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Abstract

The a contrario framework has been successfully used for the detection of lines, contours and
other meaningful structures in digital images. In this paper we describe the implementation of
an algorithm for face detection published in 2017 by Lisani et al. which applies the a contrario
approach to the computation of the detection thresholds of a classical cascade of classifiers. The
result is a very short cascade which obtains similar detection rates than a classical (and longer)
one at a much lower computational cost.

Source Code

The reviewed and documented source code and an online demo are available at the web page of
this article1. Compilation and usage instructions are included in the README.txt file of the
archive.
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1 Introduction

The a contrario framework provides a statistical formulation of a perception principle that states that
an observed structure should be considered perceptually meaningful only if it is rarely encountered
in random data. This framework has been used successfully to detect contours and lines in images [3,
17, 18], modes in 1D histograms [4, 2], moving objects in video [14], changes in satellite images [13],
etc. What we propose in this paper is to apply, for the first time to our knowledge, this approach to
the detection of faces.

In 2001 Viola and Jones [16] proposed an algorithm for face detection that settled the basis of
most current face detection methods. The algorithm detected faces in frontal position and was based
on three elements: fast computation of Haar-like features from the input images; learning of the most
discriminant features using the AdaBoost training procedure; and use of a cascade of classifiers to
achieve high detection rates with low number of false detections.

Since this seminal work many improvements have been proposed, either for the computation of
better image features [11, 9, 15], or using alternative learning techniques [20, 10, 7, 8]. A compre-
hensive review on face detection methods can be found in [22].

All of the above mentioned improvements have focused on the training step of the algorithm but
little attention has been paid to the detection step. Jain et al. in 2011 [6] proposed to adapt the
detection thresholds to the image contents, in such a way that reliable face detections could be used
to detect other difficult-to-detect faces in the same scene. In [12] an improvement of the original
Viola-Jones method was proposed, focusing in the detection step and using an a contrario approach.
The authors showed that it is possible to improve the performance of the detector (i.e. increase the
detection rates, keeping low the number of false detections and at a reduced computational cost)
without the need of a long cascade of classifiers. This was achieved by replacing the fixed detection
thresholds of the classifiers, learned in the training step, by adaptive thresholds particular to each
input image. We describe in this paper the implementation of the algorithm presented in [12].

The paper is organized as follows: Section 2 describes the classical detection method proposed
by Viola and Jones and introduces the basic definitions used throughout the text. Section 3 explains
how the a contrario approach can be used to improve the results of a classical cascade. Section 4
contains the pseudo-codes describing the main steps of the proposed algorithm. Section 5 displays
some experimental results and, finally, some conclusions are exposed in Section 6.

2 Analysis of the Viola-Jones Face Detector

This section provides a short overview of the Viola and Jones face detection method. We refer the
reader to [19] for an in-depth analysis of the method.

A face classifier is a mathematical function that takes as input a portion of an image (typically a
rectangular sub-image) and gives as output a numerical value (typically 1 or 0) indicating whether
the sub-image contains or not a face.

Viola and Jones [16] defined a series of sub-image features (Haar-like features, see Figure 1) and
used a learning set of frontal faces to train, with the Adaboost algorithm, a strong classifier that
combined K of these features. They defined first a weak classifier as a function hk(x) computed at
sub-image x and associated to a feature k. The feature value is obtained as the sum of intensity
values in the ‘white’ feature mask minus the sum of intensity values in the ‘black’ feature mask.
The different types of masks associated to each feature are displayed in Figure 1, and their position
and size are chosen so that the set of all features of a given type covers the entire sub-image. The
function hk(x) takes the value 1 if the feature value at x is above/below a learned threshold; otherwise
hk(x) = 0.
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The strong classifier using K features (in opposition to the weak classifier that uses a single
feature) is defined as

h(x) =

{
1 vdet(x) ≥ T,

0 otherwise,
(1)

with

vdet(x) =
K∑
k=1

αkhk(x), (2)

and

T =
1

2

K∑
k=1

αk, (3)

where x is a sub-image, K is the number of features of the classifier, hk(x) is the weak classifier
associated with feature k and αk is the weight of hk in the final strong classifier. The detection
threshold T is fixed and depends on the αk values learned from the training set of images.

a b c d e

Figure 1: Haar-like feature masks used by the Viola-Jones detection method (figures from [19]).

Usually, the detection value vdet of the classifier is disregarded, since we are just interested in its
binary response (‘1’ for faces, ‘0’ for non-faces). In [12] the authors took a different approach. They
analyzed the distribution of detection values (the set of detection values associated to all the tested
sub-windows in a particular image2) for several strong classifiers with different numbers of features.
These classifiers had all been trained using the same set of frontal faces and Haar-like features used
by Viola and Jones in their original paper [16]. They found that:

1. The distribution of detection values in an image without faces tends to a normal distribution.
This is exemplified in Figure 2. This figure displays the distribution of detection values for
classifiers with increasing number of features (10, 20, 40, 80 and 200) for two images without
faces. The image on the left is a pure Gaussian noise image with standard deviation σ = 30.
The image on the right is a natural image. In both cases we observe that, as the number of
features increases, the distribution of detection values tends to a normal distribution.

2. If the image contains faces, the distribution of values is again Gaussian, but the detection
values corresponding to the sub-images containing the faces are much higher than the values
of the Gaussian distribution. Figure 3 shows an example for an 80-features classifier. In this
figure, the value T of the default detection threshold (Equation (3)) of the classifier is shown for
reference. The red dots indicate the detection values for the sub-windows actually containing
a face. A second example is shown in Figure 4. We observe that, as the number of features in
the classifier increases, much farther away are the detection values corresponding to faces from
the Gaussian distribution.

2In [12] all the sub-windows of sizes ranging from 20 × 20 to 220 × 220 pixels were tested. Moreover, flat image
regions (sub-windows whose intensity standard deviation was below 20) were not considered.
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Figure 2: Distribution of detection values for classifiers with increasing number of features. From top to bottom: original
image and histograms for classifiers with 10, 20, 40, 80 and 200 features. The mean µ and standard deviation σ of each
distribution are shown, and the Gaussian function with the same mean and variance parameters is superimposed. For the
left image a total number of 536402 sub-windows were checked by each classifier. For the right image 5170933 sub-windows
were checked.
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Figure 3: Input image and its histogram of detection values for a 80-features classifier. The red dots indicate the detection
values for the sub-windows actually containing a face. T is the default detection threshold of the classifier as defined by
Equation (3).
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Figure 4: Left, original image. Right, distribution of detection values for a 200-features classifier. The red dots indicate the
detection values for the sub-windows actually containing a face. A total number of 3426685 sub-windows were checked by
the classifier.

These two observations lead the authors of [12] to devise a method for the automatic estimation
of the detection thresholds, which is described in Section 3. For a further analysis of the Gaussianity
of the distributions of detection values we refer the reader to the original paper.

3 Setting the Detection Thresholds Using an A Contrario

Approach

As mentioned in the previous section, in the original Viola and Jones method the detection threshold
determining the presence or absence of a face in a given sub-window is computed using Equation (3).
This implies that the threshold is learned from the set of training images and that it is fixed, i.e. the
same threshold will be applied to any image going through the classifier. The example in Figure 3
illustrates one of the shortcomings of this approach. In this figure, the position of the detection
threshold is shown with respect to the distribution of detection values of one particular image.
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Many of these values are above the threshold, so their corresponding sub-windows shall be (wrongly)
detected as faces by the classifier, producing a large number of false positives. Moreover, the dis-
tributions in Figures 3 and 4 are clearly different, which indicates that they depend on the image
content and that the use of a fixed threshold is too restrictive.

The method in [12] permits to adapt the detection threshold to the image being observed. This
can be done by applying the a contrario detection principle to test the presence of a face in a sub-
window against a noise or a contrario model where the face is not present. This is equivalent to
performing the following hypothesis test:

H0 (null hypothesis): the sub-image does not contain a face
H1 (alternative hypothesis): the sub-image contains a face

The acceptation/rejection of H0 depends on a rejection threshold Θ and the level of significance α
of the test is defined as

α = P (rejecting H0|H0 is true) =

= P (vdet > Θ|H0 is true) =

= P

 accepting sub-image
as face

∣∣∣∣∣∣
the sub-image
does not contain
a face

 =

= P (False positive),

where vdet is the detection value associated to the sub-image, computed from (2). Following the
discussion in the previous section, a Gaussian distribution of the detection values is assumed for the
null hypothesis (i.e. the distribution of detection values for the non-faces sub-windows is Gaussian).
This allows the computation of the level of significance in closed form. The mean µ and standard
deviation σ of this Gaussian can be estimated from the empirical values of the histogram. The
assumption here is that just a small fraction of the sub-windows in any image correspond, if any, to
actual faces. Therefore, the actual distribution of detection values for the whole image corresponds,
roughly, to the distribution of values under the null hypothesis.

The rejection threshold Θ can be written as a function of µ and σ: Θ = Θs = µ+ sσ, where s is
a parameter. Then α can be expressed in terms of s

α = P (False positive) = P (vdet > Θs|H0 ∼ N (µ, σ2)) = P

(
Z >

Θs − µ
σ

)
= P (Z > s), (4)

where N denotes the Gaussian probability density function and Z ∼ N (0, 1) is the standard Gaus-
sian distribution with 0 mean and standard deviation equal to 13. Remark that Θs is an adaptive
threshold, since it depends on the detection statistics (µ and σ) of the input image.

A question that arises is which is the optimum value of the parameter s that guarantees such a
low value of probability that no false positives are observed in the image. To answer this question we
need first to establish the relation between the probability of false positives and the actual number
of observed false positives. This relation is straightforward: if the number of tested sub-windows in
the image is N , then the expected number of false positives, NFP can be computed as

NFP = N × P (False positive). (5)

3 The relation between N (µ, σ2) and Z ∼ N (0, 1) follows from a classical result on Gaussian distributions.
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A criterion for the selection of the detection threshold is to compute the value of Θs that guar-
antees a value of NFP below some pre-defined upper bound NFPmax. Combining equations (5)
and (4) we obtain the value of the detection threshold as

Θ = µ+ s∗σ, (6)

with s∗ such that P (Z > s∗) =
NFPmax

N
.

4 Description of the Method for Face Detection

Algorithm 1 describes the straightforward application of the conclusions of the previous section to
the detection of faces using a single strong classifier. Basically, the algorithm computes the detection
values for all the sub-windows of an input image, computes the mean and variance of these values and
uses Equation (6) to determine which of these sub-windows contain a face. The only parameter of
the algorithm is the allowed number of false positives. The process of extracting all the sub-windows
of the image is detailed in Algorithm 3.

Algorithm 1: Face Detection with a Single Classifier and Adaptive Detection Threshold

Input : input image I (gray level), classifier data C
Output : image sub-windows containing a face D
Parameters: maximum number of false positives NFPmax

//Get all image subwindows (Algorithm 3)

1 S = GetSubWindows(I)//Total number of subwindows = N

//Apply classifier to ALL subwindows and get detection values V
2 V (S) = ApplyClassifier(S, C)
//Compute mean and standard deviation of detection values

3 (µ, σ) = GetMeanStandardDev(V (S))
//Compute detection threshold (use Equation (6))

4 Θ = µ+ F−1(NFPmax

N
)σ, F (s) = P (Z > s)

//Get set of detected faces D
5 D = ∅
6 for s ∈ S do
7 if V (s) > Θ then
8 s→ D //Add sub-window to detections set

In [16] Viola and Jones proposed to use not just one strong classifier but several of them in a series
configuration called cascade of classifiers. In this structure, the input of each classifier consisted of
the positive detections of the previous one. The first stages of the classifier used few features so they
only rejected the most obvious non-faces while the latest stages used many features to let through
only the true faces. Moreover, each classifier was trained using the negative examples wrongly labeled
by the previous classifier, so the detection thresholds became more and more restrictive. Besides the
increase in the precision of the detection, the use of the cascade permits to speed-up the computation
process, since most of the sub-windows shall be rejected by the first stages of the cascade, where
only just a few features are checked.

In [12] several tests with a 200-features classifier4 are performed and compared with the results
of the cascade of 31 classifiers implemented in [19], and also with the OpenCV implementation of

4 The classifier is trained using the same set of frontal 24×24 faces as in the original paper by Viola and Jones [16].
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the Viola-Jones face detector. The detection rates obtained with the three methods are very similar,
which implies that a single classifier endowed with an adaptive threshold performs as well as a full
cascade of classifiers.

However, the performance of a face detector cannot be simply measured in terms of its detection
rate, but also its computational efficiency must be taken into account. It is clear that a single
classifier with 200 features must check ALL these features on all possible image sub-windows in
order to produce its result. On the other hand, the use of a cascade of classifiers permits to reject
most of the false positives in the early stages, which are composed by a small number of features.
Therefore, even if the total number of features in the full cascade is big (up to 6000 features in the
38-stages original Viola-Jones cascade), the average number of features tested per sub-window is
relatively small.

In order to preserve the detection rates of the single 200-features classifier at a much lower
computational cost the authors of [12] propose a short cascade of 4 classifiers with 5, 10, 80 and 200
features respectively. As with any cascade the goal is to reject most of the sub-windows in the initial
stages (in our case the first 3 stages) and then apply the 200-features classifier to a fraction of the
sub-windows. The cascade is trained as proposed in the original Viola and Jones paper [16], using
the same set of frontal 24×24 faces and, as negative examples for each stage, the false positives from
the previous stage.

For detection, ideally the threshold adaptation principle exposed in Section 3 should be applied to
all 4 classifiers. However, as illustrated in Figure 2, only when the number of features is large enough
the Gaussian model for the distribution of detection values applies. Therefore, for the first two
stages of the cascade (5 and 10 features respectively) the detection thresholds are set to allow a fixed
percentage of sub-windows through the classifier. For the 5-features classifier all the sub-windows
whose detection value is below the 80%-percentile are rejected (only the top 20% sub-windows are
let through), while for the 10-features classifier all the sub-windows below the 95%-percentile are
rejected (only the top 5% sub-windows are let through). For the 80-features classifier the threshold
is set using Equation (6) with fixed value of NFP 80 feat

max = 100. These values of the parameters are
quite permissive, being the goal to preserve as many as possible of the true positives, which should
be correctly classified by the last stage of the cascade. The only tunable parameter of the cascade is
the maximum number of false positives for the 200-features classifier (NFP 200 feat

max ) in the last stage.

It must be noted that the practical implementation of the face detector described in the above
paragraph requires the computation of the detection thresholds for the 4 proposed classifiers, which
implies the knowledge of the distribution of detection values for each classifier. These distributions
could be computed using the entire set of possible image sub-windows5. However, this would imply
to check 295 (= 5 + 10 + 80 + 200) features on each sub-window. In order to reduce the number of
computations we check all the sub-windows just for the 5-features classifier and then sub-sample the
set of sub-windows to get the rest of distributions. If N denotes the total number of sub-windows,
we use pN of them to obtain the detection histograms for the 10, 80 and 200-features classifiers, with
p a fixed parameter which we have set to p = 0.01 = 1%. Since N is typically of the order of millions
the average of the 0.01N sampled detection values shall be very close to the population average [1].

Algorithm 2 describes the proposed detection method.

4.1 Computational Cost of the Short Cascade

For the set of fixed parameters described above it is possible to estimate the computational efficiency
of the proposed cascade. Let N be the total number of image sub-windows, then the average number

5In the current implementation of the algorithm we consider all non-flat sub-windows (variance of intensity values
above 202) of sizes ranging from 24× 24 to 220× 220 pixels.
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Algorithm 2: Face Detection with a Short Cascade of Classifiers and Adaptive Detection
Thresholds

Input : input image I (gray level), classifiers data C5, C10, C80, C200
Output : image sub-windows containing a face
Parameters: maximum number of false positives NFPmax

//Get all image sub-windows (Algorithm 3)

1 S = GetSubWindows(I)//Total number of subwindows = N

//Compute detection thresholds

//Apply 5-features classifier to ALL sub-windows and get detection values V5
2 V5(S) = ApplyClassifier(S, C5)
//Compute 80% quantile of detection values for 5-features classifier

3 Θ5 = GetQuantile(V5(S), 0.8) //Detection threshold for 5-features classifier

//Randomly pick 0.01N sub-windows from S

4 R = SampleSubWindows(S, 0.01N)
//Apply 10-features classifier to selected sub-windows

5 V10(R) = ApplyClassifier(R, C10)
//Compute 95% quantile of detection values for 10-features classifier

6 Θ10 = GetQuantile(V10(R), 0.95) //Detection threshold for 10-features classifier

//Apply 80-features classifier to selected sub-windows

7 V80(R) = ApplyClassifier(R, C80)
//Compute mean and standard deviation of detection values for 80-features classifier

8 (µ80, σ80) = GetMeanStandardDev(V80(R))
//Compute detection threshold for 80-features classifier

9 Θ80 = µ80 + F−1(100
N

)σ80, F (s) = P (Z > s) //Use Equation (6) and NFPmax = 100

//Apply 200-features classifier to selected sub-windows

10 V200(R) = ApplyClassifier(R, C200)
//Compute mean and standard deviation of detection values for 200-features

classifier

11 (µ200, σ200) = GetMeanStandardDev(V200(R))
//Compute detection threshold for 200-features classifier

12 Θ200 = µ200 + F−1(NFPmax

N
)σ200, F (s) = P (Z > s) //Use Equation (6)

//Get set of detected faces D
13 D = ∅
14 for s ∈ S do
15 if V5(s) > Θ5 then
16 if V10(s) > Θ10 then
17 if V80(s) > Θ80 then
18 if V200(s) > Θ200 then
19 s→ D //Add sub-window to detections set
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Algorithm 3: Extract sub-windows of size 24 × 24 and normalized intensity variance from
image

Input : input image I (gray level)
Output : set of image sub-windows S of size 24× 24 and normalized intensity variance
Parameters: minimum and maximum sizes of faces to be detected (default values:

sizeMin=24 and sizeMax=220, respectively), minimum intensity variance of the
sub-windows values (default: Vmin = 202), and normalized variance value
(default: Vnorm = 502)

//Get set of zoom factors that rescale a sub-window of size w × w to 24× 24
1 Z = ∅
2 for w ∈ {sizeMin, · · · , sizeMax} do
3

24
w
→ Z //Add zoom factor to set

//Rescale input image and extract all subwindows of size 24× 24
4 S = ∅ //Set of all sub-windows

5 for z ∈ Z do
6 Iz = RescaleImage(I, z) //Rescale I with scale factor z

7 wz = width(Iz) //width of rescaled image

8 hz = height(Iz) //height of rescaled image

9 for j ∈ {0, · · · , hz − 25} do
10 for i ∈ {0, · · · , wz − 25} do

//Extract from Iz sub-window of size 24× 24 with top-left corner at (i, j)

11 s = GetSubWindow(Iz, i, j, 24, 24)
//Reject flat sub-windows

12 if Variance(s) > Vmin then
13 NormalizeVariance(s, Vnorm)
14 s→ S //Add sub-window to set

//For each sub-window, the values of z and (i, j) are stored for further

processing (see Algorithm 5)

278



A Contrario Detection of Faces with a Short Cascade of Classifiers

of checked features per sub-window is computed as

Avg =
Tf
N
, (7)

where Tf denotes the total number of checked features

Tf = 5N+ All the sub-windows go through the 5 features

classifier

(10 + 80 + 200) · 0.01N+ A subset of 0.01N sub-windows is used to estimate

the distribution of values for the 10, 80 and

200-features classifiers

10 · 0.2N+ 20% of the sub-windows go through the 10-features

classifier

80 · 0.05N+ 5% of the sub-windows go through the 80-features

classifier (this is an upper bound, since some

sub-windows may be rejected by the previous classifier)

200 · p′N A unknown (but very small) percentage p′ of the

sub-windows goes through the 200-features classifier

By replacing this expression in Equation (7), and taking into account that the unknown value p′ is
very small, we get an upper bound for the average number of checked features per image: Avg ≈ 13.9.
For comparison, in [12] the average number of features checked by the 31-stages cascade of [19] is
computed for different datasets, and the result is Avg31−stages ≈ 60.

Speeding up the computation. A simple way of increasing the computation speed of the face
detector is by replacing line 2 of Algorithm 3 (sub-windows extraction) by this new line:

for w ∈ {sizeMin, zStep · sizeMin, zStep2 · sizeMin, · · · } and w ≤ sizeMax do

where zStep > 1 is a new parameter of the method.
With this modification the algorithm doesn’t check all the sub-windows ranging from sizeMin ×

sizeMin to sizeMax × sizeMax pixels, but only a subset of them. As a consequence less computations
are needed to get the final result. This is a strategy similar to the one used in [19] for the implemen-
tation of the 31-stages cascade. The downside of this modification is that some correct detections
may be missed due to the incomplete sampling of the image domain. This may explain some missed
detections in the results shown for the 31-stages cascade in the experimental section. Moreover, in
our case a second drawback is that less data are used to compute the histograms of detection values,
which results in less reliable detection thresholds. In the results shown throughout the paper this
speed-up has not been applied, but it has been left as an optional parameter in the on-line demo
accompanying the article.

4.2 Post-Processing of the Detection Results

As shown in Figure 6-left the raw output of Algorithm 2 is a set of squares that indicate the position
of a detected face. Usually, for each true detection, many squares of similar sizes are found, centered
around the detected face and forming a thick frame around it. Moreover, false detections do not
usually exhibit such thick frames, meaning that the detection result is not very stable in this region
of the image. All face detection methods apply some kind of post-processing to these raw results
in order to get just one representative for each group of similar detections. The final output of our
detector is obtained after the following post-processing steps:
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• First, only stable detections are kept. Typically, the stability of a detection is measured in
terms of the thickness of the group of detections it represents (i.e. the number of detections
in the group). This criterion adds an additional parameter to the detector. For instance, in
the OpenCV6 implementation of the Viola-Jones detector, by default, a minimum of three
detections are required to keep the group. In [19] a similar criterion is used, but the minimum
required number of detections depends on the size of the detection windows. We get rid of this
parameter by assessing the stability of the detection in a different way: we take advantage of
the lack of left-right symmetry of many of the features of the 200-features strong detector (see
Figure 5) and keep only the raw detections testing positive in a mirror version (horizontal flip)
of the input image. This is illustrated in Figure 6-center. This post-processing, which we call
mirror filter, is described in Algorithm 5.

• Second, the stable detections from the previous step are simplified according to the following
rule: if two square regions intersect, and the intersection is important, we can consider that
it is the same face, so we can keep the best scored one and discard the other. In particular,
detections d1 and d2 are grouped together if

A(d1 ∩ d2)
min(A(d1), A(d2))

> 0.5, (8)

where di denotes a square detection (region of the image that tested positive for the detector)
and A() is the area operator. For each group of detections only the one with highest detection
value is kept. Figure 6-right shows an example of the simplification provided by this grouping
principle. Algorithm 6 describes this post-processing step.

The whole detection algorithm, including the post-processing steps, is described in Algorithm 4.

Figure 5: The image displays the location, in a 24× 24 image, of 5 of the features with higher weights in the 200-features
classifier used in our experiments. Only one of these features exhibits left-right symmetry.

6https://opencv.org/
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Figure 6: Left, output of the detector described in Algorithm 2 using NFPmax = 1. Center, stable detections after applying
Algorithm 5. Right, final detections after grouping and simplification with Algorithm 6.

Algorithm 4: Face Detection with a Short Cascade of Classifiers and Adaptive Detection
Thresholds with Post-Processing

Input : input image I (gray level), classifiers data C5, C10, C80, C200
Output : S∗ image sub-windows containing a face
Parameters: maximum number of false positives NFPmax

1 S = GetRawDetections(I, C5, C10, C80, C200) //Algorithm 2

2 S ′ = GetStableDetections(S, I, C200) //Algorithm 5

3 S∗ = GroupAndSimplifyDetections(S ′) //Algorithm 6

Algorithm 5: Mirror filter

Input : S set of sub-windows detected as faces by Algorithm 2, input image I, classifier
data C200 and detection threshold Θ200

Output : S’ output set of sub-windows after rejection of un-stable detections
//For each sub-window s ∈ S the following information is known (see Algorithm 3):

//zs: zoom factor applied to the original image to extract s

//(is, js): position of the top-left corner of the sub-window in the rescaled image

1 S ′ = ∅ //Initialize output detections set

2 for s ∈ S do
3 Iz = RescaleImage(I, zs) //Rescale I with scale factor zs
4 wz = width(Iz) //width of rescaled image

5 I ′z = HorizontalFlip(Iz) //Get mirror version of image

6 s′ = GetSubWindow(I ′z, wz − is − 24, js, 24, 24) //Get sub-window at mirror coordinates

7 v′ = ApplyClassifier(s′, C200) //Get detection value for sub-window using 200-features

classifier

8 if v′ > Θ200 then
9 s→ S ′ //Add original sub-window to output detections set
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Algorithm 6: Grouping and simplification of detections

Input : S set of sub-windows detected as faces
Output : S’ simplified set of sub-windows
//For each sub-window s ∈ S the following information is known:

//(i1, j1), (i2, j2): coordinates of the sub-window in the original image (top-left and

bottom-down corners)

//vdet: detection value for the 200-features classifier

1 N = Size(S) //Number of input sub-windows

2 Sort(S) //Sort sub-windows by decreasing detection value

//After sorting: S[0] has the highest detection value and S[N − 1] the lowest

3 tags = 1 //Tags for each sub-window, initially set to 1 for all of them

4 for k ∈ {N − 1, · · · , 1} do
5 d1 = S[k] //First sub-window

6 d2 = S[k − 1] //Second sub-window

7 d12 = d1 ∩ d2 //Intersection of sub-windows (it might be an empty set)

8 A12 = Area(d12) //Area of the intersection

9 A1 = Area(d1) //Area of the first sub-window

10 A2 = Area(d2) //Area of the second sub-window

11 p = A12

min(A1,A2)
//Equation (8)

12 if p > 0.5 then
//The area of intersection is relatively large

//Keep d2 (sub-window with higher detection value)

//Tag d1 for removal

13 tags[k] = 0

14 S ′ = ∅ //Initialize output detections set

15 for k ∈ {0, · · · , N − 1} do
16 if tags[k] == 1 then

//Keep sub-window in output set

17 S[k]→ S ′ //Add sub-window to output detections set
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5 Experimental Results

In Figures 7 to 9 the effect of varying the parameter of the method (NFPmax) is explored. We
observe that the results are quite stable but that, as the parameter increases, more detections appear,
although they are not always correct. For comparison, the result of the 31-stages cascade proposed
in [19] are also shown. Let us remark that, as a way to improve the detection rates of the method,
the author of [19] combines the results of applying the cascade to the original input image and to two
slightly rotated versions of the same image. In order to make a fair comparison, we have modified
the original code so that the 31-stages cascade is only applied on the original image.

NFPmax = 1 NFPmax = 10

NFPmax = 100 31-stages cascade [19]

Figure 7: Results of the proposed method for different values of the parameter NFPmax. The bottom-right image displays
the result of a full-cascade of classifiers without adaptive detection thresholds.

Figure 10 shows three examples of detection of frontal faces with NFPmax fixed to 1. The results
are compared with those of the 31-stages cascade from [19]. We observe that the use of adaptive
detection thresholds permits to obtain good detection results with the short cascade, comparable to
those of the large one.

Finally, some results on images containing “faces-in-the-wild” are displayed in Figure 11. These
faces are not necessarily frontal and may be partially occluded. Remark that the classifiers (both
in our method and in [19]) were trained with the same set of frontal 24 × 24 faces used in the
original Viola and Jones paper [16], therefore, we cannot expect to get good results with this kind of
images. However, the obtained results show a certain degree of robustness to partial occlusions and
to variations in pose.

283



Jose-Luis Lisani, Silvia Ramis

NFPmax = 1 NFPmax = 10

NFPmax = 100 31-stages cascade [19]

Figure 8: Results of the proposed method for different values of the parameter NFPmax. The bottom-right image displays
the result of a full-cascade of classifiers without adaptive detection thresholds.
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NFPmax = 1 NFPmax = 10

NFPmax = 100 31-stages cascade [19]

Figure 9: Results of the proposed method for different values of the parameter NFPmax. The bottom-right image displays
the result of a full-cascade of classifiers without adaptive detection thresholds.
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Figure 10: Results with frontal faces. Left, results of the proposed method for NFPmax = 1. Right, result of a full-cascade
of classifiers without adaptive detection thresholds [19].
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Figure 11: Results with “faces-in-the-wild”. Left, results of the proposed method for NFPmax = 1. Right, result of a
full-cascade of classifiers without adaptive detection thresholds [19].
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6 Conclusions

In this article we have described a method for the detection of frontal faces in digital images that
improves the cascade of classifiers proposed by Viola and Jones in 2001 by incorporating adaptive
detection thresholds computed using an a contrario approach. We have shown that the proposed
method requires less computations than the original algorithm while providing similar detection
rates. The adaptation of the method to the detection of faces in the wild (without restrictions on
pose, robust to partial occlusions, etc.) shall be the subject of our future research.
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