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Abstract

For 1D and 2D signals, the Shannon-Whittaker interpolation with periodic extension can be
formulated as a trigonometric polynomial interpolation (TPI). In this work, we describe and
discuss the theory of TPI of images and some of its applications. First, the trigonometric
polynomial interpolators of an image are characterized and it is shown that there is an ambiguity
as soon as one size of the image is even. Three classical choices of interpolator for real-valued
images are presented and cases where they coincide are pointed out. Then, TPI is applied to
the geometric transformation of images, to up-sampling and to down-sampling. General results
are expressed for any choice of interpolator but more details are given for the three proposed
ones. It is proven that the well-known DFT-based computations have to be slightly adapted.

Source Code

The ANSI C99 implementation of the code that we provide is the one which has been peer
reviewed and accepted by IPOL. The source code, the code documentation, and the online
demo are accessible at the IPOL web page of this article1. Compilation and usage instructions
are included in the README.txt file of the archive.

Keywords: interpolation; trigonometric polynomial; trigonometric polynomial interpolation;
discrete Fourier transform (DFT); Non-equispaced fast Fourier transform (NFFT)

1 Introduction

Interpolation consists in constructing new data points within the range of a discrete set of known
data points. It is closely related to the concept of approximation [7], fitting [9] and extrapolation. In
signal processing it is commonly expressed as the problem of recovering the underlying continuous
signal from which the known data points are sampled. Under the assumption that the signal belongs
to a given class of functions, the common principle of all interpolation schemes is to determine
the parameters of the continuous signal representation. In the following we focus on interpolation
of uniformly sampled data on a regular grid, and in particular on image interpolation. The most
common interpolation methods are presented in [23, 11].
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Shannon-Whittaker interpolation. A fundamental example of interpolation formula is given
by Shannon-Whittaker’s sampling theory [19, 24]. Let d ∈ N (typically 1 or 2).

Definition 1 (Fourier transform). The continuous Fourier transform applied to L1(Rd) and its
inverse, denoted F and F−1, are defined by

∀u ∈ L1(Rd), ∀y ∈ Rd, û(y) = F(u)(y) =

∫
Rd
u(x)e−ix·ydx, (1)

and ∀x ∈ Rd, F−1(u)(x) =
1

(2π)d

∫
Rd
u(y)eix·ydy. (2)

The Fourier transform extended to tempered distributions [18, 22] is still denoted F .

Definition 2 (Band-limited distribution). A tempered distribution u is said to be band-limited if the
support of its Fourier transform is bounded. It is said to be Nyquist band-limited if the support is
contained in the Nyquist domain [−π, π]d.

Theorem 1 (Shannon-Whittaker sampling theorem [24, 19]). Let u ∈ L1(Rd,C) be a Nyquist band-
limited function. Then, u is continuous and uniquely determined by its values at integer locations
{u(k)}k∈Zd since for x ∈ Rd,

u(x) =
∑
k∈Zd

f(k)sinc(x− k), (3)

where the cardinal sine function sinc is the continuous function defined by

∀x = (x1, . . . , xd) ∈ (R∗)d, sinc(x) =
d∏
i=1

sin(πxi)

πxi
. (4)

Theorem 1, namely the Shannon-Whittaker sampling theorem, provides an equivalence between a
band-limited function and its equidistant samples taken at a frequency that is superior or equal to the
Nyquist rate. According to the Shannon-Whittaker interpolation formula (3), a band-limited signal
can be written as the convolution between a Dirac comb weighted by its samples and the cardinal sine
(or sinc) function. However, this result cannot be used directly because, among others, it requires
an infinite number of samples [20]. The finite signal first needs to be arbitrarily extended. Among
all the possible extensions a classical solution is the periodic extension. For 1D and 2D signals,
the Shannon-Whittaker interpolation with periodic extension can be formulated as a trigonometric
polynomial interpolation (TPI), namely the Discrete Shannon interpolation [1].

More generally, TPI is theoretically interesting since the band-limited periodic distributions are
exactly the trigonometric polynomials. But the main advantage is practical. It is well known that
the discrete Fourier transform (DFT) of a signal, which can be computed efficiently using the fast
Fourier transform (FFT) algorithm [8], is deeply linked to TPI (or sampling). Efficient image pro-
cessing algorithms that rely on DFT-based computations can be used, for instance, to perform linear
filtering, up-sampling and down-sampling or to shift signals. More generally, any geometric transfor-
mation can be applied efficiently to images using the non-equispaced Fast Fourier transform (NFFT)
algorithm [15], which is based on oversampled FFTs.

As soon as one of the dimensions is even, there is, however, an ambiguity in the definition of
trigonometric polynomial interpolators (whose degree corresponds to the size of the image). The
various interpolators differ from each other at the Nyquist frequency. Three particular interpolators
are commonly used for real-valued images. The most common one is obtained directly from the DFT
coefficients so that it is compatible with DFT-based computations but it may be complex-valued.
Its real part is also a trigonometric polynomial interpolator and is usually used implicitly by taking
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the real part afterwards. The third interpolator is also real-valued and is given by the discrete
Shannon interpolation. The choice of the interpolator depends on the context of application and
may influence the results of algorithms relying on TPI (e.g. see [5]). Also, the compatibility with
DFT-based computations has to be proven.

Contributions. This work is based on [3, Chapter 3]. We present the TPI of images and some
of its applications. The trigonometric polynomial interpolators are characterized in terms of the
DFT of the image. Three classical choices of interpolator for real-valued images are presented and
cases where they coincide are pointed out. The theory is applied to the geometric transformations
of images, and to up-sampling and down-sampling. General results are expressed for any choice of
interpolator but more details are given for the three proposed interpolators. This study proves that
the well-known DFT-based computations have to be slightly adapted.

The remainder of this paper is organized as follows: Section 2 presents the theory of TPI of images.
This theory is applied to the geometric transformation of images in Section 3, and to up-sampling
and down-sampling in Section 4.

Remark. In the following only grayscale images are considered. The results are easily extended to
color (or multi-channel) images by handling channels independently.

2 Trigonometric Polynomial Interpolation of Images

In this section we present the theory of TPI for images. First, useful definitions and notations
are introduced in Section 2.1. Then, the trigonometric polynomial interpolators of an image are
characterized in Section 2.2 and it is shown that there is an ambiguity as soon as one of the dimensions
is even. In Section 2.3 three classical choices of interpolator for real-valued images are proposed and
cases where they coincide are pointed out.

2.1 Definitions and Notations

In the following M and N denote two positive integers. First, discrete domains are defined as in

Definition 3 (Discrete domains). The discrete spatial domain ΩM,N is defined by

ΩM,N = {0, . . . ,M − 1} × {0, . . . , N − 1}. (5)

The discrete Fourier domain Ω̂M,N , associated to ΩM,N , is defined by Ω̂M,N = Ω̂M × Ω̂N where for a
positive integer L

Ω̂L =

{
{−L−1

2
, . . . , L−1

2
} if L is odd,

{−L
2
, . . . , L

2
− 1} if L is even.

(6)

The boundary ΓM,N of Ω̂M,N is defined by ΓM,N =
(

ΓM × Ω̂N

)
∪
(

Ω̂M × ΓN

)
where for a positive

integer L

ΓL =

{
∅ if L is odd,

{−L
2
} if L is even.

(7)

The symmetrized discrete Fourier domain Ω̂s
M,N , associated to ΩM,N , is defined by Ω̂s

M,N = Ω̂s
M ×

Ω̂s
N where for a positive integer L

Ω̂s
L =

{
Ω̂L if L is odd,

Ω̂L ∪ {L2 } if L is even.
(8)
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The boundary ΓsM,N of Ω̂s
M,N is defined by ΓsM,N = Ω̂s

M,N \
(

Ω̂M,N \ ΓM,N

)
.

As an example, the discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and ΓsM,N for M = N = 4 are displayed in

Figure 1. Note that assuming that M and N are odd numbers, Ω̂M,N = Ω̂s
M,N and ΓM,N = ΓsM,N = ∅.

0-1-2 1 2

-2

-1

0

1

2

Figure 1: Discrete domains Ω̂M,N , Ω̂s
M,N , ΓM,N and Γs

M,N for M = N = 4.

Definition 4 (Image). An image (or digital image) u of size M ×N is defined as a two-dimensional
finite matrix of complex numbers (uk,l)(k,l)∈ΩM,N . The image is said to be real-valued when every
number is real.

In the following u denotes an image of size M ×N . Unless otherwise specified, u is not assumed
to be real-valued. Trigonometric polynomial functions of the plane are defined as follows.

Definition 5 (Trigonometric polynomial). A function P : R2 → C is said to be a trigonometric

polynomial of degree ≤M ×N if there exists c ∈ CΩ̂sM,N , called coefficients of P , s.t.

∀(x, y) ∈ R2, P (x, y) =
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(xm

M
+y n

N
). (9)

The set of trigonometric polynomials of degree ≤ M × N , denoted PM,N , is a subset of the set of
(M,N)−periodic functions. Denote R the real part operator and let P ∈ PM,N then R(P ) ∈ PM,N .

Note that another possible convention [16, p. 88] for trigonometric polynomials of degree≤M×N
is to consider (2π, 2π)−periodic functions of the form

Q(x, y) =
∑

(m,n)∈Ω̂2M+1,2N+1

cm,ne
i(mx+ny) =

M∑
m=−M

N∑
n=−N

cm,ne
i(mx+ny). (10)

This convention is directly linked to ours (see Definition 5) since (x, y) ∈ R2 7→ Q(2π
M
x, 2π

N
y) is a

trigonometric polynomial of degree ≤ (2M + 1) × (2N + 1). Note that the corresponding degree
necessarily involves odd numbers. Our convention has the advantage of being compatible with the
size of images and with the Discrete Fourier transform (DFT), which is defined as in
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Definition 6 (Discrete Fourier transform). The discrete Fourier transform (DFT) of u ∈ CΩM,N is

denoted FM,N(u) ∈ CΩ̂M,N and is defined by

∀(m,n) ∈ Ω̂M,N , FM,N(u)m,n =
1

MN

∑
(k,l)∈ΩM,N

uk,le
−2πi(km

M
+l n

N
). (11)

The inverse discrete Fourier transform (iDFT) of v ∈ CΩ̂M,N is denoted F−1
M,N(v) ∈ CΩM,N and is

defined by

∀(k, l) ∈ ΩM,N , F−1
M,N(v)k,l =

∑
(m,n)∈Ω̂M,N

vm,ne
2πi(m k

M
+n l

N
). (12)

Note that another classical convention is obtained by moving the normalization factor 1
MN

from
the DFT to the iDFT. The resulting unnormalized DFT is used in the following to show the
spectrum of images (for visualization purposes). The DFT and iDFT of size M×N can be computed
efficiently in O(MN log(MN)) floating point operations thanks to the fast Fourier transform (FFT)
algorithm [8].

2.2 Trigonometric Polynomial Interpolators

The trigonometric polynomial interpolators of an image u are defined and characterized as follows.

Definition 7 (Trigonometric polynomial interpolator). A trigonometric polynomial interpolator of
u is a trigonometric polynomial P ∈ PM,N verifying the interpolation condition

∀(k, l) ∈ ΩM,N , P (k, l) = uk,l. (13)

By definition a trigonometric polynomial interpolator has a degree smaller than the size of the
interpolated image. Note that if the degree is not controlled, the interpolation condition in (13) is
always verified by infinitely many trigonometric polynomials.

Proposition 1. Let P ∈ PM,N . P is a trigonometric polynomial interpolator of u if and only if its

coefficients c ∈ CΩ̂sM,N verify
cm,n = FM,N(u)m,n for |m| < M

2
and |n| < N

2
,

cM
2
,n + c−M

2
,n = FM,N(u)−M

2
,n for |n| < N

2
,

cm,N
2

+ cm,−N
2

= FM,N(u)m,−N
2

for |m| < M
2
,

cM
2
,N
2

+ cM
2
,−N

2
+ c−M

2
,N
2

+ c−M
2
,−N

2
= FM,N(u)−M

2
,−N

2
.

(14)

Proof. Let P ∈ PM,N be a trigonometric polynomial interpolator of u. Let (k, l) ∈ ΩM,N . We have

uk,l = P (k, l) =
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(km

M
+l n

N
). (15)

Noting that for any (L, j) ∈ N∗ × N we have e2iπj L
2

1
L = e2iπj−L

2
1
L = (−1)j, we can write

uk,l =
∑

(m,n)∈Ω̂M,N

dm,ne
2iπ(km

M
+l n

N
), (16)
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where d = (dm,n) ∈ CΩ̂M,N verify for (m,n) ∈ Ω̂M,N ,

dm,n =


cm,n if |m| < M

2
and |n| < N

2
,

cM
2
,n + c−M

2
,n if m = −M

2
and |n| < N

2
,

cm,N
2

+ cm,−N
2

if |m| < M
2

and n = −N
2
,

cM
2
,N
2

+ cM
2
,−N

2
+ c−M

2
,N
2

+ c−M
2
,−N

2
if m = −M

2
and n = −N

2
.

(17)

Finally by definition of the DFT and iDFT we have F−1
M,N(d) = u = F−1

M,N(FM,N(u)) and thus
d = FM,N(u).

Conversely, if P ∈ PM,N is defined by the coefficients c verifying (14) then it is an interpolator of
u.

The existence of trigonometric polynomial interpolators and their characterization is given by
Proposition 1. They can easily be obtained from the DFT coefficients of the image so that the TPI
is commonly called DFT interpolation.

Corollary 1. One of the two following cases occur.

• If M and N are odd, then there is a unique trigonometric polynomial interpolator noted Pu
whose coefficients are FM,N(u).

• If M or N is even, then there are infinitely many trigonometric polynomial interpolators. Their
coefficients only differ from each other on the boundary ΓsM,N .

Proof. It is a direct consequence of Proposition 1.

When for instance M is even, one can easily check that the interpolation property is kept when
adding any multiple of the trigonometric polynomial of degree M × N defined by (x, y) ∈ R2 7→
sin(πx). As pointed out in [1] and [5], the lack of symmetry for even sizes introduces an ambiguity
in the choice of the trigonometric polynomial interpolator.

This can also be seen with a dimensional approach. The space of trigonometric polynomials
of degree ≤ M × N has for dimension #Ω̂s

M,N , which is greater or equal to MN = #ΩM,N . The
linear map P ∈ PM,N 7→ (P (k, l))(k,l)∈ΩM,N is one-to-one (and bijective) if and only if the kernel

dimension #
(
ΓsM,N \ ΓM,N

)
is 0. Finally, it is one-to-one if and only if M and N are odd numbers.

Actually #Ω̂s
M,N is the number of coefficients cm,n used to represent trigonometric polynomials of

degree M×N and is a product of odd numbers. If M is even and N is odd then the kernel dimension
is N . If both M and N are even then the kernel dimension is M +N + 1.

The dimensional approach also shows that M ×N is the smallest degree (along both dimensions)
ensuring the existence of a trigonometric polynomial verifying the interpolation condition (13).

2.3 Trigonometric Polynomial Interpolators of a Real-valued Image

Assume that u is real-valued. Three particular trigonometric polynomial interpolators of u are
proposed and the cases where they coincide are pointed out.

Definition 8 (Trigonometric polynomial interpolator in complex convention). The trigonometric

polynomial interpolator of u in complex convention is the trigonometric polynomial P
(c)
u ∈ PM,N

defined by

∀(x, y) ∈ R2, P (c)
u (x, y) =

∑
(m,n)∈Ω̂M,N

FM,N(u)m,ne
2iπ(xm

M
+y n

N
). (18)
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The trigonometric polynomial interpolator in complex convention is the natural and simplest
way to define a trigonometric polynomial interpolator since the coefficients are directly expressed in
terms of the DFT of the image. Using Proposition 1 it is proven to be an interpolator (even for a
complex-valued image) since it corresponds to the particular case where the coefficients are null in
ΓsM,N \ ΓM,N . However, because of the DFT asymmetry, it may be complex-valued. Therefore two
other interpolators, which are guaranteed to be real-valued, are built.

Proposition 2. Assume u is real-valued. Then, R(P
(c)
u ) ∈ PM,N is a trigonometric polynomial

interpolator of u whose coefficients c ∈ Ω̂s
M,N verify for (m,n) ∈ Ω̂s

M,N ,

cm,n =



FM,N(u)m,n if |m| < M
2

and |n| < N
2
,

1
2
FM,N(u)−M

2
,n if |m| = M

2
and |n| < N

2
,

1
2
FM,N(u)m,−N

2
if |m| < M

2
and |n| = N

2
,

1
2
FM,N(u)−M

2
,−N

2
if (m,n) ∈

{
±(M

2
, N

2
)
}
,

0 if (m,n) ∈
{
±(−M

2
, N

2
)
}
.

(19)

Proof. This is a consequence of the Hermitian symmetry of the DFT of real-valued images. Indeed,
extending the DFT by (M,N)−periodicity we easily get FM,N(u)m,n = FM,N(u)−m,−n for all (m,n) ∈
Z2. Let (x, y) ∈ R2. By grouping the terms of the sum in Equation (18) we can deduce that the

complex contribution of P
(c)
u comes from the terms with indices in ΓM,N ,

P (c)
u (x, y) = FM,N(u)0,0 +

∑
0≤m<M

2
,

0≤n<N
2

(m,n) 6=(0,0)

2R
(
FM,N(u)m,ne

2iπ(xm
M

+y n
N

)
)

︸ ︷︷ ︸
∈R

+
∑

(m,n)∈ΓM,N

FM,N(u)m,ne
2iπ(xm

M
+y n

N
). (20)

Case 1: Assume M and N are odd. Then ΓM,N = ∅. This implies that P
(c)
u is real-valued and we

have the result.

Case 2: Assume that M is even and N is odd. Then ΓM,N =
{
−M

2

}
×
{
−N−1

2
, . . . , N−1

2

}
. Using

the relation FM,N(u)−M
2
,n = FM,N(u)−M

2
,−n we have

∑
(m,n)∈ΓM,N

FM,N (u)m,ne
2iπ(xm

M
+y n

N
) = e−iπx

FM,N (u)−M
2
,0 +

N−1
2∑

n=1

2R
(
FM,N (u)−M

2
,ne

2iπ ny
N

)
︸ ︷︷ ︸

∈R

. (21)

Finally as R(e−iπx) = 1
2
(eiπx + e−iπx) = 1

2
(e2iπM

2
x
M + e2iπ(−M

2
) x
M ), we have

R

 ∑
(m,n)∈ΓM,N

FM,N(u)m,ne
2iπ(xm

M
+y n

N
)

 =
∑

(m,n)∈ΓsM,N

1

2
FM,N(u)m,ne

2iπ(xm
M

+y n
N

), (22)

and the result is obtained by identification. Similarly, we deal with the case M odd and N even by
switching the coordinates.
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Case 3: Assume that M and M are even. Then we have the partition

ΓM,N =

{
−M

2

}
×
{
−N

2
+ 1, . . . ,

N

2
− 1

}⊔{
−M

2
+ 1, . . . ,

M

2
− 1

}
×
{
−N

2

}⊔{
−M

2

}
×
{
−N

2

}
,

(23)

so that the sum
∑

(m,n)∈ΓM,N
FM,N(u)m,ne

2iπ(xm
M

+y n
N

) can be decomposed into three sums. The two

first components can be handled as in case 2 (even though the sum indices are slightly different).
The third component corresponds to the index

(
−M

2
,−N

2

)
for which we have

R
(
FM,N(u)−M

2
,−N

2
e−iπ(x+y)

)
= FM,N(u)−M

2
,−N

2︸ ︷︷ ︸
∈R

R(e−iπ(x+y)) (24)

=
1

2
FM,N(u)−M

2
,−N

2
(eiπ(x+y) + e−iπ(x+y)). (25)

Finally the result is obtained by identification.

As stated in Proposition 2, R(P
(c)
u ) is a real-valued trigonometric polynomial interpolator of u

which can be easily obtained from the complex convention. However, when M and N are even, its
coefficients show an asymmetry in the highest frequencies. Therefore the following alternative may
be preferred.

Definition 9 (Trigonometric polynomial interpolator in real convention). Assume u is real-valued.
The trigonometric polynomial interpolator of u in real convention is defined as the trigonometric

polynomial P
(r)
u ∈ PM,N whose coefficients c ∈ Ω̂s

M,N verify for (m,n) ∈ Ω̂s
M,N ,

cm,n =


FM,N(u)m,n if |m| < M

2
and |n| < N

2
,

1
2
FM,N(u)−M

2
,n if |m| = M

2
and |n| < N

2
,

1
2
FM,N(u)m,−N

2
if |m| < M

2
and |n| = N

2
,

1
4
FM,N(u)−M

2
,−N

2
if |m| = M

2
and |n| = N

2
.

(26)

Proposition 3. Assume u is real-valued. Then P
(r)
u is a real-valued interpolating function of u since

for (x, y) ∈ R2,

P (r)
u (x, y) =

{
R(P

(c)
u )(x, y) + FM,N(u)−M

2
,−N

2
sin(πx) sin(πy) if M and N are even,

R(P
(c)
u )(x, y) otherwise.

(27)

Proof. Noticing that FM,N(u)−M
2
,−N

2
∈ R and using the relation

R(e−iπ(x+y)) + sin(πx) sin(πy) =
1

4

(
eiπ(x+y) + e−iπ(x+y) + eiπ(x−y) + eiπ(−x+y)

)
, (28)

it is directly obtained from the definition of P
(r)
u and Proposition 2.

Proposition 3 states that P
(r)
u is another real-valued trigonometric polynomial interpolator and

makes the link with R(P
(c)
u ). When M and N are even P

(r)
u is usually preferred to R(P

(c)
u ) because

it has the same DFT coefficients at the four corners of Ω̂s
M,N . In [1] the trigonometric polynomial

interpolator in real convention is called discrete Shannon interpolator because it corresponds to the
Shannon-Whittaker interpolator with periodic boundary extension.

The particular conditions under which the proposed trigonometric polynomial interpolators are
equal are presented in Proposition 4.
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Proposition 4. Assume u is real-valued. The cases of equality of the three proposed trigonometric
polynomial interpolators are:

1. P
(c)
u = R(P

(c)
u ) = P

(r)
u if and only if

{(m,n) ∈ ΓM,N | FM,N(u)m,n 6= 0} = ∅. (29)

In particular, it is the case when M and N are odd since there is a unique trigonometric
polynomial interpolator and ΓM,N = ∅.

2. Assume that M or N is odd. Then, R(P
(c)
u ) = P

(r)
u .

3. Assume that M and N are even. Then R(P
(c)
u ) = Pu if and only if FM,N(u)−M

2
,−N

2
= 0.

Proof. It is a direct consequence of Proposition 2 and Proposition 3.

3 Application to Geometric Transformations of Images

A continuous signal representation, thus interpolation, is required when one wishes to implement
numerically an operator that is initially defined in the continuous domain. In particular, this repre-
sentation is required when applying a geometric transformation to an image. Denote by σ(R2) the set
of bijective functions of R2 to itself. A function ϕ ∈ σ(R2) is called a geometric transformation. Ap-
plying the geometric transformation ϕ to the image u consists in resampling u at locations ϕ−1(k, l)
for (k, l) ∈ ΩM,N . In general ϕ−1(k, l) ∈ R2 does not belong to the integer grid and a continuous
representation of u is required.

In this section we apply TPI to geometric transformations of images. Let u be an image of size
M × N . Let P ∈ PM,N be a trigonometric polynomial interpolator of u with coefficients c ∈ Ω̂s

M,N

and ϕ ∈ σ(R2) be a geometric transformation. The transformation of u by ϕ using P is noted uP,ϕ
and is defined by

∀(k, l) ∈ ΩM,N , (uP,ϕ)k,l = P (ϕ−1(k, l)). (30)

First, the case of translations is considered in Section 3.1. It is shown that a translated image can be
computed efficiently using DFT-based computations. In particular the results for the three classical
trigonometric interpolators introduced in Section 2.3 are detailed. The invertibility of the translation
operation is also studied. Then, an efficient algorithm for computing any transformation of an image
is proposed in Section 3.2.

3.1 Translation

Let (α, β) ∈ R2 be a shift parameter. The translation by (α, β) corresponds to the geometric
transformation ϕ : (x, y) ∈ R2 7→ (x+ α, y + β). For simplicity we use slightly different notation for
uP,ϕ as proposed in

Definition 10. The translated image of u with shift (α, β) using the interpolator P is noted u(P,α,β) ∈
CΩM,N . It is defined by

∀(k, l) ∈ ΩM,N ,
(
u(P,α,β)

)
k,l

= P (k − α, l − β). (31)
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Proposition 5. The DFT coefficients of u(P,α,β) verify

FM,N(u(P,α,β))m,n = cm,ne
−2iπ(αm

M
+β n

N
) for |m| < M

2
and |n| < N

2
,

FM,N(u(P,α,β))−M
2
,n =

(
c−M

2
,ne

iπα + cM
2
,ne
−iπα

)
e−2iπβ n

N for |n| < N
2
,

FM,N(u(P,α,β))m,−N
2

=
(
cm,−N

2
eiπβ + cm,N

2
e−iπβ

)
e−2iπαm

M for |m| < M
2
,

FM,N(u(P,α,β))−M
2
,−N

2
= c−M

2
,−N

2
eiπ(α+β) + cM

2
,N
2
e−iπ(α+β)

+ c−M
2
,N
2
eiπ(α−β) + cM

2
,−N

2
e−iπ(α−β).

(32)

Proof. For (k, l) ∈ ΩM,N we have(
u(P,α,β)

)
k,l

= P (k − α, l − β) (33)

=
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(

m(k−α)
M

+
n(l−β)
N

) (34)

=
∑

(m,n)∈Ω̂sM,N

cm,ne
−2iπ(αm

M
+β n

N
)e2iπ(mk

M
+nl
N

). (35)

The result is obtained using the same reasoning as in the proof of Proposition 1 except that the cm,n
are multiplied by e−2iπ(αm

M
+β n

N
).

As stated in Proposition 5, the DFT coefficients of the translated image u(P,α,β) can be easily
computed from the trigonometric polynomial coefficients c by a phase shift. Therefore the translation
using TPI is commonly called the DFT translation. The coefficients in ΓM,N have a slightly different
expression that depends on the choice of the interpolator. In particular, for the three classical
trigonometric polynomial interpolators the DFT coefficients of the translated images are given by

Proposition 6. For all (m,n) ∈ Ω̂M,N ,

FM,N(u
(P

(c)
u ,α,β)

)m,n = FM,N(u)m,ne
−2iπ(αm

M
+β n

N
). (36)

If in addition u is real-valued, then
FM,N(u

(R(P
(c)
u ),α,β)

)m,n = FM,N(u)m,ne
−2iπ(αm

M
+β n

N
) for |m| < M

2
and |n| < N

2
,

FM,N(u
(R(P

(c)
u ),α,β)

)−M
2
,n = FM,N(u)−M

2
,n cos(πα)e−2iπβ n

N for |n| < N
2
,

FM,N(u
(R(P

(c)
u ),α,β)

)m,−N
2

= FM,N(u)m,−N
2

cos(πβ)e−2iπαm
M for |m| < M

2
,

FM,N(u
(R(P

(c)
u ),α,β)

)−M
2
,−N

2
= FM,N(u)−M

2
,−N

2
cos (π(α + β)) ,

(37)

and 

FM,N(u
(P

(r)
u ,α,β)

)m,n = FM,N(u)m,ne
−2iπ(αm

M
+β n

N
) for |m| < M

2
and |n| < N

2
,

FM,N(u
(P

(r)
u ,α,β)

)−M
2
,n = FM,N(u)−M

2
,n cos(πα)e−2iπβ n

N for |n| < N
2
,

FM,N(u
(P

(r)
u ,α,β)

)m,−N
2

= FM,N(u)m,−N
2

cos(πβ)e−2iπαm
M for |m| < M

2
,

FM,N(u
(P

(r)
u ,α,β)

)−M
2
,−N

2
=

FM,N(u)−M
2
,−N

2

1
2

(cos (π(α + β)) + cos (π(α− β))) .

(38)

Proof. It is a direct consequence of Proposition 5. The coefficients of the trigonometric polynomial
interpolators are given in Definition 8, Proposition 2 and Definition 9.
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Note that u
(P

(c)
u ,α,β)

may be a complex-valued image while u
(R(P

(c)
u ),α,β)

and u
(P

(r)
u ,α,β)

are both

real-valued images.
Using Proposition 6 it is possible to determine whether or not the DFT translation can be inverted

by applying the DFT translation with opposite shift. It is the case for the trigonometric polynomial
interpolator in complex convention as stated in

Proposition 7. Set v = u
(P

(c)
u ,α,β)

. Then,

v
(P

(c)
v ,−α,−β)

= u. (39)

Proof. It is obtained using (36) successively for u with (α, β), and then for v with −(α, β).

On the contrary for the two classical real-valued trigonometric polynomial interpolators it is
not automatically the case. The DFT coefficients of the image obtained after the two opposite
translations may differ from the original ones on the Fourier boundary ΓM,N . More precisely, the
DFT coefficients are given by

Proposition 8. Assume u is real-valued. Set v = u
(R(P

(c)
u ),α,β)

. Then, v
(R(P

(c)
v ),−α,−β)

verifies
FM,N(v

(R(P
(c)
v ),−α,−β)

)m,n = FM,N(u)m,n for |m| < M
2

and |n| < N
2
,

FM,N(v
(R(P

(c)
v ),−α,−β)

)−M
2
,n = cos(πα)2FM,N(u)−M

2
,n for |n| < N

2
,

FM,N(v
(R(P

(c)
v ),−α,−β)

)m,−N
2

= cos(πβ)2FM,N(u)m,−N
2

for |m| < M
2
,

FM,N(v
(R(P

(c)
v ),−α,−β)

)−M
2
,−N

2
= cos (π(α + β))2FM,N(u)−M

2
,−N

2
.

(40)
Set w = u

(P
(r)
u ,α,β)

. Then, w
(P

(r)
w ,−α,−β)

verifies

FM,N(w
((P

(r)
w ,−α,−β)

)m,n = FM,N(u)m,n for |m| < M
2

and |n| < N
2
,

FM,N(w
((P

(r)
w ,−α,−β)

)−M
2
,n = cos(πα)2FM,N(u)−M

2
,n for |n| < N

2
,

FM,N(w
((P

(r)
w ,−α,−β)

)m,−N
2

= cos(πβ)2FM,N(u)m,−N
2

for |m| < M
2
,

FM,N(w
((P

(r)
w ,−α,−β)

)−M
2
,−N

2
=

1
4

(cos (π(α + β)) + cos (π(α− β)))2FM,N(u)−M
2
,−N

2
.

(41)

Proof. It is a direct consequence of (37) and (38) applied successively to (α, β) and −(α, β).

The particular cases where a DFT translation is inverted by the opposite DFT translation can
be summarized as in

Proposition 9. Assume u is real-valued. Let P ∈ {P (c)
u ,R(P

(c)
u ), P

(r)
u }. Then, the following propo-

sitions are equivalent:

(1) The translation of u with shift (α, β) using the interpolator P can be inverted by the opposite
translation.

(2) For all (m,n) ∈ Ω̂M,N , ∣∣FM,N(u(P,α,β))
∣∣
m,n

= |FM,N(u)|m,n . (42)

(3) For all (m,n) ∈ ΓM,N , ∣∣FM,N(u(P,α,β))
∣∣
m,n

= |FM,N(u)|m,n . (43)
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In particular, (1) holds as soon as:

1. P = P
(c)
u .

2. (α, β) ∈ Z2.

3. P
(c)
u = R(P

(c)
u ) = P

(r)
u i.e.

{(m,n) ∈ ΓM,N | FM,N(u)m,n 6= 0} = ∅. (44)

In particular it is the case when M and N are odd.

4. β ∈ Z and {
n ∈ ΓN | FM,N(u)−M

2
,n 6= 0

}
= ∅. (45)

In particular it is the case when N is odd.

5. α ∈ Z and {
m ∈ ΓM | FM,N(u)m,−N

2
6= 0
}

= ∅. (46)

In particular it is the case when M is odd.

Proof. Set v = u(P,α,β) and w = v(P ′,−α,−β) where P ′ is the corresponding trigonometric polynomial
interpolator of v. Using Proposition 6 we can write

FM,N(v) = h(α, β)FM,N(u). (47)

Set h′(α, β) = |h(α, β)|2. Using Proposition 8 we have

FM,N(w) = h′(α, β)FM,N(u). (48)

Thus, (1) holds if and only if w = u if and only if for all (m,n) ∈ ΩM,N , h′(α, β)m,n = 1 or
FM,N(u) = 0. As h′(α, β) = |h(α, β)|2, (1) holds if and only if for all (m,n) ∈ ΩM,N , |h(α, β)|m,n = 1
or FM,N(u) = 0. Using (47) we obtain the equivalence of (1) and (2). For all (m,n) ∈ ΩM,N \ ΓM,N ,
h(α, β)m,n = e−2iπ(αm

M
+β n

N
) so that |h(α, β)|m,n = 1. This shows that (2) and (3) are equivalent.

The verification of the particular cases is straightforward using Proposition 8.

How to deal with the non-invertibility of the DFT translation. The non-invertibility may
be avoided by working with images with odd sizes, which is not always possible, or by killing the DFT
coefficients on the boundary ΓM,N , which modifies the image content. Alternatively it is possible to
take into account the effect of the non-invertibility on the output result. For instance in [3, Chapter
6] we proposed a measure of the interpolation reversibility where high frequency components are
discarded before the comparison.

3.2 Efficient Image Transformation Algorithm

The transformed image uP,ϕ of u by ϕ using P is given by (30). The interpolated values correspond
to the evaluation of the trigonometric polynomial P at locations {ϕ−1(k, l)}(k,l)∈ΩM,N

, which are a
priori non-equispaced. As stated in Corollary 1, the coefficients c of P are expressed in terms of the
DFT of u. When ϕ is a translation it was shown in Section 3.1 that uP,ϕ can be computed by phase
shift and an inverse DFT. Using the FFT algorithm [8] this can be obtained in O(MN log(MN))
floating point operations. The corresponding algorithm is presented in Algorithm 1.

As described below, in general the computation of the transformed image is more costly but can
be approximated with an efficient algorithm.
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Algorithm 1: Translation of an image using trigonometric polynomial interpolation

Input : An image u of size M ×N , a shift (α, β) and a trigonometric polynomial
interpolator P of u

Output: The shifted image uP,α,β
1 Compute FM,N(u) the DFT of u using the FFT algorithm [8]
2 Deduce the coefficients c of P from FM,N(u) (see Section 2.2)
3 Compute v̂ = FM,N(uP,α,β) from c by phase shift using Proposition 5 (or possibly

Proposition 6)
4 Compute uP,α,β = F−1

M,N(v̂) with an iDFT using the FFT algorithm [8]

Trigonometric polynomial evaluation. Let us consider the general problem of trigonomet-
ric polynomial evaluation at arbitrary locations. Let N0 be the number of output values and
{(xj, yj)}1≤j≤N0 be the locations. Then, P can be evaluated at (xj, yj) directly from the coefficients
using the formula

P (xj, yj) =
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(

mxj
M

+
nyj
N ). (49)

The total cost is of O(MNN0) floating point operations so that this operation cannot be done in
practice.

Non-equispaced discrete Fourier transform. Let us introduce the non-equispaced discrete
Fourier transform (NDFT) algorithm. Let M ′ and N ′ be two even numbers and (f̂m,n)(m,n)∈Ω̂M′,N′

.

Let
{

(x′j, y
′
j)
}

1≤j≤N0
be pixel positions in [−1

2
, 1

2
)2. The NDFT evaluates the sums

f(x′j, y
′
j) =

∑
(m,n)∈Ω̂M′,N′

f̂m,ne
−2iπ(x′jm+y′jn). (50)

The evaluation could be done using the straightforward matrix form and would require O(M ′N ′N0)
floating point operations.

It is clear that the expressions in (49) and (50) are closely related. Actually P can be evaluated
using the NDFT algorithm. The correspondences between positions are given by{

x′j = −xj
M

+ αj,

y′j = −yj
N

+ βj,
(51)

where αj and βj are integers insuring (x′j, y
′
j) ∈ [−1

2
, 1

2
)2. The even bandwidth M ′ and N ′ sizes are

taken as

M ′ =

{
M + 1 if M is odd,

M + 2 if M is even,
and N ′ =

{
N + 1 if N is odd,

N + 2 if N is even.
(52)

The Fourier coefficients (f̂m,n)(m,n)∈Ω̂M′,N′
are obtained from (cm,n)(m,n)∈Ω̂sM,N

by zero-padding on the

boundary ΓM ′,N ′ i.e.

f̂m,n =

{
cm,n (m,n) ∈ Ω̂s

M,N ,

0 (m,n) ∈ ΓM ′,N ′ .
(53)

The interest of considering the NDFT formulation is that it can be efficiently approximated by the
non-equispaced fast Fourier transform [15] (NFFT) algorithm. The NFFT approximation is based on
the usage of an oversampled FFT and a window function which is simultaneously localized in space
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and frequency. It only requires O(M ′N ′ log(M ′N ′) + | log(ε)|2N0) operations where ε denotes the
desired relative output precision (in practice it is close to the machine precision). Details concerning
the NFFT performances are provided in [13].

How to transform an image. Algorithm 2 details how the image u is transformed by ϕ using
the trigonometric polynomial interpolator P . First the locations {ϕ−1(k, l)}(k,l)∈ΩM,N

are computed

and mapped into
[
−1

2
, 1

2

)2
using (51). Then, the DFT coefficients of u are computed (thanks to the

FFT algorithm [8] in O(MN log(MN)) floating point operations) and linked to the coefficients of
P . Finally the values (uP,ϕ)k,l = P (ϕ−1(k, l)) are approximated on ΩM,N using the NFFT algorithm
using the correspondences provided in (52) and (53). The total number of floating point operations
is in O(MN log(MN) + | log(ε)|2MN).

Algorithm 2: Transformation of an image using trigonometric polynomial interpolation

Input : An image u of size M ×N , the geometric transformation ϕ and a trigonometric
polynomial interpolator P of u

Output: The transformed image uP,ϕ
1 Compute the locations {ϕ−1(k, l)}(k,l)∈ΩM,N

2 Compute
{

(x′k,l, y
′
k,l)
}

(k,l)∈ΩM,N
from {ϕ−1(k, l)}(k,l)∈ΩM,N

using (51)

3 Compute FM,N(u) the DFT of u using the FFT algorithm [8]
4 Deduce the coefficients c of P from FM,N(u) (see Section 2.2)
5 Set the sizes M ′ and N ′ from M and N using (52)

6 Get f̂ = (f̂m,n)(m,n)∈Ω̂M′,N′
from c using (53)

7 Compute the (uP,ϕ)k,l = f(x′k,l, y
′
k,l) on ΩM,N from f̂ (see (50)) using the NFFT algorithm [15]

Particular cases. Assume that the trigonometric polynomial interpolator P is one of the three
classical interpolators i.e. P ∈ {P (c)

u ,R(P
(c)
u ), P

(r)
u }. When P = P

(c)
u unnecessary computations are

saved during the NFFT by keeping even bandwidths. In practice M ′ and N ′, which were set in Line 5
of Algorithm 2, are replaced by

M ′ =

{
M + 1 if M is odd,

M if M is even,
and N ′ =

{
N + 1 if N is odd,

N if N is even.
(54)

The results for P ∈ {R(P
(c)
u ), P

(r)
u } are obtained directly from the case P = P

(c)
u by taking the real

part and by possibly using (27).

4 Up-sampling and Down-sampling

Up-sampling and down-sampling are common operations in image processing. For instance in multi-
scale approaches the down-sampling factor corresponds to the pyramid scale (e.g. see [6]). These
operations cannot be interpreted as geometric transformations as described in Section 3 since the
image sizes change. However they involve a spatial scaling and are closely related to zooming. That
is why it is common to (improperly) refer to up-sampling as a zoom-in and to down-sampling as a
zoom-out.

In this section we present the up-sampling and down-sampling using TPI. It is shown that
DFT-based computations can be performed and the link between the two operations is established.
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4.1 Up-sampling

Here up-sampling refers to the process of increasing the sampling rate of a signal/image. As no
additional information is provided, up-sampling can be seen as resampling on a finer grid using
interpolation. Let P ∈ PM,N be a trigonometric polynomial interpolator of u with coefficients

c ∈ Ω̂M,N . Let λx and λy be two numbers greater than 1 such that{
M ′ .= λxM ∈ N,
N ′

.
= λyN ∈ N.

(55)

Actually the up-sampling factors λx = M ′

M
and λy = N ′

N
are rational numbers and any up-sampled size

M ′ ≥M and N ′ ≥ N can be obtained. The up-sampling of u by the up-sampling factor λ = (λx, λy)
using P is defined as in

Definition 11 (Up-sampling of an image). Let λ = (λx, λy) ∈ [1,+∞[2 verifying (55). The up-
sampled image of u by factor λ using the interpolator P ∈ PM,N is noted u(P,λ) ∈ CΩM′,N′ and is
defined by

∀(k, l) ∈ ΩM ′,N ′ ,
(
u(P,λ)

)
k,l

= P

(
k

λx
,
l

λy

)
. (56)

The DFT coefficients of the up-sampled image u(P,λ) can be easily computed from the trigono-
metric polynomial coefficients by padding with zeros as stated in

Proposition 10. Let λ = (λx, λy) ∈ [1,+∞[2 verifying (55). Then, the DFT coefficients FM ′,N ′(u(P,λ))
are obtained as follows:

1. If λx = λy = 1, then u(P,λ) = u and FM ′,N ′(u(P,λ)) = FM,N(u).

2. If λx = 1 and λy > 1, then M ′ = M and for (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u(P,λ))m,n =


cm,n if |m| < M

2
and |n| ≤ N

2
,

cM
2
,n + c−M

2
,n if m = −M

2
and |n| ≤ N

2
,

0 otherwise.

(57)

Note that the case λx > 1 and λy = 1 is similarly obtained by switching the role of the dimen-
sions.

3. If λx > 1 and λy > 1, then for (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u(P,λ))m,n =

{
cm,n if (m,n) ∈ Ω̂s

M,N ,

0 otherwise.
(58)

Proof. For λx = λy = 1 the result is straightforward. Otherwise, for (k, l) ∈ ΩM ′,N ′ we have

(
u(P,λ)

)
k,l

= P

(
k

λx
,
l

λy

)
(59)

=
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ( mk

λxM
+ nl
λyN

)
(60)

=
∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(mk

M′+
nl
N′ ). (61)
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The DFT coefficients are obtained by rewritting the sum over Ω̂s
M,N in (61) as a sum over Ω̂M ′,N ′ ,∑

(m,n)∈Ω̂sM,N

cm,ne
2iπ(mk

M′+
nl
N′ ) =

∑
(m,n)∈Ω̂M′,N′

dm,ne
2iπ(mk

M′+
nl
N′ ). (62)

By uniqueness of the iDFT (of size M ′ ×N ′) we have d = FM ′,N ′
(
u(P,λ)

)
. The determination of the

coefficients d is done similarly as in the proof of Proposition 1. When a dimension is up-sampled
(with a factor strictly larger than 1) then the additional coefficients, which are outside of Ω̂s

M,N , are
set to 0. Otherwise the coefficients are obtained exactly as in Proposition 1.

Therefore the up-sampling using TPI is commonly referred to as the DFT zero-padding. We
recall that the trigonometric polynomial coefficients are expressed in terms of the DFT of u (see
Corollary 1). In particular, for the three classical trigonometric polynomial interpolators the DFT
coefficients of the up-sampled images are given by

Proposition 11. Let λ = (λx, λy) ∈ [1,+∞[2 verifying (55). For (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u(P
(c)
u ,λ)

)m,n =

{
FM,N(u)m,n if (m,n) ∈ Ω̂M,N ,

0 otherwise.
(63)

Assume in addition that u is real-valued.

1. If λx = 1 and λy > 1, then M ′ = M and for (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u(R(P
(c)
u ),λ)

)m,n = FM ′,N ′(u(P
(r)
u ,λ)

)m,n =


FM,N(u)m,n if |n| < N

2
,

1
2
FM,N(u)m,−N

2
if |n| = N

2
,

0 otherwise.

(64)

Note that the case λx > 1 and λy = 1 is similarly obtained by switching the role of the dimen-
sions.

2. If λx > 1 and λy > 1, then for (m,n) ∈ Ω̂M ′,N ′

FM ′,N ′(u(R(P
(c)
u ),λ)

)m,n =



FM,N(u)m,n if |m| < M
2

and |n| < N
2
,

1
2
FM,N(u)−M

2
,n if |m| = M

2
and |n| < N

2
,

1
2
FM,N(u)m,−N

2
if |m| < M

2
and |n| = N

2
,

1
2
FM,N(u)−M

2
,−N

2
if (m,n) ∈

{
±(M

2
, N

2
)
}
,

0 otherwise.

(65)

and

FM ′,N ′(u(P
(r)
u ,λ)

)m,n =



FM,N(u)m,n if |m| < M
2

and |n| < N
2
,

1
2
FM,N(u)−M

2
,n if |m| = M

2
and |n| < N

2
,

1
2
FM,N(u)m,−N

2
if |m| < M

2
and |n| = N

2
,

1
4
FM,N(u)−M

2
,−N

2
if |m| = M

2
and |n| = N

2
,

0 otherwise.

(66)

Proof. It is a direct consequence of Proposition 10. The coefficients of the different trigonometric
polynomial interpolators are given in Definition 8, Proposition 2 and Definition 9.

Note that the up-sampled image using the trigonometric polynomial interpolator in complex
convention P

(c)
u may be complex-valued for u real-valued. Actually it is real-valued if and only if

{(m,n) ∈ ΓM,N | FM,N(u)m,n 6= 0} = ∅.
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Algorithm. The corresponding algorithm for the up-sampling of an image using TPI is described
in Algorithm 3. The total number of floating point operations is in O(M ′N ′ log(M ′N ′)) as the DFT
and iDFT are computed thanks to the FFT algorithm [8].

Algorithm 3: Up-sampling of an image using TPI

Input : An image u of size M ×N , the up-sampling factor λ verifying (55) (or equivalently
the output sizes M ′ ≥M and N ′ ≥ N) and a trigonometric polynomial interpolator
P of u

Output: The up-sampled image u(P,λ)

1 Compute FM,N(u) the DFT of u using the FFT algorithm [8]
2 Deduce the coefficients c of P from FM,N(u) (see Section 2.2)
3 Compute the DFT coefficients v̂ = FM ′,N ′(u(P,λ)) using Proposition 10 (or Proposition 11)

4 Compute u(P,λ) = F−1
M ′,N ′(v̂) with an iDFT using the FFT algorithm [8]

4.2 Down-sampling

Here down-sampling refers to the process of reducing the sampling rate of a signal/image. It is also
called decimation. For integer down-sampling factors this is usually expressed as a two-step process.
First the high-frequency component is reduced by a low-pass filtering. Then, the down-sampled image
is obtained by resampling the filtered image on a coarser grid. The aim of the low-pass filtering is
to avoid the introduction of a strong aliasing.

Discrete spatial filters may be considered for the low-pass filtering. A classical example is the
Gaussian filter (e.g. with standard deviation σ = 0.6 as in [17, 4]).

Low-pass filters may also be defined in the Fourier domain since it covers all the possible image
sizes in a single formula and allow for rational down-sampling factors. As described in [5] the filters
are then applied using DFT-based computations that rely on TPI. For instance it is the case for the
low-pass filter used to build the steerable pyramid of E. Simoncelli et al. [21, 6].

Let u be an image of size M ×N . Let λx and λy be two numbers greater than 1 such that{
M ′ .= M

λx
∈ N,

N ′
.
= N

λy
∈ N.

(67)

Actually the down-sampling factors λx = M
M ′

and λy = N
N ′

are rational numbers and any down-
sampled size M ′ ≤M and N ′ ≤ N can be obtained. The down-sampling of u by the down-sampling
factor λ = (λx, λy) using TPI is defined as follows.

Definition 12. Let M ′ and N ′ be two positive integers and λ = (λx, λy) ∈ [1,+∞[2. The discrete
set ΛM ′,N ′,λ is defined by

ΛM ′,N ′,λ = ΛM ′,λx × ΛN ′,λy (68)

where for any integer L and γ > 1,

ΛL,γ =

{
Ω̂L if γ = 1,

Ω̂s
L if γ > 1.

(69)

Definition 13 (Down-sampling of an image). Let λ = (λx, λy) ∈ [1,+∞[2 verifying (67). The
down-sampled image of u with factor λ is noted u( 1

λ
) ∈ CΩM′,N′ . It is defined by

∀(k, l) ∈ ΩM ′,N ′ ,
(
u( 1

λ
)

)
k,l

= Pu, 1
λ

(k, l) , (70)
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where Pu, 1
λ
∈ PM ′,N ′ is given by

∀(x, y) ∈ Z2, Pu, 1
λ
(x, y) =

∑
(m,n)∈ΛM′,N′,λ

FM,N(u)m,ne
2iπ( m

M′ x+ n
N′ y). (71)

The discrete set ΛM ′,N ′,λ is introduced in Definition 12 in order to handle the cases in Definition 13
where there is no down-sampling along one of the dimensions. To summarize:

• For λ = (1, 1) there is no effective down-sampling so that we have ΛM ′,N ′,λ = Ω̂M ′,N ′ = Ω̂M,N

and Pu, 1
λ

= P
(c)
u .

• When for instance λx = 1 and λy > 1, the down-sampling is only performed on the y-direction.

We have ΛM ′,N ′,λ = Ω̂M ′ × Ω̂s
N ′ = Ω̂M × Ω̂s

N ′ . Note that Ω̂M is not symmetrical for M even.

• For λx > 1 and λy > 1 we have ΛM ′,N ′,λ = Ω̂s
M ′,N ′ , which is a symmetrized discrete Fourier

domain.

Contrarily to the up-sampling, the down-sampling of u does not depend on a particular choice

of an interpolator of u. The trigonometric polynomial interpolator P
(c)
u is implicitly chosen for the

definition of Pu, 1
λ

but only because it simplifies the notations. Assume that P ∈ PM,N is another

interpolator of u and denote by c its coefficients in Ω̂s
M,N . Then, we could replace Pu, 1

λ
by P̃u, 1

λ
where

∀(x, y) ∈ Z2, P̃u, 1
λ
(x, y) =

∑
(m,n)∈Ω̂s

M′,N′

cm,ne
2iπ( m

M′ x+ n
N′ y). (72)

One can easily prove that

∀(k, l) ∈ ΩM ′,N ′ , Pu, 1
λ
(k, l) = P̃u, 1

λ
(k, l), (73)

so that the definition of the down-sampled image u( 1
λ) would remain unchanged.

Intuitively for λx > 1 and λy > 1, Pu, 1
λ

is obtained by taking any trigonometric polynomial

interpolator of u, “killing” the coefficients in Ω̂M,N \ Ω̂s
M ′,N ′ and applying a scaling of factor λ. The

underlying continuous low-pass filter is the perfect low-pass defined by the indicator function of
[− π

λx
, π
λy

]2.

The down-sampling using TPI is commonly called DFT zoom-out. Indeed, the DFT coefficients
of the down-sampled image u( 1

λ
) can be easily computed from DFT coefficients of u as stated in

Proposition 12. Let λ = (λx, λy) ∈ [1,+∞[2 verifying (67).

1. If λx = λy = 1, then u( 1
λ

) = u and FM ′,N ′(u( 1
λ

)) = FM,N(u).

2. If λx = 1 and λy > 1, then M ′ = M and for (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u( 1
λ

))m,n =

{
FM,N(u)m,n if |n| < N ′

2
,

FM,N(u)
m,N

′
2

+ FM,N(u)
m,−N′

2
if n = −N ′

2
.

(74)

Note that the case λx > 1 and λy = 1 is similarly obtained by switching the role of the dimen-
sions.
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3. If λx > 1 and λy > 1, then for (m,n) ∈ Ω̂M ′,N ′,

FM ′,N ′(u( 1
λ

))m,n =



FM,N(u)m,n if |m| < M ′

2
and |n| < N ′

2
,

FM,N(u)M′
2
,n

+ FM,N(u)−M′
2
,n

if m = −M ′

2
and |n| < N ′

2
,

FM,N(u)
m,N

′
2

+ FM,N(u)
m,−N′

2
if |m| < M ′

2
and n = −N ′

2
,

FM,N(u)M′
2
,N
′

2
+ FM,N(u)M′

2
,−N′

2

+FM,N(u)−M′
2
,N
′

2
+ FM,N(u)−M′

2
,−N′

2
if m = −M ′

2
and n = −N ′

2
.

(75)

Proof. It is obtained by using similar computations as in the proof of Proposition 1.

Assume that u is real-valued. Then, using the symmetry of FM,N(u) one can easily prove that
the down-sampled image u( 1

λ
) is also real-valued.

Algorithm. The corresponding algorithm for the down-sampling of an image using TPI is described
in Algorithm 4. The total number of floating point operations is in O(MN log(MN)) as the DFT
and iDFT are computed thanks to the FFT algorithm [8].

Algorithm 4: Down-sampling of an image using TPI

Input : An image u of size M ×N and the down-sampling factor λ verifying (67) (or
equivalently the output sizes M ′ ≤M and N ′ ≤ N)

Output: The down-sampled image u( 1
λ)

1 Compute FM,N(u) the DFT of u using the FFT algorithm [8]
2 Compute the DFT coefficients v̂ = FM ′,N ′(u( 1

λ)) using Proposition 12

3 Compute u( 1
λ) = F−1

M ′,N ′(v̂) with an iDFT using the FFT algorithm [8]

4.3 Link between Up-sampling and Down-sampling

The left invertibility of the up-sampling using TPI is guaranteed by

Proposition 13. Let λ = (λx, λy) ∈ [1,+∞[2 verifying (55). Let P ∈ PM,N be a trigonometric
polynomial interpolator of u. Then, (

u(P,λ)

)
( 1
λ

)
= u. (76)

Proof. It is obtained using Proposition 10 and Proposition 12.

More precisely, the left inverse of the up-sampling with any trigonometric polynomial interpolator
is the down-sampling with the same factor. Obviously for λ 6= (1, 1) the up-sampling does not admit
a right inverse since up-sampled images have imposed null DFT coefficients. Similarly the down-
sampling does not admit a left inverse since DFT coefficients are “killed” i.e. some information is
lost.
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5 Provided Implementation and Online Demo

We propose ANSI C99 implementations of the DFT translation (Algorithm 1), of the geometric
transformation (Algorithm 2) by an homography, of the up-sampling (Algorithm 3) and of the down-
sampling (Algorithm 4). The source codes and an online demo are available at the IPOL web page
of this article2.

Our implementations handle the two classical real-valued interpolators but not the complex one
as only real-valued images can commonly be saved. For the FFT and NFFT algorithms we use the
FFTW library [10] and the NFFT3 library [12].

6 Experiments

In this experimental section we present some results obtained using the described algorithms (and
the corresponding proposed implementations). The input image of size 584 × 388 that we use is
shown in Figure 2. This is the grayscale version of the RubberWhale image from the Middlebury
database [2].

Figure 2: Input image of size 584 × 388 used for the experiments in Section 6. This is the grayscale version of the
RubberWhale image from the Middlebury database [2].

In all of the presented experiments we used the trigonometric polynomial interpolator in real
convention. A study of the impact of the choice of the trigonometric polynomial interpolator was
made in [5] in a context of filtering. The experiments were made using an Intel(R) Core(TM)
i7-7820HQ CPU.

6.1 DFT translation

We applied the shift (100.5, 100.5) using the DFT translation algorithm described in Algorithm 1.
The shifted image, shown in Figure 3(a), was obtained in 40ms. Typical ringing artifacts, occur-
ring around the image boundary because of the inadequate periodic assumption, can be seen in
Figure 3(b).

According to Proposition 9, the translation by (100.5, 100.5) of our input image is not invertible.
To verify this, we applied the opposite shift −(100.5, 100.5) to the shifted image and compared the
result to the original image. The maximal error in absolute value is of 0.70 and the root mean square
error (RMSE) is of 0.18. Depending on the context of application, this error, which is localized in
the Fourier boundary ΓM,N , may be non-negligible.

2https://doi.org/10.5201/ipol.2019.273
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(a) Shifted image by (100.5, 100.5) (b) Detail of (a) around (100, 100)

Figure 3: Results of the DFT translation of the image presented in Figure 2 for the shift (100.5, 100.5). The shifted
image, shown in (a), was obtained in 40ms. Typical ringing artifacts, occurring around the image boundary because of the
inadequate periodic assumption, can be seen in (b).

6.2 Geometric Transformation

In order to compare the geometric transformation algorithm, which uses the NFFT algorithm, and
the DFT translation algorithm, we also applied the shift of (100.5, 100.5) using Algorithm 2. The
maximal difference between the two results was around 10−10 in absolute value. Indeed, the NFFT
algorithm precision is close to the machine precision. However for translations, the DFT computations
are way more efficient as the NFFT version took 1850ms (against 40ms).

The advantage of Algorithm 2 is to allow for any geometric transformation. As an example, we
used it for the rotation of 45◦ centered in (0, 0) (i.e. the top-left corner of the image). The transformed
image is shown in Figure 4.

Figure 4: Results of the geometric transformation of the image presented in Figure 2 for the rotation of 45◦ centered in
(0, 0) (i.e. the top-left corner of the image).

6.3 Up-sampling

We applied the up-sampling of factors (2, 2), (2.5, 2.5) and (3, 3) using the up-sampling algorithm
described in Algorithm 3. The results are presented in Figure 5.
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Note that because of the inadequate periodic assumption ringing may appear after up-sampling.
In [1] the authors proposed to first use the periodic plus smooth decomposition [14]. Then, the
periodic component is up-sampled using the DFT up-sampling method while the smooth component
is up-sampled using another interpolation method (e.g. using bilinear interpolation).

6.4 Down-sampling

We applied the down-sampling of factors (584
400
, 388

200
), (2, 2) and (4, 4) using the down-sampling algo-

rithm described in Algorithm 4. The first factor was chosen in order to get an output image of size
400× 200. The results are presented in Figure 6.

7 Conclusion

In this work we presented a trigonometric polynomial interpolation theory for images and applied
it to the geometric transformation of images, to the up-sampling and to the down-sampling. The
trigonometric polynomial interpolators of an image were characterized and it was shown that there
are infinitely many candidates as soon as one of the image dimensions is even. The interpolator choice
has an influence as shown in the two discussed applications. Three classical choices of interpolator
for real-valued images were presented and the cases where they coincide were pointed out.

For image translation, the classical DFT-based computations by phase shift were described. In
the general case an efficient but approximate algorithm, based on the NFFT algorithm, was proposed.
DFT-based computations were also presented for the up-sampling and the down-sampling. All of the
algorithms described are efficient and can be used in practice. Trigonometric polynomial interpolation
can also be applied to linear filtering as in [5].

The performances, the limits and the improvements of trigonometric polynomial interpolation
are discussed in [3, Chapter 6].
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312



Trigonometric Polynomial Interpolation of Images

(a) Up-sampling by factor (2, 2). Done in 50ms.
The output size is 1168× 776.

(b) Up-sampling by factor (2.5, 2.5). Done in 70ms. The
output size is 1460× 960.

(c) Up-sampling by factor (3, 3). Done in 95ms. The output size is
1752× 1164.

Figure 5: Results of the up-sampling of the image presented in Figure 2 for various up-sampling factors. The images are
displayed at dimensions proportional to their zoom factor.
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(a) Down-sampling by factor ( 584
400 ,

388
200 ). Done in 17ms. The output size is 400×

200.

(b) Down-sampling by factor (2, 2). Done in 20ms. The
output size is 292× 194.

(c) Down-sampling by factor
(4, 4). Done in 28ms. The
output size is 146× 97.

Figure 6: Results of the down-sampling of the image presented in Figure 2 for various down-sampling factors. The images
are displayed at dimensions proportional to their zoom factor. Note that the computation time does not necessarily decrease
as the output size decreases because of optimizations made in the FFTW library [10].
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