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Abstract

In this paper, we present an implementation and analysis of the mean shift algorithm. The
mean shift is a general non-parametric mode finding/clustering procedure widely used in im-
age processing and analysis and computer vision techniques such as image denoising, image
segmentation, motion tracking, etc.

Source Code

The source code (ANSI C++), its documentation, and the online demo are accessible at the
IPOL the web page of this article1. Compilation and usage instructions are included in the
README.txt file of the archive.

Keywords: mean shift algorithm; clustering; segmentation

1 Introduction and Related Theory

The mean shift algorithm is a powerful general non-parametric mode finding procedure. It can be
described as a hill-climbing algorithm on the density defined by a finite mixture or a kernel density
estimate [3]. Mean shift is based on ideas proposed by Fukunaga and Hostetler [11], and can be used
as a non-parametric clustering method [3], for object tracking [8], image segmentation [17] etc.

Mean shift started to attract the attention after the publication of Chang [4] describing its
applications to cluster analysis, and in vision when Bradski applied it on the Camshift algorithm [1].
Comanciu [6] extended it to low-level vision problems like segmentation and adaptive smoothing.
Mean shift is employed in the spatial-range domain on gray level and color images for discontinuity
preserving filtering and image segmentation with filtering properties similar to the bilateral filter [18].

In [7] Comaniciu et al. present two solutions for the scale-space problem. The first is completely
non-parametric and based on the adaptive estimation of the normalized density gradient. They define
variable bandwidth mean shift and show superiority over the fixed bandwidth procedure.

A review of bandwidth selection for density estimation is given in [14]. In [15] Meng et al.
propose a novel adaptive bandwidth strategy that combines different adaptive bandwidth strategies
and bidirectional adaptive bandwidth mean shift which have the ability to escape from the local
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maximum density. Fashing and Tomasi [10] developed the understanding that mean shift is a bound
optimization which is equivalent to Newton’s method in the case of piece-wise constant kernels.

In [20] the convergence of mean shift is improved by dynamically updating the sample set dur-
ing the iterations, and the procedure is called Dynamic Mean Shift (DMS). Carreira-Perpinan [2]
proved that the mean shift with Gaussian kernel corresponds to the Expectation Maximization (EM)
algorithm.

This paper is organized as follows. In Section 1.1 a short overview of kernel density estimation
and kernel functions is presented. Section 1.2 introduces how a differentiable kernel is used to make a
gradient density estimator. Insight into the working of the mean shift algorithm and its two phases,
namely filtering and segmentation, is given in Section 2. Section 3 and 4 describe our implementation
of the mean shift algorithm and its evaluation.

1.1 Kernel Density Estimate and Kernel Functions

Kernel density estimation is a non-parametric method where the parameter search window radius
must be defined. The advantage of non-parametric methods is dealing with arbitrary coupled/joined
probabilities. With an infinite number of observations, non-parametric methods can reconstruct the
density of the original probabilities. An unknown density distribution with finite observations of a
point in the sample space can be estimated using the kernel density estimation.

To estimate the density of a point x ∈ RD in a D-dimensional feature space, N observations are
required xi with 1 ≤ i ≤ N and xi ∈ RD within a search window that is centered around point
x. The probability density in x is the mean of the probability densities that are centered in the N
observations x1, · · · , xN .

Let X be a random variable and N observations xi with 1 ≤ i ≤ N and xi ∈ RD given. The
kernel density estimator f̂(x) in a point x ∈ RD, with a kernel K(x) and D ×D bandwidth matrix
H is

f̂(x) =
1

N

N∑
i=1

KH(x− xn), (1)

where

KH(x) =
1√
|H|

K
(x
h

)
, (2)

where the simplification H = h2I has been applied. Here, only the single bandwidth parameter, the
window radius, will be regarded. Equation (1) can then be written

f̂(x) =
1

NhD

N∑
i=1

K

(
x− xi
h

)
. (3)

This equation is valid for several kernels. It follows the definition and a profile of the kernel.
The following definition is from Cheng [4]. The norm ‖x‖ of x is a non-negative number so that
‖x‖2 =

∑D
d=1 |xd|

2. A mapping K : RD → R is called a kernel when there is a function k : [0,∞]→ R,
the profile of the kernel, such that

K(x) = ck,Dk(‖x‖2), (4)

where K is radially symmetric, and k is non-negative, non-increasing and piece-wise continuous with∫∞
0
k(r)dr <∞. The value ck,D is a positive normalization constant so that K(x) integrates to 1.
The previous equation can be transformed into a new equation. The two parameters K and h

represent which kernel and radius are used for the density estimator.
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With the profile notation k, Equation (3) is transformed to

f̂h,K(x) =
ck,D
NhD

N∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
. (5)

In [13] Huang et al. show that the original Epanechnikov mean shift terminates at non-critical
points due to its non-smoothness nature and propose a simple remedy to fix it.

This section will introduce three uni-variate profiles and their associated multivariate radial sym-
metric kernels.

From the Epanechnikov profile

kE(x) =

{
1− x, 0 ≤ x ≤ 1

0, x > 1
, x ∈ R, (6)

follows a radial symmetric kernel

KE(x) =

{
1
2
cD
−1(D + 2)(1− ‖x‖2) ‖x‖ ≤ 1

0 otherwise
, x ∈ RD, (7)

where cD is the volume of the D-dimensional globe. The Epanechnikov kernel is used often to
minimize the Mean Integrated Squared Error (MISE).

From the normal profile

kN(x) = exp

(
−1

2
x

)
where x ≥ 0, x ∈ R, (8)

follows the normal kernel

KN(x) = (2π)−D/2 exp

(
−1

2
‖x‖2

)
, x ∈ R. (9)

The normal distribution, like every other kernel with infinite support, is often capped for finite
support. Finite support is important for convergence. Capping the normal kernel can be accom-
plished by multiplying it by a uniform kernel where the inner part of the normal kernel is cut out
and weighted with 1 and the outer part is set to 0. The derivative of the normal profile is again a
normal profile.

From the uniform profile

KU(x) =

{
1 0 ≤ x ≤ 1

0 otherwise
, x ∈ RD, (10)

follows the uniform kernel

KU(x) =

{
1 ‖x‖ ≤ 1

0 otherwise
, x ∈ RD. (11)

a hyper unit ball in the origin.
Assuming that a derivative of a profile k(x) exists for all x ∈ [0,∞], it follows a new profile g(x).

Now a kernel G(x) can be defined
G(x) = cg,Dg(‖x‖2), (12)

where cg,D a normalizing constant and K(x) is the shadow kernel of G(x)[4]. The mean shift vector
of a kernel points to the same direction as the gradient of the shadow kernel.
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1.2 Density Gradient Estimation

The density gradient estimator can be expressed as the gradient of the density estimator

∇̂fh,K(x) ≡ ∇f̂h,K(x) =
2ck,D
NhD+2

N∑
i=1

(x− xi)k′
(∥∥∥∥x− xih

∥∥∥∥2
)
, (13)

where the inner part and a part of the prefactor originate from the differentiation of k
(∥∥x−xi

h

∥∥).
∇

(
k

(∥∥∥∥x− xih

∥∥∥∥2
))

=

=

(∥∥∥∥x− xih

∥∥∥∥)′ k
(∥∥∥∥x− xih

∥∥∥∥2
)

=

= 2(x− xi)
(

1

h

)
k′

(∥∥∥∥x− xih

∥∥∥∥2
)

=

=
2

h2
(x− xi)k′

(∥∥∥∥x− xih

∥∥∥∥2
)
.

(14)

Using g(x) = −k′(x) and with Equation (12) a new kernel G(x) with profile g(x) can be defined.
Transforming Equation (13) with the new profile g(x) the gradient of density becomes

∇̂fh,K =

=
2ck,D
NhD+2

N∑
i=1

(xi − x)g

(∥∥∥∥x− xih

∥∥∥∥2
)

=

=
2ck,D
NhD+2

[
N∑
i=1

g

(∥∥∥∥x− xih

∥∥∥∥2
)]∑N

i=1 xig
(∥∥x−xi

h

∥∥2)∑N
i=1 g

(∥∥x−xi

h

∥∥2) − x
 ,

(15)

The first term in Equation (15) conforms with the density estimator ∇̂fh,G for kernel G except
for a factor, whereas the second term is the difference between the center x of the kernel windows
which conforms to the mean shift vector from Equation (13). To localize the maxima (which are the
roots of the gradient) with mean shift, first it has to be shown that the mean shift vector is moving
along the direction of the gradient. Inserting ∇̂fh,G and mh,G(x) into Equation (15) follows

∇̂fh,K(x) =
2ck,D
h2cg,D

f̂h,G(x)mh,G(x), (16)

transformed to mh,G(x) follows

mh,G(x) =
1

2
h2c
∇̂fh,K(x)

f̂hG(x)
, (17)

whereas
c =

cg,D
ck,D

. (18)

The denominator of Equation (18) is the normalizing factor that originates from the density
estimator with kernel G in X and the numerator is the gradient density estimator with kernel K.
In fact, the mean shift vector is proportional to the gradient, that means it is adaptive. Kernel K is
the shadow kernel of kernel G. Cheng firstly introduced the term shadow kernel.
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Let

mih,K(x) =

∑n
i=1 xik

(∥∥x−xi

h

∥∥2)∑n
i=1 k

(∥∥x−xi

h

∥∥2) − x, (19)

be the D-dimensional mean of the observations x1, · · · , xN from RD weighted with kernel K and a
window radius h. Then K is the shadow to the kernel G if the mean shift vector with kernel G

mh,G(x) = mih,G(x)− x =

∑n
i=1 xig

(∥∥x−xi

h

∥∥2)∑n
i=1 g

(∥∥x−xi

h

∥∥2) − x, (20)

lies in the gradient density estimator direction with kernel K

f̂h,K(x) =
ck,D
Nhd

N∑
i=1

k

(∥∥∥∥x− xih

∥∥∥∥2
)
. (21)

2 Mean Shift Algorithm

Gradient-based methods of feature space analysis use gradients of the probability density function
to find the maxima. Such methods are complex because, among other things, of the need for an
estimate of the probability of density. The gradient-based methods first calculate the gradient and
then the kernel is shifted by a specific length vector in the direction of a maximum increase of density.
The magnitude is the step size which has to be chosen appropriately. The task is how to choose a
suitable step size because a small step size will slow down the convergence.

The mean shift algorithm solves the main problem of gradient methods. The main idea of the
mean shift is to treat the points in D-dimensional feature space as an empirical probability density
function where dense regions correspond to the local maxima of the underlying distribution. Gradient
ascent is performed in the feature space on the local density estimation until convergence. After the
procedure, stationary points correspond to the modes of the distribution, and the same stationary
points are considered members of the same cluster.

The step size of the mean shift is adaptive and depends on the gradient of the density of proba-
bility. The gradient is not calculated, instead, a more efficient mean shift vector is calculated. The
mean shift vector points in the same direction as the gradient in gradient-based methods.

In contrast to the well known K-means clustering approach, mean shift does not need assumptions
on the number of clusters and the shape of the distribution, but its performance relies on the selection
of scale parameters. Bandwidth is the only parameter to tune, so for the one-dimensional case this
is a relatively simple procedure, but in a multidimensional case, it can be difficult. Mean shift might
not work well in higher dimensions.

The mean shift procedure consists of two steps:

1. Construction of probability density in some feature space,

2. The mapping of each point to the maximum (mode) of the density which is closest to it.

Each data point is shifted to the weighted average of the data set. The mean shift algorithm tries
to find stationary points of an estimated Probability Density Function (PDF).
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2.1 Mean Shift Filtering

Filtering with the mean shift algorithm has an advantage because discontinuities like edges are
preserved. Smoothing the pixels with a weighted average of the neighbors in both space and color
range systematically excludes pixels across the discontinuity.

An image is usually defined as a two-dimensional lattice of p-dimensional vectors. The space
of the lattice is known as the spatial domain, while the gray level or color is represented in the
range domain. The L*u*v* feature space can be regarded as the probability density function of the
color [6].

The multivariate kernel can be defined as the product of two radially symmetric kernels with two
bandwidth parameters for each domain

Khs,hr(x) =
C

h2sh
p
r
k

(∥∥∥∥xshs
∥∥∥∥2
)
k

(∥∥∥∥xrhr
∥∥∥∥2
)
, (22)

where xs is the spatial part, xr is the range part of a feature vector, and k(x) is the common profile
used in both domains, hs and hr the employed kernel bandwidths, and C is the corresponding
normalization constant. For color images, filtering is in 5D feature space, two for lattice coordinates
and three for a color.

For each pixel of the image and the set of the neighboring pixels within the specified parameters,
spatial radius and color distance are determined, hs and hr respectively. For this set of neighbor
pixels, the new spatial center and the new color mean values are calculated. These new values will
serve as the new center for the next iteration. This procedure will iterate until the spatial and color
means will stop changing or the maximum number of iterations is achieved.

In practice, an Epanechnikov truncated normal kernel always provides satisfactory performance,
so the user only has to set the bandwidth parameter h = (hs, hr). The resolution of the mode
detection is controlled by the size of the kernel.

Pseudo-code for mean shift filtering is given in Algorithm 1. The implementation of this algorithm
is given in the C++ function MS Filter within the related source code. The algorithm first converts
the input image from RGB to L*u*v* color space. Here dimension D is 5, so we have spatial
part Xs

n = (i, j) ∈ I × J , and range part which is a color range Xr
n = (R,G,B), so we have

xn = (xsn, x
r
n) ∈ N5 for n = 1, . . . , N . Here N is the number of pixels in the image. Input parameters

in the filtering algorithm are hs and hr, and initial shift and maximum number of iterations which
controls the convergence of the algorithm. The filtering procedure reads the corresponding input
pixel from the image and then moves the mean shift vector to the next pixel on its path to the
convergence point zi = (xsi , y

r
i,conv), i.e. the pixel with spatial data xsi will have the range component

of the point of the convergence yri,conv. The new calculated pixel is the basis for the next iteration of
the calculation of the mean shift vector. After calculation of zi which is a matrix of 5-dimensional
points, conversion back to RGB color space is performed.

For the purpose of testing mean shift filtering, we choose the following parameters for Mandrill
image (hs, hr) = (8, 16) and uniform kernel, as shown in Figure 1. One can see that the texture of
the fur has been smoothed, but the eyes and whiskers remain relatively crisp. It can be seen that the
edges are mainly left intact in a similar fashion like with a bilateral filter, which is consistent with
the results presented in [18]. The difference between the mean shift and bilateral filtering is the use
of local information. The kernel in the mean shift moves in the direction of the maximum increase
of the joint density gradient, while in the bilateral case uses a fixed static window [8].
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Algorithm 1: Pseudo-code for the Mean shift filtering

Input : xn = (xsn, x
r
n), n = 1, . . . , N 5-dimensional RGB points

Parameter: hs, hr
Data: ci = (csi , c

r
i ), i = 1, . . . , N 5-dimensional L*u*v* points

Data: zi = (zsi , z
r
i ), i = 1, . . . , N 5-dimensional filtered points

Output : on = (osn, o
r
n), n = 1, . . . , N 5-dimensional RGB points

for n = 1, . . . , N do
crn = ConvertRGB2LUV (xrn)

for i = 1, . . . , N do
initialize j = 1 and yi,1 = ci = (xsi , c

r
i )

while not converged do

calculate yi,j+1 according to yi,j+1 =

∑n
i=1 cig

(∥∥∥ yi,j−ci
h

∥∥∥2)∑n
i=1 g

(∥∥∥ yi,j−ci
h

∥∥∥2) ,

yi,j+1 ∈ RD is a new position of the kernel window.
n- the number of points in the spatial kernel centered on yi,j

yi,conv = yi,j+1

assign zi = (xsi , y
r
i,conv)

for n = 1, . . . , N do
orn = ConvertLUV 2RGB(zrn)

2.2 Mean Shift Segmentation

Segmentation is a process that partitions an image into homogeneous regions. The segmentation
algorithm is a straightforward extension of the mean shift filtering algorithm. After applying the
filter, all convergence points are found, and clusters are built from them. All convergence points that
are closer than hr in the spatial domain and hs in the range domain are grouped together, in fact the
basins of attraction of the corresponding points are concatenated. In the end, all points are labeled.
The basins of attraction of the modes, located within hr/2 in the color space, are recursively fused
until convergence. When the mean shift procedure is applied to every point in the feature space, the
points of convergence aggregate in groups that can be merged. These are the detected modes, and the
associated data points define their basins of attraction. An image region is defined by all the pixels
associated with the same mode in the joint domain. The clusters are separated by the boundaries of
the basins, and the value of all the pixels within are set to their average. The process of delineation
of the clusters is a natural outcome of the mode seeking process [5]. After convergence, the basin
of attraction of a mode, i.e. data points visited by all the mean shift procedures converging to that
mode, automatically separate a cluster of arbitrary shape. The number of significant clusters present
in the feature space is automatically determined by the number of significant modes detected [5]. The
parameter M is used for the last step of the algorithm: if the number of pixels in each group is smaller
than M, that pixel group is eliminated, i.e that pixel group is merged to a similar neighbor region. It
is important to emphasize that the segmentation processes gray level and color images in the same
way. The only difference is that in the former case the feature space has three dimensions, the gray
value and the lattice coordinates. The following paragraph is the description of the implementation
from paper [5].

Pseudo-code for mean shift segmentation is given in Algorithm 2 [6]. The algorithm starts with
the filtering phase. After filtering the information about convergence, points zi are saved. Here M is
the input parameter, which defines the minimal region size. This algorithm is implemented in C++
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(a) Original image (b) Bilateral (hs, hr)=(5, 0.2)

(c) Mean shift (hs, hr) = (8, 16)

Figure 1: Comparison with bilateral filtering

functions MS Segment which call the functions MS Cluster and TransitiveClosure. The algorithm
firstly converts the input image from RGB to L*u*v* color space. After calculation of zi, which is
a matrix of D-dimensional pixels, conversion back to RGB color space is performed. All points are
labeled after their cluster assignment. As one can notice, there are two noticeable differences between
Algorithms 1 and 2. The first two and last steps in both algorithms are the same, the segmentation
includes the phase of labeling. The number of clusters P is controlled by the parameters hs and hr.

In Figure 2, a House image is segmented with the following parameters (hs, hr) = (32, 8) with the
uniform kernel. Segmentation in this case recovers the sharp edges. As it can be noticed, there is
oversegmentation of shadows around the roof. The result of this segmentation can be further refined
by tuning the parameters.

2.3 Mean Shift Strengths and Weaknesses

The mean shift algorithm is an iterative process which computes the mean shift value for the cur-
rent position and then moves the point to its mean shift value. The process of computing mean
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Algorithm 2: Pseudo-code for the Mean shift segmentation

Input : xn = (xsn, x
r
n), n = 1, . . . , N 5-dimensional RGB points

Parameter: hs, hr, M
Data: ci = (csi , c

r
i ), i = 1, . . . , N 5-dimensional L*u*v* points

Data: zi = (zsi , z
r
i ), i = 1, . . . , N 5-dimensional filtered points

Output : on = (osn, o
r
n), n = 1, . . . , N 5-dimensional RGB points

Run the mean shift filtering (Algorithm 1) and store
all information about convergence points zi = (xsi , y

r
i,conv).

for i = 1, . . . , N do
identify clusters {Cp}p=1,...,P of convergence points by
linking together all zi which are closer than hs
in the spatial domain and hr in the range domain

for i = 1, . . . , N do
assign label Li = {p|zi ∈ Cp}

eliminate spatial regions containing less than M pixels
for i = 1, . . . , N do

on = ConvertLUV 2RGB(zi)

(a) Original image (b) Segmented (hs, hr) = (32, 8)

Figure 2: Mean shift segmentation of House image.

shift iterates until it fulfills a certain convergence condition and it is limited by the fixed kernel
bandwidth. Among the strengths of the mean shift algorithms we have that it does not assume any
prior shape (e.g. elliptical) on data clusters, and it can handle arbitrary feature spaces, unlike the
K-Means algorithm. The algorithm is not sensitive to outliers, and convergence is guaranteed. A
detailed analysis for the bandwidth selection problem is presented in [7].
Weaknesses of the Mean shift algorithm include a need to use adaptive window size because improper
window size can lead modes to be merged, which results in bad clusters (segments). The window size
(bandwidth selection) is not trivial to choose. The inappropriate window size can cause modes to
be merged or generate additional shallow modes. A limitation of the standard mean shift procedure
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is that the value of the bandwidth parameter is unspecified. For representative solutions to the
bandwidth selection problem, see Comaniciu [8], Singh [16] and Wang [19].

2.4 Mean Shift Computational Complexity

The computational complexity of mean shift can be written as O(Tn2), where T is the number of
iterations and n is the number of data points. So, by doubling the side length of the quadratic image
the run time increases by a factor of 4. For each pixel of the image, the Mean shift vector has to be
calculated, and if one increases the number of pixels by a number n, we have to deal with n times
longer run time.
The convergence speed and quality depend on the kernel type. For example, the algorithm converges
quickly with a limited number of steps when we use the uniform kernel. On the other hand, the
algorithm is slow when utilizing the normal kernel. The most computationally expensive component
of the mean shift procedure corresponds to identifying the neighbors of a point in a space (as defined
by the kernel and its bandwidth). This problem is well-known as a multidimensional range searching.
This computation becomes cumbersome for high-dimensional feature spaces. Proposed solutions to
this problem include embedding the mean shift procedure into a fine-to-coarse hierarchical bandwidth
approach [9] and employing approximate nearest-neighbor hashing-based search [12].

3 Implementation of the Mean Shift Algorithm

Our algorithm is implemented in the C++ programming language and based on code parts2 from
EDISON [5]. The front-end for libpng for reading and writing PNG images from Nicolas Limare has
been used, and Region Adjacency List class and Transitive Closure2, and the function for filtering is
based on the implementation from ImageJ3. The mean shift algorithm runs in two phases, namely
filtering and segmentation, and the last phase is labeling. In the start, an image is converted to
L*u*v* color space. Users can decide to run the whole mean shift procedure or only the filtering
phase. The input to mean shift algorithms is color radius, space radius, and the minimal region size.
Our implementation uses the uniform kernel.

4 Case Study

We run several experiments on standard images Boat, Mandrill and Peppers with 512× 512 pixels,
Cameraman, House with 256×256 pixels to evaluate the filtering phase of Mean shift. All experiments
were carried out with various spatial and range resolutions and the uniform kernel. Figure 3 shows
the example of the filtering gray-scale Boat image. The image was filtered with eight combinations of
parameters hs and hr, as can be seen in Figure 3. Evaluation of color filtering is done with the Peppers
image as shown in Figure 4. For this experiment, parameters hs and hr were the same than for the
gray-scale image. For both gray-scale and color images, it is noticeable the image preserving filtering,
and more smoothing is for the larger range parameter. The details on Boat image are destroyed with
a larger range value (more than 4), which is more noticeable on the gray-scale image. For assessing
the filtering quality, structural similarity SSIM is used to evaluate the similarity between the input

2EDISON (Edge Detection and Image SegmentatiON), in an implementation of the Mean shift in the C++ language
called EDISON and the source code is available. EDISON provides a versatile graphical interface (can also be run in
the command line) for discontinuity preserving filtering, segmentation, and edge detection.
http://coewww.rutgers.edu/riul/research/code/EDISON/ implemented by Chris M. Christoudias, Bogdan Georgescu

3https://imagej.nih.gov/ij/plugins/download/Mean Shift.java
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a) Original b) (hs, hr) = (8, 8) c) (hs, hr) = (8, 16)

d) (hs, hr) = (16, 4) e) (hs, hr) = (16, 8) f) (hs, hr) = (16, 16)

g) (hs, hr) = (32, 4) h) (hs, hr) = (32, 8) i) (hs, hr) = (32, 16)

Figure 3: Mean shift filtered Boat image

image and the mean shift filtered image. As shown in Table 1, SSIM between original image a) and
filtered images b)-i) can be used to assess the quality of mean shift filtering. It can be seen that for
both images (hs, hr) = (16, 4) gives the best SSIM value.

In Figure 5 and Figure 6 several filtering and segmentation experiments were carried out for all test
images. In this case, the parameters were used for the gray-scale image. Here, for display purposes,
just one segmentation for each test image is shown, which corresponds to the best segmentation for
each case. Mandrill image segmentation results are noticeably the worst. From our experiments,
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a) Original b) (hs, hr) = (8, 8) c) (hs, hr) = (8, 16)

d) (hs, hr) = (16, 4) e) (hs, hr) = (16, 8) f) (hs, hr) = (16, 16)

g) (hs, hr) = (32, 4) h) (hs, hr) = (32, 8) i) (hs, hr) = (32, 16)

Figure 4: Mean shift filtered Peppers image

Image b) c) d) e) f) g) h) i)
Boat 0.746 0.618 0.871 0.721 0.601 0.862 0.715 0.595
Peppers 0.974 0.957 0.983 0.907 0.947 0.982 0.966 0.935

Table 1: Comparison of SSIM for filtering experiments given in Figure 3 and Figure 4.

which are in accordance with [7], segmentation is not very sensitive to the choice of the parameters
hr and hs.
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Boat (hs, hr) = (4, 6) Boat (hs, hr) = (4, 6)

Cameraman (hs, hr) = (8, 8) Cameraman (hs, hr) = (8, 8)

House (hs, hr) = (4, 6) House (hs, hr) = (4, 6)

Figure 5: Mean shift filtered and segmented images: Boat, Cameraman, and House

Comparison of different sizes of the minimal region are carried out in Figure 7 and Figure 8. Here,
the algorithm does not assign the same color for the corresponding regions, so different runs produce
a the different coloring of the regions. The region of minimal area M for segmented regions in pixels
of sizes 10 and 20 was compared. For the Boat and Cameraman, the segmentations are similar,
only small regions disappear for the bigger minimal area M=20. For all experiments, the bigger
value for M leads to a smaller difference in segmentation, which is small for almost all experiments.
From this experiment, one can see the impact of the bandwidth on the number of clusters. Proper
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Mandrill (hs, hr) = (32, 8) Mandrill (hs, hr) = (32, 8)

Peppers (hs, hr) = (16, 16) Peppers (hs, hr) = (16, 16)

Figure 6: Mean shift filtered and segmented images: Mandrill and Peppers

bandwidth is important, a large one might result in incorrect clustering and to eventually merging
distinct clusters; on the other side, small bandwidth might result in too many clusters.
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Boat (hs, hr,M) = (4, 6, 10) Boat (hs, hr,M) = (4, 6, 20)

Cameraman (hs, hr,M) = (4, 6, 10) Cameraman (hs, hr,M) = (4, 6, 20)

House (hs, hr,M) = (4, 6, 10) House (hs, hr,M) = (4, 6, 20)

Figure 7: Comparison for different minimal regions; M=10 and M=20
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Mandrill (hs, hr,M) = (32, 8, 10) Mandrill (hs, hr,M) = (32, 8, 20)

Peppers (hs, hr,M) = (16, 16, 10) Peppers (hs, hr,M) = (16, 16, 20)

Figure 8: Comparison for different minimal regions; M=10 and M=20
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5 Conclusions

In this paper, the detailed implementation of the mean shift algorithm was studied. An analysis of the
algorithm and a well-commented implementation in the C++ programming language are provided.
For testing purposes, a case study of the algorithm was presented for filtering and segmentation.
Several standard gray-scale and color images were used for the experiments. Parameters for spatial
and color radius and the minimal region size were evaluated. Future research can be done in two
directions, parallelization of the proposed implementation, implementation of the variants of mean
shift with quantization of the probability density function, methods of sampling etc.

Image Credits

Standard test images4
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