daily activities (bathing, cooking, etc.) or even death [20, 30].
Therefore, prevention of falling through prediction and accurate evaluation of risk has become an
important issue considering that one third of population > 65 years-old faces at least one fall per
year [30].

A tool of choice for clinical researchers to quantify and evaluate postural control are force plat-
forms. Such platforms record the displacement of the centre of pressure (CoP) which is applied by
the whole body in time [27] while the individual stands quietly upon it and follows the clinician’s
instructions/protocol. This measurement is usually called statokinesigram. Statokinesigrams have
been previously used in assessing balance disorder in populations that are either healthy or suffering
from balance-related impairments [25, 6]. Many indices derived from the CoP displacement have
been showing that CoP displacement characteristics and dynamic structure (for instance, regularity)
can reflect individuals’ postural impairment [20, 23, 15, 32, 10, 8]. However, there is no agreement
either in healthy or in non-healthy populations [34, 26, 14] whether these features or transformations
alone are able to fully assess the individual’s posture control.

In [3], the authors proposed a new approach to exploit the information contained in statokine-
sigrams, and quantify postural control. The main idea behind this method is twofold. First, the
dynamic of the CoP trajectory may change through time; and some part of the statokinesigram of an
individual may have “bad postural control profile” (called Unquiet Blocks or UB) while others may
have a “good postural control profile” (called Quiet Blocks or QB). Second, the presence, proportion
and quality of the UB/QB in the statokinesigram are indicative of the quality of postural control.
Therefore, identifying QB/UB parts of a signal is key to this method of quantifying static balance.

In order to characterize the local dynamics of statokinesigrams, the authors rely on the following
process:

A) the statokinesigram is split into blocks of predefined time-periods (namely 1, 2 or 3 seconds),
with fixed overlap (a window starts each 0.5 second);

B) each block is then described with a three dimensional vector, using three well-known and estab-
lished features from the literature that are known to capture important information about the
statokinesigram;

C) each block three dimensional description is then scored, using its probability to belong to the QB
and UB clusters;

D) the score of a trajectory is obtained as the average score of all of its blocks.

This approach is tested on a dataset of 126 individuals. Using an standard acquisition protocol
inspired by the Romberg test (see e.g. [1]), the authors show that their approach achieves state of
the art performance while offering a local, interpretable evaluation of the statokinesigram.

In this paper, we make an in-depth presentation and evaluation of this algorithm, called QUBA
(Quiet Unquiet Block decomposition Algorithm) for short, and evaluate it on a new dataset for
different tasks. This paper is organized as follows: in Section 2, we describe in detail the scoring
algorithm; in Section 3, we detail the learning procedure that was used to obtain the QB/UB clusters,
and finally in Section 4 we evaluate the performance of QUBA.
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2 Description of the Scoring Method

In this section we describe each step of QUBA in great detail. The algorithm is summarized in
Algorithm 1, and each step of QUBA is detailed in the corresponding subsection.

Algorithm 1 QUBA

Input Statokinesigram x = (xti)0≤ti≤T with ti times of sampling, and T last time of sampling in
seconds.
Parameter Block size b, stride ∆ in seconds
Output Score of postural control 0 ≤ s ≤ 1

Step 1. Preprocessing

x̃ = (x̃0.04k)0≤k≤25T ← SWARII
(
x,window length= 80 ms, target frequency = 25 Hz

)
Step 2. Signal splitting

∀k ∈ {0, . . . , b(T − b)/∆c}

wk ←
(
x̃t
)
k∆≤t<k∆+b

Step 3. Computing Features
∀k ∈ {0, . . . , b(T − b)/∆c}

fk ←

ml range(wk)
med dpl(wk)
area(wk)


Step 4. Scoring window

∀k ∈ {0, . . . , b(T − b)/∆c}

sk ←
P
(
fk ∈ QB

)
P
(
fk ∈ QB

)
+ P

(
fk ∈ UB

)
Step 5. Computing Final Score

s← 1

b1 + (T − b)/∆c

b(T−b)/∆c∑
k=0

sk

2.1 Preprocessing of Trajectories

The first step of the method is the preprocessing of the signals. This part serves the double purpose
of A) homogenizing the acquisition frequency and B) denoising the signals. This step is key, as there
exist multiple models of force platforms, each with their own characteristics (accuracy, frequency,
. . . ) [4]. Since the least accurate force platform commonly used in posturography is the Wii Balance
Board (WBB) [22], we use its characteristics as the greatest common denominator. As the WBB
records the CoP trajectory using a variable time resolution with an average sampling frequency of
60Hz [16], we use the the SWARII algorithm [2] for preprocessing, resulting in denoised statokinesi-
grams uniformly sampled at 25Hz x̃, regardless of the force platform originally used (Step 1).
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2.2 Features

Signal Splitting. x̃ is then split in fixed-length time blocks (wk) of duration b, with an step of ∆
between successive blocks (Step 2). The values of b and ∆ that give the best results are b ∈ {1, 2, 3}
and ∆ = 0.5s.

Feature Computation. A three dimensional representation of each block wk, is then computed
(Step 3). The three following widely used features [20, 1, 21] are used:

I. ml range: The range of movement in the Medio-Lateral axis (ML) – the left-right axis. Formally,

ml range(wk) = max
{
x̃ML
t s.t. x̃t ∈ wk

}
−min

{
x̃ML
t s.t. x̃t ∈ wk

}
II. med spd: The length of the median displacement of the CoP.

med spd(wk) = median {‖x̃t+0.04 − x̃t‖2, s.t. x̃t, x̃t+0.04 ∈ wk}

III. area: The surface of the 95% confidence ellipse (s95) of the trajectory of the CoP.

µk ←
1

|wk|
∑
x̃t∈wk

x̃t,

CoVk ←
1

|wk| − 1

∑
x̃t∈wk

(
x̃t − µk

)(
x̃t − µk

)T
,

area(wk) = 1.96
√
|CoVk|.

2.3 Scoring with Gaussian Mixture

QUBA uses a trained Gaussian Mixture Model (GMM) to predict the probability of the block features
fk to belong to the UB (resp. QB) cluster (Step 4). First, each window representation fk is
normalized i.e.

f̃k ←
fk − µ
σ

, (1)

where µ and σ were learned during the training phase, and the normalization is done element wise.
Note that in (1), the normalization is done element-wise, i.e. each feature is normalized separately.
This transformation is important as GMM are vulnerable to metric imbalance (see e.g. [33]). Then,
for both clusters UB and QB, the probabilities are obtained using the following formula

P (fk ∈ UB) =
mUB√

(2π)3|ΣUB|
exp

(
−1

2
(Zj − µUB)TΣ−1

UB(Zj − µUB)

)
, (2)

where mUB, µUB and ΣUB are respectively the mass (relative importance), the mean and the covari-
ance of the UB cluster, and are also learned during the training phase (in our learning process, we
constrain the covariance matrix ΣUB to be diagonal). Note that (2) is used to compute P (fk ∈ QB)
by replacing mUB, µUB and ΣUB by resp. mQB, µQB and ΣQB.

Finally, the score of each fk is obtained as the relative probability of belonging to the QB cluster
compared to the UB cluster. The score of the signal is then the average of the score of each window
(Step 5).
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Variable Use Equation
µ, σ Normalization of the feature representation (1)
mUB, µUB, ΣUB Probability of belonging to the UB cluster (2)
mQB, µQB, ΣQB Probability of belonging to the QB cluster (2)

Table 1: Summary of the learned variables used in QUBA. The dependency in ∆ and b, and open/closed eyes setting is
dropped to keep the notation simple.

3 Training Process

Table 1 summarized the variables learned during the training process. Note that these variables
interact with the block decomposition of the signal, and therefore depend on the parameters ∆ and
b. Additionally, and as discussed in Subsection 3.1, two different models were trained for open eyes
and closed eyes statokinesigrams. However, and to ease the reading, these dependencies are kept
implicit in the notation.

3.1 Training Set

3.1.1 Demographics

To train the GMMs, we used the entire dataset considered by [3] in the original paper. Therefore, the
training set contained 126 subjects (78.5±7.7 year-old, 80 females) from the Neurology department of
the HIA Percy hospital (Clamart, France) and the consultation office of a practitioner (Paris, France).
Inclusion criteria: Participants (1) had age > 65 years, (2) were addressed in routine consultation in
general medicine or neurology, (3) did not suffer from balance related impairment, (4) were able to
stand on the platform, (5) gave informed consent. Particularly, only asymptomatic individuals after
clinical examination were considered for this study. Individuals which were significantly hypertensive
(mean Systolic Blood Pressure (SBP) ≥ 140 mmHg or mean Diastolic Blood Pressure (DBP) ≥ 90
mmHg), hypotensive (SBP ≤ 90 mmHg or DBP ≤ 60 mmHg), had particular impairements or used
medication which could alter significantly their balance (such as vasoactive, phychotrope drugs) were
excluded. Moreover, characteristics such as weight, height and principal syndromes were collected
(Table 2). The clinical Research Ethics Committee approved the clinical trial, registered at ANSM
(ID RCB 2014-A00222-45).

Total Sample Non-fallers fallers
Demographic 126 108 18
Male 46 38 8
Female 80 70 10
Age (years) 78.5(±7.7) 77.2(±6.4) 79.2(±7.2)
Weight (kg) 69.6(±10.7) 69.4(±10.3) 70.0(±11.4)
Height (cm) 167.0(±8.0) 167.0(±8.0) 167.7(±8.3)
BMI (kg.m−2) 24.96(±2.4) 24.92(±2.3) 25(±2.3)

Table 2: Demographic characteristics of the participants. Fallers are patients who declared at least one fall in the six
previous months. No statistically significant difference was found between the two population regarding age, weight, height
and body mass index (BMI) (2-tailed t-test, p-values< 0.01).
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3.1.2 Balance Measurements

Balance measurements were acquired using a Wii Balance Board (WBB – Nintendo, Kyoto, Japan).
This force platform, while considered a suitable tool for the clinical setting with an acceptable
accuracy [9, 16, 28], is also acknowledged as the least reliable of the force platforms used in research
settings [22]. Therefore, QUBA is expected to perform at least as well on data originating from other
force platforms (see Section 4). The participants were asked to remove their shoes and step on the
platform placing their feet in the most comfortable position without exceeding the shoulder width,
and to stand in upright position with open eyes and the arms laying at the side. The trajectory of
the CoP positions was recorded for 25 seconds. Subsequently, participants were asked to close their
eyes. After a ten-second pause, clinical experts recorded 25 additional seconds with closed eyes. This
second acquisition is motivated by findings such as [7], which state that some balance impairments
may be more visible in static balance with closed eyes. From each statokinesigram, the first and the
last 2.5 seconds were excluded from further analysis (20 seconds per statokinesigram).

3.1.3 Fall Assessment

In order to quantify participants balance, a fall questionnaire was filled by each subject keeping infor-
mation about previous falls during the last six months [17]. Following previous works, participants
were classified as fallers if they came to a lower level on the ground unintentionally (at least once in
the last six months) [35].

3.2 Training QUBA

Parameters. As open eyes and closed eyes trajectories are expected to possess different character-
istics, their data were considered separately for training, resulting in two QUBA models. Similarly,
and following the results of [3], a different model was trained for each value of b ∈ {1, 2, 3} seconds.
∆ was set to 0.5 second. In total, six different QUBA models were trained.

Learning normalization variables. First, each signal of the dataset was preprocessed using
SWARII (see Subsection 2.1). Then, the resulting resampled statokinesigrams were split in blocks
of length b, and a three dimensional representation of each time-block was computed (Steps 1-3 of
Algorithm 1). After this step, the mean µ and standard deviation σ of each feature over the entire
dataset was saved, and used to normalized the training set.

Training the GMM model. We used a two cluster Gaussian Mixture Model (GMM) on the
resulting training set. The model was randomly initialized, and trained using the expectation -
maximization (EM) principle until convergence (i.e. clusters did not change over an iteration). The
cluster maximizing the likelihood of the mean of the fallers profiles was labeled as unquiet blocks, and
the other as quiet blocks. Examples of the resulting clusters are shown in Figure 1. It is interesting
to note that in our experiments, the results were found to be independent of the initialization – the
resulting clusters were the same over ten random initializations.

4 Experimental Evaluation

Dataset. To evaluate the performance of QUBA, we use the publicly available dataset provided
by [11], and we start by briefly describing its content. We would like to emphasize that the version
of QUBA used in these experiments was trained on the database of [3] (see Section 3), which is
significantly different from this one. The database contains 49 individuals, including 22 elderly
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Figure 1: Probability density for the two-component mixture distribution (95%) and three-second-blocks of A) Non-fallers
and B) fallers, illustrated in the normalized 3-dimensional space med spd (v mean), ml range(σX) and area (s95). The two
normal components overlap, but their centers are distinct. Many faller-derived periods are closer to the UB component and
conversely, many non-faller derived blocks are closer to the QB centre.

individuals (60 year-old and older) and 27 young individuals (38 year-old and younger), including a
large range of postural control profiles (such as disability or disease). Each individual was recorded
12 times, standing still for 60 seconds, under different conditions (open eyes, closed eyes, with or
without a foam). Each acquisition was recorded using two OPT400600-1000 AMTI force platforms
to track the CoP position. The dataset also provides the recording of the ground reaction forces
and the position of the center of mass, but these data are not used in our analysis. In the following
experiments, we use the QUBA algorithm to score and classify different populations under each of
the four possible conditions, for each value of the parameter b ∈ {1, 2, 3}

4.1 Classifying Fallers and Non-Fallers Individuals

This experiment aims to replicate the result obtained in [3] by classifying Fallers – individuals that
have fallen at least once in the past 12 months; total: 132 signals – and Non-Fallers – individuals
that have not fallen in the past 12 months; total: 456 signals. The results are presented in Figure 2
and Table 3. The results (AUC) are slightly better than in the original paper in the foam condition,
and slightly worse in the rigid condition. Also, the proportion of UB in fallers is greater than in
non-fallers, but not significantly so.

4.2 Classifying Young and Elderly Individuals

This experiment aims to classify people by age group, as it has been shown that age has a significant
impact over postural control (see e.g. [18]). Namely, we aim to separate Elderly individuals – 60
year-old and older; total: 264 signals – and Young individuals – 59 year-old and younger; total:
424 signals. The results are presented in Figure 3 and Table 4. The results (AUC) are significantly
better than the fall related classification in all conditions, and achieves 0.86 AUC in the open eyes
foam Surface condition. However, except in this specific set of conditions, the proportion of UB is
not statistically different between the two populations.
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Figure 2: (Left) ROC (Receiving operator Curve) associated with the QUBA algorithm for separating Faller signals and Non-
Faller signals under the conditions closed eyes and foam. (Right) Estimated distribution (using the kernel approximation
method) of the score with b = 3 among the signals of the Fallers / Non-Fallers under the conditions closed eyes and foam
(AUC= 0.80).

Eyes Surface BlockSize AUC %UB in Fallers %UB in Non-Fallers
Open Rigid 1 0.58 0.04(±0.04) 0.03(±0.05)
Open Rigid 2 0.60 0.05(±0.06) 0.03(±0.06)
Open Rigid 3 0.58 0.05(±0.07) 0.03(±0.06)
Open Foam 1 0.71 0.70(±0.17) 0.53(±0.23)
Open Foam 2 0.73 0.80(±0.15) 0.62(±0.23)
Open Foam 3 0.72 0.85(±0.14) 0.68(±0.23)
Closed Rigid 1 0.56 0.03(±0.08) 0.02(±0.04)
Closed Rigid 2 0.60 0.03(±0.08) 0.02(±0.04)
Closed Rigid 3 0.59 0.03(±0.08) 0.02(±0.04)
Closed Foam 1 0.75 0.77(±0.18) 0.57(±0.22)
Closed Foam 2 0.77 0.86(±0.15) 0.67(±0.22)
Closed Foam 3 0.78 0.91(±0.13) 0.73(±0.22)

Table 3: AUC values for separating Faller signals and Non-Faller signals, and percentage of UB windows (i.e. windows
with score < 0.5) among each population for each combination of conditions and value of b.

4.3 Physical Activity

This experiment aims to classify people by their routine physical activity. Previous works have
highlighted the positive impact of physical activity on balance in the elderly (see e.g. [12]). In this
experiment, we aim to separate Passive individuals – i.e. they do not practice physical activity
regularly: 202 signals – and Active individuals – they practice physical activities at least three
times a week, total: 144 signals. The results are presented in Figure 4 and Table 5. The results show
no meaningful difference between the two populations, regardless of the conditions. This might be
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Figure 3: (Left) ROC associated with the QUBA algorithm for separating Elderly and Young signals under the conditions
closed eyes and Foam. (Right) Estimated distribution (using the kernel approximation method) of the score with b = 1
among the signals of the Elderly / Young under the conditions open eyes and Foam (AUC= 0.86).

Eyes Surface BlockSize AUC %UB in Elderly %UB in Young
Open Rigid 1 0.68 0.05(±0.07) 0.02(±0.03)
Open Rigid 2 0.60 0.05(±0.08) 0.02(±0.03)
Open Rigid 3 0.56 0.05(±0.07) 0.02(±0.03)
Open Foam 1 0.86 0.71(±0.17) 0.43(±0.19)
Open Foam 2 0.86 0.81(±0.15) 0.52(±0.20)
Open Foam 3 0.86 0.86(±0.14) 0.58(±0.21)
Closed Rigid 1 0.69 0.03(±0.06) 0.01(±0.02)
Closed Rigid 2 0.66 0.04(±0.07) 0.01(±0.02)
Closed Rigid 3 0.64 0.03(±0.07) 0.00(±0.02)
Closed Foam 1 0.77 0.71(±0.21) 0.50(±0.20)
Closed Foam 2 0.79 0.81(±0.18) 0.60(±0.22)
Closed Foam 3 0.80 0.87(±0.16) 0.66(±0.23)

Table 4: AUC values for separating Elderly and Young statokinesograms, and percentage of UB windows (i.e. windows
with score < 0.5) among each population for each combination of conditions and value of b

partially explained by the broad definition of physical activity [11], as in this dataset no amount of
time or intensity is specified.

4.4 Surface Type

Finally, this experiment aims to classify signals depending on their surface condition, Rigid and
Foam, as the presence of foam on the force platform significantly alters statokinesigrams. Both
populations contained 294 signals, and the results are reported in Figure 5 and Table 6. In this
experiment, each condition resulted in an AUC of 1, highlighting the drastic influence of this condition
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Figure 4: (Left) ROC associated with the QUBA algorithm for separating Passive and Active signals under the conditions
closed eyes and Foam. (Right) Estimated distribution (using the kernel approximation method) of the score with b = 3
among the signals of the Passive / Active under the conditions open eyes and rigid surface (AUC = 0.56).

Eyes Surface BlockSize AUC %UB in Passive %UB in Active
Open Rigid 1 0.52 0.04(±0.04) 0.05(±0.08)
Open Rigid 2 0.54 0.04(±0.05) 0.05(±0.09)
Open Rigid 3 0.56 0.04(±0.06) 0.04(±0.08)
Open Foam 1 0.47 0.57(±0.21) 0.60(±0.21)
Open Foam 2 0.47 0.67(±0.21) 0.69(±0.22)
Open Foam 3 0.49 0.73(±0.20) 0.74(±0.21)
Closed Rigid 1 0.50 0.03(±0.06) 0.03(±0.05)
Closed Rigid 2 0.53 0.03(±0.07) 0.03(±0.05)
Closed Rigid 3 0.54 0.03(±0.07) 0.02(±0.05)
Closed Foam 1 0.46 0.60(±0.24) 0.63(±0.19)
Closed Foam 2 0.46 0.70(±0.22) 0.73(±0.18)
Closed Foam 3 0.47 0.75(±0.21) 0.78(±0.18)

Table 5: AUC values for separating Passive and Active individual signals, and percentage of UB windows (i.e. windows
with score < 0.5) among each population for each combination of conditions and value of b

on postural control.

5 Discussion

The objective of this paper was to detail the mechanics of the QUBA algorithm introduced in [3],
and to test its behavior on additional datasets.
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Figure 5: (Left) ROC associated with the QUBA algorithm for separating signals acquired on a Foam/ Rigid surface under
the condition closed eyes. (Right) Estimated distribution (using the kernel approximation method) of the score with b = 3
among the Foam / Rigid signals under the condition closed eyes (AUC = 1).

Eyes BlockSize AUC %UB in Foam %UB in Rigid
Open 1 1.00 0.56(±0.23) 0.03(±0.05)
Open 2 1.00 0.65(±0.23) 0.03(±0.06)
Open 3 1.00 0.70(±0.23) 0.03(±0.06)
Closed 1 1.00 0.59(±0.23) 0.02(±0.04)
Closed 2 1.00 0.69(±0.23) 0.02(±0.05)
Closed 3 1.00 0.75(±0.23) 0.02(±0.05)

Table 6: AUC values for separating signals acquired on each surface (Rigid and Foam), and percentage of UB windows
(i.e. windows with score < 0.5) among each population for each combination of eye condition and value of b.

Window representation. QUBA uses a combination of three simple features (Section 2). These
features are hardly new, as previous works reported that statokinesigrams medio-lateral and antero-
posterior variation, trajectories’ velocity, acceleration or CoP’s trajectory area [20, 15, 19], might
classify CoP trajectories by posture quality. However, and to the best of the authors’ knowledge,
the local use of these descriptors with QUBA appears to outperform previous attempts at balance
quantification by a large margin. This result highlights the benefit of a local analysis of the CoP tra-
jectory, and future works in this direction – such as new custom made descriptors – might significantly
improve QUBA.

UB proportion. The wide term “unquiet blocks” might involve periods of transition between
strategies, exploration periods, shifting of weight to one foot, head movement or even instability
periods that might occur even if subjects are in standing position without disturbance. However, it
could be expected that even those periods would be minor in individuals that are able to follow the
acquisition protocol and have relatively good postural control. In our experiments, and contrarily to
what was observed in [3], in all the rigid surface recording conditions, all individuals appear to have
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little to no UB (Tables 3 and 4). However, the difference between the two populations significantly
increased in the foam surface condition. This difference of result might be partially explained by
the fact that the threshold of 0.5 for being UB was arbitrary, and might depend on the studied
population. It also emphasizes the fact that there is a continuum of type of blocks between UB and
QB, and that blocks are rarely completely UB or QB.

Influence of block size. All the tested block lengths (b = 1, 2 or 3 seconds) resulted in near
identical performance, with b = 3 being slightly better than the others. Finding the ideal duration
for blocks is difficult, as it is known that age affects drastically (decreases) the sensory response to a
small “unstable” moment that may be presented in quiet stand of the elderly. So, a relative slowness
in recovery [13] is expected, possibly as “strategy of choice” in order to avoid uncontrolled pass of
the stability border [5], and the best value for b may depend on the individual. Therefore, a key
direction for improving QUBA would consist in the automatic splitting of the signal into blocks of
different length, depending on the CoP dynamics, using for instance rupture detection [31].

QUBA and recording conditions. Tables 3 and 4 show that the best classification results are
obtained in the Foam surface condition. Our hypothesis is that the foam placed on the force platform
alters postural control, making static balance significantly harder and increasing differences between
different qualities of postural control. It also highlights the fact that QUBA score is robust, and can
be used in additional settings beyond the one defined in [3].

References

[1] J. Audiffren, I. Bargiotas, N. Vayatis, P-P. Vidal, and D. Ricard, A non linear
scoring approach for evaluating balance: classification of elderly as fallers and non-fallers, PLoS
one, 11 (2016), p. e0167456. https://doi.org/10.1371/journal.pone.0167456.

[2] J. Audiffren and E. Contal, Preprocessing the Nintendo Wii board signal to derive more
accurate descriptors of statokinesigrams, Sensors, 16 (2016), p. 1208. https://doi.org/10.

3390/s16081208.

[3] I. Bargiotas, J. Audiffren, N. Vayatis, P-P. Vidal, S. Buffat, A.P. Yelnik, and
D. Ricard, On the importance of local dynamics in statokinesigram: A multivariate approach
for postural control evaluation in elderly, PloS one, 13 (2018), p. e0192868. https://doi.org/
10.1371/journal.pone.0192868.

[4] H.L. Bartlett, L.H. Ting, and J.T. Bingham, Accuracy of force and center of pressure
measures of the Wii balance board, Gait & Posture, 39 (2014), pp. 224–228. https://doi.org/
10.1016/j.gaitpost.2013.07.010.

[5] J.W. B laszczyk and A. Michalski, Ageing and postural stability, Studies in Physical Cul-
ture and Tourism, 13 (2006), pp. 11–14.

[6] J.W. B laszczyk, R. Orawiec, D. Duda-K lodowska, and G. Opala, Assessment of pos-
tural instability in patients with Parkinson’s disease, Experimental Brain Research, 183 (2007),
pp. 107–114. https://doi.org/10.1007/s00221-007-1024-y.

[7] M. Bosek, B. Grzegorzewski, A. Kowalczyk, and I. Lubiński, Degradation of postural
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