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Abstract

Most cameras capture the information of only one color for a given pixel. This results in a
mosaicked image that must be interpolated to get three colors at each pixel. The step going
from a mosaicked image to a regular RGB image is called demosaicking. This paper studies two
recent demosaicking methods based on convolutional neural networks that achieve artifact-free
state-of-the-art results: Deep joint demosaicking and denoising by Gharbi et al. and Color
image demosaicking via deep residual learning by Tan et al. We show that these methods beat
by almost two decibels the best human-crafted methods, while being faster by one order of
magnitude. This, arguably, seals the destiny of human-crafted methods on this subject.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Compilation and usage instructions are included in the README.txt file of the
archive.
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1 Introduction

Most cameras capture only one color per pixel, this color being determined by a color filter array
(CFA) located on top of the sensor. The most commonly used CFA is the so-called Bayer pattern,
consisting of a regular subsampling of each color channel. This means that each pixel of the resulting
raw image contains one third of the necessary information, and that the color channels are sampled
on different grids. The problem of interpolating the missing color channels at each pixel, by using the
information available in a neighborhood, is called demosaicking. It is a challenging ill-posed inverse
problem.

The simplest demosaicking method is the independent bilinear interpolation of each channel. Yet
recent methods are far more sophisticated. Getreuer [2] solves the demosaicking by using contours
of objects as guide. Mairal et al. [13] suggested combining group sparsity and dictionary learning to
achieve optimal performance. In a series of papers, Kiku et al. [8], [9] and [15] proposed increasingly
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complex interpolation methods where they use the interpolated Green channel as a guide for the
Red and Blue channels. These last four methods may be considered among the best ones designed
by humans. A recently emerged trend consists in using convolutional neural networks for image
processing and computer vision applications. See for example the early attempt in [19]. These
methods have by now reached state-of-the-art results. This has added a new chapter to the success
book of applications of neuronal networks in computer vision. They were already celebrated for
applications such as classification [11] or object detection [16], but also for low-level vision applications
as image denoising [20].

The rest of the paper is organized as follows: In Section 2 we present the method “Deep joint
demosaicking and denoising” by Gharbi et al. [3], in Section 3 we present the method “Color image
demosaicking via deep residual learning” by Tan et al. [18]. A quantitative and qualitative comparison
with previous state-of-the-arts methods is made in Section 4.

2 Deep Joint Demosaicking and Denoising by Gharbi et al.

[3]

2.1 Architecture

The network starts by downsampling the CFA image into a four-channel image that then goes
through a serie of 14 Conv+bias layers with 64 features and 3 × 3 convolutions. A 15th layer of
Conv+ Batch Normalization (BN)+ReLu produces 12 features with 3×3 convolutions. It is followed
by an upsampling layer producing an RGB image of twice the width and twice the height. The CFA
input is split into the respective channels and concatenated to this intermediate RGB image. This
layer acts as a residual layer. After this concatenation, a Conv+bias layer is added before the final
layer producing the RGB output. The architecture is depicted in Figure 1.

64 features
3x3 Conv+bias

14 times

Split into respective channels

64 features
3x3 Conv+bias

upsampled
+ concat

downsampled

Figure 1: Architecture used for demosaicking by Gharbi et al. [3].

Bayer X-Trans

Figure 2: Mosaicking patterns: Bayer (2× 2) and Fujifilm X-Trans (6× 6).

The architecture is slightly modified when working with noisy or Fujifilm X-Trans data. For
X-Trans data, the image is not downsampled. Indeed Gharbi et al. argue that, since the X-Trans
pattern is 6 × 6 (as illustrated in Figure 2), the downsampling would be too aggressive. The layer
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acting as a residual layer is also removed. For noisy data, the noise level (noise standard deviation)
σ is concatenated into the downsampling layer (using a channel with values all equal to σ). The rest
of the network stays the same.

2.2 Training

Loss. A classic L2 loss is used for training in all three cases (Bayer demosaicking, X-Trans demo-
saicking and joint demosaicking and denoising). All noise levels are trained at the same time for
joint demosaicking and denoising.

Training dataset. A first pre-training was done using natural images. In particular 1.3 millions
images from ImageNet [1] and 1 million images from MirFlickr [6] were chosen for this pre-training.
The images chosen had a minimum size of 16M pixels and then were downsampled by a factor of
4. Data augmentation was performed by flipping, rotating and applying a 1 pixel-shift. CFA images
were obtained by masking.

Gharbi et al. argue that classic metrics such as L2 and PSNR are not much impacted by demo-
sacking artifacts. Moreover, since difficult patches are rare, this means that it would be hard to train
a network for demosaicking without artifacts unless the training set be biased towards the creation
of such artifacts. For this reason, they created two datasets (one for each type of artifact, namely
luminance and moiré) containing only difficult patches used to fine-tune the network. Using the pre-
trained network, luminance artifacts are found using the HDR-VDP2 metric [14]. Moiré artifacts
are found by looking at frequencies that have a much larger energy in Fourier for the demosaicked
patch. Figure 3 shows examples of patches in these datasets.

Figure 3: Example of images from the luminance dataset (two on the left) and the moiré dataset (two on the right).

Weights initialization. He et al. suggested in [5] a way to generalize the “Xavier” initialization
initially proposed by Glorot and Bengio [4] to take into account ReLUs non-linearity. This allows
for a good convergence even for very deep models. He et al. derive conditions on the weights of
the kernels at each layer to avoid the problems of vanishing or exploding gradients and vanishing
or exploding signal. It leads to initializing all kernels using a zero-mean Gaussian distribution with
variance 2

n
where n is the size of the kernel.

Training parameters. While most parameters were initialized using the method presented in the
previous paragraph, biases were initialized to 0. The patch size for the training was set to 128× 128
and the batch size to 64. The training was done using the Adam optimizer [10]. The learning rate
was set to 1 · 10−4 and an L2 weight decay to 1 · 10−8. The other parameters for the Adam optimizer
were left to their default value. On top of the weight decay, there was a decrease of the learning
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rate of a factor 10 when the validation error stagnated for ten epochs. The model took about two to
three weeks to train on a NVIDIA Titan X2.

3 Color Image Demosaicking Via Deep Residual Learning

by Tan et al. [18]

3.1 Architecture

The network starts with a bilinear interpolation of the CFA image into a first-estimate RGB image
that then goes through a series of 6 convolutional layers (the three middle layers also have batch-
normalization (BN) [7] and a ReLU) with 64 features and 3×3 convolutions (convolutions are padded
to ensure that the output has the same size as the input). The bilinearly interpolated image is added
to the result of these convolutional layers producing a first estimate RGB image. It then goes through
a second series of 5 convolutions (the three middle layers also have BN+ReLU) before adding the
first estimate to produce the final result. The architecture is depicted in Figure 4.

Bilinear
interpolation

4 times

64 features
3x3 Conv+BN+ReLU

3 times

64 features
3x3 Conv+BN+ReLU

Residual
Residual

+ +

Figure 4: Architecture for demosaicking used by Tan et al. [18].

3.2 Training

Loss. The network can be decomposed into two steps: The first part (corresponding to the first
residual section) estimates the green channel and the second estimates the other two channels (using
the estimated green channel as a guide). For this reason the loss is split into two terms: the first
term focuses only on the green channel and the second one takes into account the final result. For a
training pair (x, y), where x is the CFA image and y the corresponding RGB image, and θ = (θ1, θ2)
the parameters of the network (respectively the first and second part of the network for θ1 and θ2),
the loss is defined as

L(x, y, θ = (θ1, θ2)) = ‖yG −Nθ1(x)G‖22 + ‖Nθ(x)− y‖22, (1)

where the G sub-index corresponds to extracting the green channel and Nθ1 is the partial network
up to the first residual section.

Training dataset. The dataset used for training is the Waterloo dataset presented in [12]. A
sample of images is shown in Figure 5. It is made of 4744 images, out of which 100 are used for
validation. Data augmentation was performed by flipping and rotating the images. CFA images were
generated by appropriate masking. Finally, out of all training images, 3000 batches of 128 patches
were extracted.

2This description of the network training is based on the authors’ description. We did not attempt to emulate this
training. The neural network weights used here therefore are the original ones provided by the authors.
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Figure 5: Example of images from the Waterloo dataset [12].

Training parameters. The network was initialized using the same methods than [3] presented in
Section 2.2. The patch size for the training was set to 50×50 and the batch size to 128. The training
was done using the Adam optimizer [10] with default parameters except for the learning rate. The
learning rate was set to 2 · 10−4 for the beginning of the training and 1 · 10−4 for the rest of the
training. Early stopping of the training was done as soon as the training error stagnated for more
than three epochs. The model took about one day to train on a NVIDIA Titan X3.

4 Quantitative and Qualitative Comparison

In this section we compare both quantitatively and qualitatively some of the most efficient demo-
saicking methods. We used the state-of-the-art methods LSSC [13], RI [8], ARI [15], MLRI [9] and
Getreuer [2] that are compared in most recent papers and retain a low rank in most. Actually, ARI
and LSSC are generally considered the best handcrafted methods, but they are also very complex.
Table 1 presents the PSNR for all these methods. As one can see the two CNN-based methods
outperform all previous demosaicking methods. The PSNRs were computed on the Kodak dataset
comprised of 24 images, the McMaster dataset from Zhang et al. [21] comprised of 18 images and a
subset of 14 images from the Flickr500 dataset from Syu et al. [17]. We also added the average PSNR
on a dataset made of the images from all three datasets. In order to avoid boundary effects, the
images were first padded (with a padding of 48 pixels) using symmetry before generating the CFA
image. This padding was removed before computing PSNRs. Extra care was taken to make sure that
the CFA images used for each method were the same. We also used the parameters recommended
by the authors for each method. Table 2 shows that not only do these methods perform well in
terms of PSNR but that they are also reasonably fast. The method [3] is written in Python and
the methods [18, 13, 8, 9, 15] are written in Matlab. All computation times were computed on an
Intel Core i7-7820HQ even for CNN methods. The CNN-based methods were tested without using
a GPU. We used the weights provided by the authors for both CNN methods.

Figures 6, 7, 8 and 9 present visual examples of the different demosaicking methods. In particular
Figure 7 shows that the method with the least moiré artifacts is the method that was trained
specifically to avoid this artifact. Figure 8 shows that both CNN-based methods have no visible
zipper effects.

Overall, the two reviewed CNN methods outperform both visually and in terms of PSNR all
previous demosaicking methods while also being reasonably fast, even without a GPU.

4.1 Conclusion

We have seen that the CNN-based demosaicking methods beat by almost two decibels the best
human-crafted methods, while being faster by one order of magnitude. To reach this performance,

3This description of the network training is based on the authors’ description. We did not attempt to emulate this
training. The neural network weights used here therefore are the original ones provided by the authors.
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Figure 6: From top-left to bottom-right: Original, Gharbi et al. [3], Tan et al. [18], MLRI [9], ARI [15], Getreuer [2]. All
demosaicking methods shown here perform well overall, with no visible strong artifacts. Yet a moiré artifact appears in the
fence for some of the methods.
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Figure 7: From top-left to bottom-right: Original, Gharbi et al. [3], Tan et al. [18], MLRI [9], ARI [15], Getreuer [2]. All
demosaicking methods still present some moiré artifacts on the shutters. However, the Gharbi et al. method, which was
trained specifically to avoid this artifact, has fewer than the other methods.
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Figure 8: From top-left to bottom-right: Original, Gharbi et al. [3], Tan et al. [18], MLRI [9], ARI [15], Getreuer [2]. Most
methods perform well regarding luminance artifacts. Nevertheless the Gharbi et al. method still performs best.

Figure 9: From top-left to bottom-right: Original, Gharbi et al. [3], Tan et al. [18], MLRI [9], ARI [15], Getreuer [2]. Only
the Gharbi et al. method performs well visually on really difficult examples.
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Method Kodak McMaster Flickr500 All

Gharbi et al. [3] 41.82 39.08 32.22 38.54
Tan et al. [18] 41.99 39.02 32.08 38.56
LSSC [13] 41.44 36.21 29.86 36.86
RI [8] 39.77 34.76 29.46 35.58
ARI [15] 39.24 37.48 30.42 36.47
MLRI [9] 39.85 35.29 29.62 35.83
Getreuer [2] 39.30 35.95 29.36 35.74

Table 1: Quantitative comparison of different demosaicking methods. The table shows PSNRs on three datasets: the Kodak
dataset, the McMaster dataset [21] and a subset of the Flickr500 dataset [17].

Method Gharbi et al. [3] Tan et al. [18] LSSC [13] RI [8] ARI [15] MLRI [9] Getreuer [2]

Time 13.97 14.06 736.18 1.86 61.32 1.79 3.07

Table 2: Computation time of the compared methods. Computation time was computed for the lighthouse image of the
Kodak dataset and is given in seconds.

they did not rely on the clever human techniques established by the anterior state of the art, but
simply applied rather standard CNN architectures. This success is explainable. The first reason is
that human-crafted algorithms rely on the iteration of nonlinear local filters, the most complex one,
ARI, having more than 20 such iterations. But deep convolution networks have the same structure
and are in addition scalable in depth and number of filters, until they reach the best performance.
Furthermore, human-crafted methods have been designed to avoid certain artifacts, probably to the
cost of losing in PSNR. CNNs, on the contrary, can be taught to learn intricate casuistry by the
variety of presented images, and to keep a memory of complex image statistics. Being trained to
reach the best PSNR, they definitely reach that goal. Finally, the Gharbi et al. method succeeded
in biasing the learning process so as to avoid completely the most annoying moiré and zipper effects,
thus also achieving the most acute requirement of demosaicking methods, while still retaining the
best PNSR! This performance arguably seals the destiny of human-crafted methods on this subject.
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