Published in Image Processing On Line on 2019-10-16.
Submitted on 2019-09-08, accepted on 2019-10-14.

ISSN 2105-1232 (©) 2019 IPOL & the authors CC-BY-NC-SA
This article is available online with supplementary materials,
software, datasets and online demo at

IMAGE PROCESSING ON LINE  https://doi.org/10.5201/ipol.2019.277

N

Reversibility Error of Image Interpolation Methods:
Definition and Improvements

Thibaud Briand!:2

! Université Paris-Est, LIGM (UMR CNRS 8049), ENPC, F-77455 Marne-la-Vallée, France
2 Université Paris-Saclay, CMLA (UMR CNRS 8536), France
(briand.thibaud@gmail.com)

Communicated by Jean-Michel Morel and Pascal Monasse Demo edited by Thibaud Briand

Abstract

There is no universal procedure in image processing for evaluating the quality and performance
of an interpolation method. In this work, we introduce a new quantity: the reversibility error.
For a given image, it measures the error after applying successively a homography close to the
identity, a crop (removing boundary artifacts) and the inverse homography. An average over
random homographies is made to remove the dependency on the homography. A more precise
measurement discarding very high-frequency artifacts is obtained by clipping the spectrum
of the difference. We also propose new fine-tuned interpolation methods that are based on
the DFT zoom-in and pre-existing (or base) interpolation methods. The zoomed version of
an interpolation method is obtained by applying it to the DFT zoom-in of the image. In
the periodic plus smooth version of interpolation methods, the non-periodicity is handled by
applying the zoomed version to the periodic component and a base interpolation method to the
smooth component. In an experimental part, we show that the proposed fine-tuned methods
have smaller reversibility errors than their base interpolation methods and that the error is
mainly localized in a small high-frequency band. We recommend to use the periodic plus
smooth versions of high order B-spline. It is more efficient and provides better results than
trigonometric polynomial interpolation.

Source Code

The ANSI C99 implementation of the code that we provide is the one which has been peer
reviewed and accepted by IPOL. The source code, the code documentation, and the online
demo are accessible at the IPOL web page of this article!. Compilation and usage instructions
are included in the README. txt file of the archive.
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REVERSIBILITY ERROR OF IMAGE INTERPOLATION METHODS: DEFINITION AND IMPROVEMENTS

1 Introduction

Interpolation is one of the most basic tools of image processing. Indeed, the evaluation of an image
at subpixel locations is required in many algorithms. The overall performance of there algorithms
therefore is directly impacted, and it is not always possible to neglect the error introduced. For
instance, assume that the generation of a dataset involves an interpolation step. Then, the interpo-
lation error has to be taken into account during the performance evaluation of an algorithm on these
synthetic data.

There is no universal procedure for evaluating the quality and performance of an interpolation
method. A non-rigorous first possibility is to have a qualitative approach with a visual analysis of
the results. A second standard procedure consists in interpolating samples for which an underlying
continuous signal is known. However, there is no satisfactory and practical model for real-world
images. A third procedure, which does not require a ground truth model, is to measure the error
after applying successively several transformations whose composition is the identity (for instance a
transformation and its inverse). The accuracy of the interpolation method is not directly measured,
but this gives an information about the reversibility (or stability) of the interpolation method. For
instance, in [13, Section VIII] 15 rotations of angle % are applied. Similarly in [9], the authors
perform forward and backward image transformations by optical flow.

Even though the Shannon-Whittaker formula cannot be used in practice, images are still com-
monly assumed to be band-limited. The interpolation error is interpreted as the consequence of
the cardinal sine approximation by the interpolation kernel. The Fourier transform of the kernel
is, in general, a smooth approximation of the Nyquist domain indicator function [13, 8, 5]. In
practice, for finite images, the Shannon-Whittaker interpolate becomes a trigonometric polynomial
when the band-limitedness assumption is made along with a periodic extension [1]. As shown in [4],
a trigonometric polynomial interpolation is compatible with DFT-based computations and can be
used in practice. It provides high quality results because it does not introduce spectral attenuation
or aliasing in the high-frequencies. As pointed out in [1], it is possible to improve the performance
of interpolation methods using a DFT zoom-in i.e. an up-sampling by trigonometric polynomial
interpolation. However, the underlying periodic assumption is not compatible in general with the
image content and this may introduce undesirable ringing artifacts. This led the author of [10], to
apply a periodic plus smooth decomposition for handling the non-periodicity during the up-sampling
of images. The periodic component is up-sampled using a DFT zoom-in while the (very) smooth
component is interpolated by bilinear interpolation.

In this work, we introduce a new quantity for evaluating the interpolation method quality: the
reversibility error. For a given image and a homography assumed to be close to the identity, the
error after applying successively the homography, a crop (removing boundary artifacts) and the
inverse homography is measured. The reversibility error is estimated by averaging the error over a
large number of random homographies. A more precise measurement discarding very high-frequency
artifacts is obtained by a minor clipping of the spectrum of the difference. We also propose new
fine-tuned interpolation methods that are based on the DFT zoom-in and pre-existing (or base)
interpolation methods. The zoomed version of an interpolation method is obtained by applying it
to the DF'T zoom-in of the image. In the periodic plus smooth version of interpolation methods, the
non-periodicity is handled by applying the zoomed version to the periodic component and a base
interpolation method to the smooth component. In an experimental part, we show that the proposed
fine-tuned methods have smaller reversibility errors than their base interpolation methods and that
the error is mainly localized in a small high-frequency band.

This work is based on [3, Chapter 6] and is organized as follows. First, the reversibility errors
are defined in Section 2. Then, the new fine-tuned methods are introduced in Section 3. Finally, the
performance of these methods are experimentally compared in Section 5.
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Remark. In the following only grayscale images are considered. The results are trivially extended
to color (or multi-channel) images by handling channels independently.

2 Reversibility Error of Interpolation Methods

In the rest of this work, M and N denote two non-negative integers, u denotes a real-valued image
of size M x N.

Two variants of the reversibility error of an interpolation method are introduced in Section 2.3.
But first, the homographies used for evaluating the reversibility errors are presented in Section 2.1.
Then, spectrum clipping is introduced in Section 2.2 as it is an important correction of the reversibility
erTor.

2.1 Moderate Homographies

As it is used for evaluating the reversibility error, the transformation of an image using an interpo-
lation method is first defined.

Definition 1 (Spatial domain). The discrete spatial domain Qyp n is defined by
Qun={0,....M =1} x{0,...,N —1}. (1)

Definition 2 (Geometric transformation of an image). The transformation of the image u of size
M x N by a one-to-one function ¢ : R?* — R? (called geometric transformation) is noted u, and is

defined by
V(k,1) € Qun,  (w, ) =u(e™ (k1)) (2)

The real number u(z,y) in (2) denotes the interpolated value at location (x,y) € R? of u obtained with
an interpolation method, which is specified in the context. Note that when (x,y) ¢ [0, M —1]x[0, N —1]
a boundary extension (e.g. periodic, constant, half-symmetric or whole-symmetric) is used.

As discussed later, the transformations used during the reversibility error evaluation have to be
close to the identity in order to avoid the unnecessary introduction of boundary errors and of aliasing.
Therefore, we define and use “moderate” homographies.

Definition 3 (Moderate homographies). For a given image u of size M x N, a homography ¢ : R? —
R? is said to be “moderate” if the displacements of the four corners Cy = (0,0), Cy = (M — 1,0),
C3=(0,N—1)and Cy = (M — 1, N — 1) are smaller 1 along each dimension. In other words,

@ is a moderate homography < fori € {1,2,3,4},  C; — p(C;) € [-1,1]. (3)

Moderate homographies can be easily generated by moving the four corners of the image using
Algorithm 1 with L = 1. Note that increasing the maximal allowed displacement may introduce
additional errors uniquely due to the choice of the transformation (and not the interpolation method).

2.2 Spectrum Clipping

In this section the spectrum clipping, an important correction of the reversibility error, is defined.
The spectrum of a discrete image is obtained thanks to its discrete Fourier transform (DFT),
which is defined as follows.
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Algorithm 1: Generation of a random homography
Input : A size M x N and a number L > 0
Output: A random homography h

1 for i € {1,2,3,4} do

2 L Generate a couple of real numbers D; according to the uniform law in [—L, L]?

3 Define C; = (0,0), Cy = (M —1,0), C5 = (0,N — 1) and Cy = (M — 1, N — 1) the four corners
and C] = C; + D; the four transformed corners

4 Compute the unique homography h corresponding to the four pairs (C;, C?)

Definition 4 (Fourier domain). The discrete Fourier domain QMJV, associated to Qv , 15 defined
by Qarnv = Qar X Qn where for a positive integer L

(4)

Q, — {—%,...,%} if L is odd,

—L .,L -1} ifL is even.

Definition 5 (Discrete Fourier transform). The discrete Fourier transform (DFT) of u € COuN g
denoted Fyrn(u) € CN and is defined by

Vim,n) € Qun,  Frun@mn = Z uwef%ri(k%H%). (5)
(kD)€ N

The inverse discrete Fourier transform (iDFT) of v € C®N s denoted Frn(w) € CN and is
defined by
— 1 mi(m-4nt
V(k, 1) € Q. Fapin@ee = Y% Z Uy €A (6)
(m,n)EQM,N
Let r € [0,1]. The spectrum of the image w is clipped with ratio r as follows. For L a positive
integer, denote by cy, the piece-wise constant function defined by

1 lz| < (1—1r)L/2,
L (@) = {0 2| > (1 —r)L/2. 7)

Definition 6 (Spectrum clipping). The image u®, whose spectrum corresponds to the spectrum of u
clipped with ratio v € [0, 1], is the image of size M x N defined by

FuN (U )mn = FuN(Wmncarr(m)en (). (8)

Spectrum clipping can be seen as a (perfect) lowpass filtering operation. Along each dimension
only the frequencies lower or equal to (1 — r)7 are kept. The DFT coefficient Fas n(w)m . is killed if
and only if

2 2
e (m)ens(n) =0 if and only if (% > (1-7)7 or % >(1— r)ﬂ') . 9)

Note that because of the Parseval Theorem, spectrum clipping reduces the energy (i.e. the root mean
square) of the images. To simplify, the dependency of u® on r is skipped in the notation. For r =0
spectrum clipping has no impact i.e. u¢ = u. For r = 1, u¢ is the constant image corresponding to
the mean of u. An example of spectrum clipping with » = 1% is shown in Figure 1.
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Figure 1: Example of spectrum clipping using » = 1% on the RubberWhale image. Only details of the images are shown in
(a), (b) and (e). The difference (e) between (a) and (b) is not visible to the naked eye. The spectra in (c) and (d) correspond
to the discrete Fourier transform in logarithmic scale z — log(1 + ). The RMSE between u and u° is approximately 0.29.
The energy (i.e the root mean square) of u is around 143 so that the ratio of energy removed is approximately of 0.2%.
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2.3 Definition and Evaluation of the Reversiblity Errors

In the following ¢ is assumed to be a moderate homography (see Definition 3). Let § be a non-
negative integer that is assumed to be small with respect to the size of the image (e.g. 6 = 20).
Denote by Cj the crop operator of size § so that Cs(u) is the image of size (M — 2J) x (N — 20)
verifying

(Cs(W)ki = Wss146- (10)
The image u(p) = @(p,d) is defined as the image of size (M — 26) x (N — 26) verifying
i(9) = (Csla,) .. (1)

The image @(p) represents the reconstruction of the image u after successively applying the moderate
homography ¢ and its inverse p~'. For § = 0, @(p) = @(p,0) = (u,),-1. For § > 0, the homography
¢~ !is applied to the cropped transformed image Cj (u,). The aim of the crop is to get rid of boundary
artifacts introduced during the first transformation.

The difference image DI(p) = DI(p,u,0) is defined as the image of size (M — 46) x (N — 49)
verifying

DI(p) = Cs(u(yp)) — Cas(w). (12)

DI(p) is nothing but the cropped difference image between the reconstructed image @(y) and the
input image u. Here, the aim of the crop is to prevent from considering the boundary artifacts
introduced during the second transformation.

Note that as soon as ¢ is not the identity the computation of @(y) requires the use of a boundary
extension (for at least one of the two transformations). The crop is sufficient to discard the influence
of the boundary extension.

Definition 7 (Reversibility error for a homography). Assume that ¢ is a moderate homography.
Then, the reversibility error for the homography ¢, noted E(p), is defined as the (* energy of the
difference image DI(p) (see (12)). It is given by

1 (M—1-45) (N—1—45)

8(90)2:(M—45)(N—45) Z Z | DI(p)r|> (13)

For § = 0, the reversibility error £(p) corresponds to the RMSE between the reconstructed image
u(p) and u. Note that to simplify the dependencies on the image u, the interpolation method and ¢
are not specified.

Clipped reversibility error for a homography. A variant is obtained by replacing DI () by its
clipped version DI(p)¢. The spectrum clipping of DI () is done with ratio r = 1% as described in
Section 2.2. This variant is called the clipped reversibility error for the homography ¢ and is denoted
by £¢(¢). Both measurements are linked by the inequality £¢(¢) < () by Parseval’s theorem.

Note that depending on the geometric transformation, applying it to an image may introduce
aliasing. For transformations close to the identity, such as moderate homographies, the aliasing is
localized in a small high-frequency band. The clipped reversibility error is built in order to discard
the influence of this aliasing on the interpolation quality evaluation.

Reversibility errors. The quantities £(¢) and £°(¢) depend on the choice of ¢. Assume that ¢ is
a random moderate homography generated by moving the four corners of the image using Algorithm 1
with L = 1. Then, £(p) and £°(¢) are random variables whose expected values do not depend on a
particular homography.
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Definition 8 (Reversibility errors). Let ¢ be a random moderate homography generated using Al-
gorithm 1 with L = 1. The reversibility error, noted &, is defined as the expected value of E(yp).
Similarly, the clipped reversibility error, noted £, is defined as the expected value of E°(¢p).

Estimation of the reversibility errors. The estimation of the reversibility errors is summarized
in Algorithm 2. The expected values £ and £° are estimated by computing the average of the
reversibility errors over a large number Nyanst (€.8. Nizanst = 1000) of random moderate homographies.
We have

1 Ntransf
&= Ntransf Zz:; 5(()0@) (14)
and
1 Niranst
&= Ntransf ; gC((pZ) (15)

Algorithm 2: Estimation of the reversibility errors

Input : An image u, a sequence of moderate homographies (p;)1<i<n,,..., & Don-negative
integer 0, an interpolation method and a boundary condition

Output: The reversibility errors £ and £¢

1 for i € {1,..., Nyunss} do

2 Compute u,,, using the interpolation method and the boundary condition (see (2))

3 Compute Cs(u,,) using (10)

4 Compute (p;) = (C’(g(g%))w,l using the interpolation method and the boundary

condition (see (2)) 1

Compute the difference image DI(y;) = Cs(@(p;)) — Cas(u)

Compute the clipped difference image DI(y;)¢ with r = 1% as described in Section 2.2

7 Compute the reversibility errors (p;) and £¢(p;) for the homography ¢; using (13) and its

clipped variant

(<2 I

8 Estimate the reversibility errors £ and £¢ by averaging as in (14) and (15)

Interpretation. The difference measured by the reversibility errors is partly the consequence of a
loss of information that depends on the image content and the transformation. A transformed image
has the same size as the input image so that, in the spatial domain, information may be lost at the
boundaries during the first transformation. Missing outside samples are replaced by arbitrary values
during the second transformation, which causes what is called truncation error [12]. The sampling
rate is unchanged when an image is transformed so that, in the Fourier domain, the spectrum may
go outside of the Nyquist domain [—7, 7]?. Thus, a well-sampled image may become under-sampled.
For instance applying a scaling by a factor greater than 1, i.e. a dilation, results in an over-sampled
image but some regions of the original images are lost. On the contrary applying a scaling by a factor
smaller than 1, i.e. a contraction, results in an under-sampled image with additional regions whose
contents depend on the boundary extension.

By restricting the study to moderate homographies it is possible to limit the loss of information
(coming from the transformation) and to analyze the impact of the interpolation method choice on
the difference. As shown in Section 5, the difference caused by the interpolation method is mainly
localized in the high-frequencies. Indeed, the interpolation kernel is in general an approximation
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of the cardinal sine. It does not reconstruct properly the high-frequencies and may introduce an
unwanted blur.

The reversibility errors £ and £¢ can be seen as lower bounds for many performance evaluation
processes using a ground truth structure. They provide a quantitative evaluation of the interpolation
method stability. In particular, the difference between a reference image and a registered image of
the same scene (in terms of intensity) is due to the registration error and the interpolation error
(assuming there is no noise and no lighting change). In the ideal case of perfect registration and
synthetic data, the error is directly linked to the reversibility error of the interpolation method for
this image.

3 Fine-tuned Interpolation Methods

In this section fine-tuned interpolation methods are built from pre-existing methods, which are called
“base” methods. They rely on the DFT zoom-in i.e. the up-sampling by trigonometric polynomial
interpolation. In the following we use the trigonometric polynomial interpolator in real convention.
See [4] for more details.

3.1 Zoomed Version of Interpolation Methods

As pointed out in [1], it is possible to improve the performance of interpolation methods using a DET
zoom-in. Consider a base interpolation method and let us describe the corresponding zoomed version.
Let A > 1 be a rational number representing a zoom factor and denote by u* the DFT zoom-in of u
by factor A [4]. The interpolate of u using the zoomed method is defined as the rescaling by factor
% of the interpolate of u* using the base method. In other words, for (z,y) € R?, the interpolated
value u(z,y) is given by

u(@,y) =u* (Mz,y)) (16)

where u” is interpolated at location A(z,y) using the base interpolation method. The geometric
transformation of an image using a zoomed interpolation method is described in Algorithm 3.

A

Algorithm 3: Transformation of an image using a zoomed interpolation method

Input : An image u of size M x N, a zoom factor A, a base interpolation method, a
boundary extension and a transformation ¢
Output: A transformed image u,,
1 Compute the locations {¢~!(k, D} eyean x
2 Compute u* the DFT zoom-in of u by factor A (see [4])
3 Compute (u,)r; = (A~ " (k,1)) on Qy n using the base interpolation method with the
boundary extension

The zoomed version is computationally less efficient than its base interpolation method since it
requires to zoom in the image and to compute the representation of the zoomed in image for the base
interpolation method. As shown in Section 5, the zoomed versions have smaller reversibility errors
than their base methods. Intuitively, they are closer to the discrete Shannon interpolation method
and the base interpolation method is applied to a well-sampled image. However the DFT zoom-in
relies on trigonometric polynomial interpolation and assumes a periodic extension, which may not
be adapted to the image content and may introduce ringing artifacts.
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3.2 Periodic plus Smooth Decomposition Version of Interpolation Meth-
ods

Introduced in [10], the periodic plus smooth decomposition is useful for handling the non-periodicity
of images [1, 6, 7]. The image u is decomposed into a periodic component p, which is almost periodic,
and a smooth component s, which varies slowly. The images p and s (of_size M x N) are linked by
the relation u = p + s and p has the same mean as u. B

Periodic plus smooth decomposition of an image. More precisely, the decomposition is char-
acterized and computed as follows. Denote by v, and v, the two images of size M x N defined by

u(M—1—-kl)—u(kl) ifk=0ork=M-1,
(V1)ka = : (17)
0 otherwise,
and
uk,N —1—=1)—u(k,l ifl=0o0orl=N—1,
(= 44 )bl | (18)
0 otherwise.

Set v = v; + v,. Denote by A the discrete Laplacian operator that associates to an image w of size
M x N the image Aw, of the same size, defined by

Aw: Klap*w (19)

where x represents the (M, N)-periodic convolution operator and

0 1 0
Kup= |1 —4 1]. (20)
0 1 0

Then, the periodic component p of u is defined as the unique solution of the discrete Poisson equation

{Agz Au — v,

mean(p) = mean(u).

(21)

In practice the decomposition is obtained using DFT-based computations. Indeed, the DFT of the
smooth component s is given by Fys n(8)oo = 0 (zero mean) and

g f (% m,mn
v(m’n) € QMJV \ (0,0), FM7N(§)m7n = MvN(—) )

~ 2cos (2”7’”) + 2 cos (%T”) —4

(22)

An example of decomposition is shown in Figure 2. The cross structure in the spectrum of u, which
is caused by its non-periodicity, is not visible in the spectrum of p.

Periodic plus smooth version of interpolation methods. In [10], this periodic plus smooth
decomposition is used to up-sample images. More generally, the decomposition can be used to
improve interpolation methods as follows.

The periodic component p is almost periodic so that the periodic extension of its DF'T zoom-in
does not introduce undesirable ringing artifacts. It is interpolated using a zoomed version of an
interpolation method with periodic extension. The smooth component s varies slowly and is easily
interpolated by a base interpolation method with any extension. Each component is interpolated
independently, possibly using different base interpolation methods, and the results are added to get
the interpolated values.
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(b) Spectrum of u

(c) Periodic component p (d) Spectrum of p

(e) Smooth component s (f) Spectrum of s

Figure 2: Periodic plus smooth decomposition uw = p + s of the RubberWhale image. The spectra in (b), (d) and (f)
correspond to the discrete Fourier transform in logarithmic scale 2 — log(1+ ). The content of the periodic component p
is almost periodic and is similar to the input except near the image boundaries. The smooth component s varies slowly and
is close to 0 in the center of the image. The cross structure in the spectrum of u, which is caused by the non-periodicity,
is not visible in the spectrum of p.
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Algorithm. The transformation of an image using the periodic plus smooth version of interpolation
methods is described in Algorithm 4. As the periodic plus smooth decomposition is computed using
DFT-based computations (see (22)), in practice the DFT zoom-in of p is obtained directly from
Fu.n(p), which saves the computations of a DFT and an iDFT. -

Algorithm 4: Transformation of an image using the periodic plus smooth version of interpo-
lation methods
Input : An image u, a zoom factor A\, two base interpolation methods, a boundary condition
and a transformation ¢
Output: A transformed image u,,
1 Compute the periodic plus smooth decomposition p + s of u using (22)

2 Compute the transformed periodic component P, using Algorithm 3 with factor A and the
first base interpolation method with periodic extension

3 Compute the transformed smooth component s, using the second base interpolation method
and the boundary condition

4 Compute U, =p, + 5,

4 Provided Implementation and Online Demo

The source codes and an online demo are available at the IPOL web page of this article?. We propose
ANSI C99 implementations of the interpolation methods considered in Section 5. In particular, we
propose implementations of the zoomed versions and periodic plus smooth versions as described in
Algorithm 3 and Algorithm 4.

In the online demo the user is invited to upload an image u and to choose a crop size 9, a spectrum
clipping ratio r, a homography ¢ and an interpolation method (with a given boundary condition).
Then, the demo computes the transformed image u,,, the difference image DI () and its spectrum,
and the corresponding reversibility errors £(p) and E(p)°.

5 Experiments

In this experimental part, interpolations methods are compared in terms of reversibility errors and
efficiency. The interpolation methods used are the following:

e Five base interpolation methods: trigonometric polynomial interpolation, bicubic interpolation
and B-spline interpolations of order 1, 3 and 11. They are noted respectively tpi, bic, splinel,
spline3 and splinell. Note that splinel corresponds to the so-called bilinear interpolation.
For the trigonometric polynomial interpolation we use the efficient algorithm of [4] in real
convention. It is an approximate (but precise to the machine precision) algorithm based on the
nonnequispaced fast Fourier transform (NFFT) [11].

e The zoomed versions, with zoom factor A\ = 2, of the base interpolation methods (except
for ¢pi because by construction the DFT zoom-in is useless). The suffix 22 is added to the
corresponding base method.

2https://doi.org/10.5201/ipol.2019.277
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e The periodic plus smooth versions, with zoom factor A = 2, of several pairs of interpolation
methods. The notation of the method starts with p+s, then the second term refers to the
interpolation method used for the periodic component and an eventual third term corresponds
to the interpolation method used for the smooth component (if different from the method used
for the periodic component). Note that the DFT zoom-in is not applied for the p+s-tpi-***
methods.

For example the periodic plus smooth version of the B-spline interpolation of order 11 and the bicubic
interpolation is noted p+s-splinel1-bic. The half-symmetric extension is used for all the methods
except the tpi for which the use of the periodic extension is required. The performance evaluation
was made using the crop size § = 20, which is negligible with respect to the size of the input image
but is large enough to discard the boundary extension influence.

The conclusions on the order of the methods are clear-cut and do not depend on the choice of the
image. However, note that the reversibility error increases with the amount of high-frequency content
(see Appendix A). The image u considered is the grayscale version of the Rubber Whale image, which
is a generic color image of size 584 x 388 taken from the Middlebury database [2]. Only details on a
small part of the images are shown. The computations were made using an Intel(R) Xeon(R) CPU
E5-2650 @ 2.60GHz using a single thread. Multi-threading, in particular for computing FFTs, can
speed the computations for the zoomed and periodic plus smooth versions.

5.1 Estimation of the Reversibility Errors

In this section, the reversibility errors are estimated for the different interpolation methods using
Algorithm 2 with Niansf = 1000 moderate random homographies. The moderate homographies were
generated by moving the four corners of the image using Algorithm 1 with L = 1.

The results are presented in Table 1. It contains the two reversibility errors for the considered
interpolations methods and the computation time, in seconds, for all the transformations. Therefore
the displayed time can also be interpreted as the average time, in milliseconds, required to apply a
transformation and its inverse.

Base interpolation methods. FExcept for the ¢pi, the reversibility errors for the base interpolation
methods are the worst and spectrum clipping did not reduce significantly the value. The measure-
ments for the #pi are better and the errors are mainly localized in the high-frequencies since the
clipped reversibility error is way lower. The resulting ranking is tpi, splinell, spline3, bic, splinel.
In particular increasing the B-spline order leads to better results as shown in [5].

Zoomed versions. The zoomed versions have better reversibility errors than their corresponding
base methods but are slower (approximately twice slower). As the clipped reversibility error is
significantly lower (except for the splinel-2z2), we deduce that the error is mainly localized in the
high-frequencies. The zoomed methods are closer to the tpi. In particular, using splinel1-z2 provides
almost the same results as the tpi but is five times faster.

Periodic plus smooth versions. The periodic plus smooth versions have the best reversibility
errors. This is due to the proper handling of the non-periodicity during the DFT zoom-in. The base
method used for interpolating the zoomed periodic component has to be of high order (here tpi or
spline11). The method used for the smooth component can be any base method (except the tpi)
since it varies smoothly and is easily interpolable. No distinction can be made in the results. Indeed,
the best results in terms of reversibility error are obtained using p+s-splinel1-*** or p+s-tpi-***
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) & Time (s)
splinel 2.35537 | 2.34856 | 138
bic 1.10570 | 1.09574 | 160
spline3 0.70991 | 0.69487 | 171
splinell 0.33367 | 0.30318 | 504
tpi 0.16039 | 0.09102 | 2685
splinel-z2 0.79736 | 0.78378 | 356
bic-z2 0.21280 | 0.16668 | 372
spline3-z2 0.16157 | 0.09427 | 403
splinel1-z2 0.16039 | 0.09102 | 807
p+s-splinel 0.78967 | 0.78045 | 465
p+s-bic 0.16910 | 0.14450 | 554
p+s-spline3-splinel 0.08816 | 0.04009 | 529
p+s-splines 0.08816 | 0.04009 | 548
p+s-splinell-splinel | 0.08212 | 0.02833 | 940
p+s-splinell-splined | 0.08212 | 0.02833 | 982
p+s-tpi-splinel 0.08212 | 0.02833 | 8241
p+s-tpi-splined 0.08212 | 0.02833 | 8325

Table 1: Estimation of the reversibility errors for the RubberWhale image and Nyanst = 1000 random moderate homogra-
phies. A crop of size 6 = 20 was used so that the results do not depend on the boundary extension choice. The displayed
time corresponds to the computation time, in seconds, for all the transformations. This can also be interpreted as the
average time, in milliseconds, required to apply a transformation and its inverse. The best results in terms of reversibility
error are obtained using p+s-splinel1-*** or p+s-tpi-*** methods. Among these methods the p+s-splinell-splinel method
is the most efficient and should be preferred.

methods. Among these methods the p+s-splinel1-splinel method is the most efficient and should
be preferred.

Clipped reversibility error. As already remarked above, for the fined-tuned methods the clipped
reversibility error £¢ is significantly lower than the non-clipped reversibility error £. The amount of
energy removed from u only represents 0.2% of its total energy. This means that the error is mainly
localized in the high-frequencies for the fined-tuned methods but not for the base methods (except
the tpi).

5.2 Transformation by a Moderate Homography

In this section, the analysis of Section 5.1 will be confirmed visually by considering the transformation
by an arbitrary moderate homography. We define the homography ¢ by moving respectively the top-
left corner, the top-right corner, the bottom-left and the bottom-right corner by (1, 1), (=1, —1), (0, 0)
and (1,1). It is represented by the matrix

0.988884 —0.00258398 1
H,= | —0.00341732 0.992305 11]. (23)
—1.32057.107° —1.32057.107° 1

The transformed images w, and @(p) were computed using an interpolation method with half-
symmetric extension. The methods considered were bic, splinell, tpi, bic-z22, splinell-z2, p+s-bic,
p+s-splinel1-splinel and p+s-tpi-splinel.
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Difference images. The difference images DI () are shown in Figure 3. For the base methods bic
and splinell, we recognize the structure of the image. It is also the case for the bic-22 and p+s-bic
methods i.e. the fine-tuned methods using bicubic interpolation on the zoomed image. For the tpi,
splinel1-22, p+s-splinell-splinel and p+s-tpi-splinel methods the difference is mainly composed of
typical high-frequency structures.

Spectra of the difference images. The spectra of the difference images are shown in Figure 4.
For the bic, bic-z2 and p+s-bic methods i.e. the methods where the possibly zoomed images are
interpolated by bicubic interpolation, the spectrum of the difference is high everywhere except in a
small low-frequency region. For the splinell method the corresponding region is larger. This explains
why the structure of the image is visible in the difference image for these methods in Figure 3. For the
tpi and splinell-z2 methods, the spectrum has non-negligible values in a band around the Nyquist
frequency and in a vertical and horizontal cross structure. The cross structure is also visible in the
bic-z2 method and is due to the incorrect handling of the non-periodicity. Indeed it disappears in
the p+s-splinell-splinel and p+s-tpi-splinel methods.

Difference images with spectrum clipping. The difference images DI(p)¢ with spectrum clip-
ping of ratio r = 1% are shown in Figure 5. Only the results for the pi, splinel1-2z2, p+s-splinell-
splinel and p+s-tpi-splinel methods are presented because in the other cases the clipping has no
significant impact on the difference images. The error is clearly lower when the periodic plus smooth
decomposition is used.

5.3 Propagation of the Error

In this section, we evaluate the propagation of the error after successive direct and inverse transforma-
tions. Let (¢;)1<i<n,,.,. Pe random moderate homographies. Define the images w; for 0 < i < Nyanes
by

o (24)
Ujp1 = ((Qi)@i+l)¢i_-&-l 0 S i S Ntransf -1

The RMSE, taken at a distance 6 = 20 of the boundary, between the u, and u represents the
error after ¢ successive direct and inverse transformations. The fundamental difference with the
reversibility error is that no crop is done between the transformations. The clipped variant of this
error is obtained by clipping the spectrum with r = 1%.

The interpolation methods considered are the same as in Section 5.2 (with half-symmetric ex-
tension). The evolutions of the errors using up to Nipanst = 50 random homographies are shown in
Figure 6. Globally the errors tend to increase with the number of transformations. To prevent an
important increase of the error p+s-splinel 1-*** or p+s-tpi-*** methods must be used. The curves
of p+s-tpi-splinel and p+s-splinell-splinel are indistinguishable since the results are almost the
same. Otherwise a large part of the spectrum is not well reconstructed: either because the interpo-
lation method is not able to reconstruct the high-frequencies or either because the non-periodicity is
not well handled (this is apparent by the presence of a cross structure in the difference spectrum).
The clipped versions of the error for the tpi, splinel1-22, p+s-splinell-splinel and p+s-tpi-splinel
methods are significantly smaller than the original error. We deduce that the error is mainly localized
in a small high-frequency band.
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(b) spline11 (0.280,0.254)

) tpi (0.193,0.0877) (d) bic-22 (0.234,0.165)
e) splinel1-z2 (0.193,0.0877) (f) p+s-bic (0.172,0.146)
) p+s-splinell-splinel (0.0931,0.0372) (h) p+s-tpi-splinel (0.0931,0.0372)

Figure 3: Difference image DI(p) for various interpolation methods. The moderate homography ¢ used is defined by
the matrix H, in (23). The values between parentheses correspond to (£(p),E%(¢)). For bic and splinell, we recognize
the structure of the image. It is also the case for the bic-z2 and p-+s-bic methods i.e. the fine-tuned methods using
bicubic interpolation on the zoomed image. For the tpi, splinel1-z2, p+s-splinell-splinel and p+s-tpi-splinel methods the
difference is mainly composed of high-frequency structures.
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|

(b) splinel1 (0.280,0.254)

(d) bic-22 (0.234,0.165)

(e) splinel1-z2 (0.193,0.0877) (f) p+s-bic (0.172,0.146)

0

(g) p+s-splineli-splinel (0.0931,0.0372) (h) p+s-tpi-splinel (0.0931,0.0372)

Figure 4: Spectrum of the difference image DI () for various interpolation methods. The spectra correspond to the DFT
in logarithmic scale = — log(1 + z). The moderate homography ¢ used is defined by the matrix H, in (23). The values
between parentheses correspond to (£(y¢),£°(¢)). For the bic, bic-z2 and p+s-bic methods i.e. the methods where the
possibly zoomed images are interpolated by bicubic interpolation, the spectrum of the difference is high everywhere except in
a small low-frequency region. For the splinel1 method the corresponding region is larger. This explains why the structure of
the image is visible in the difference image for these methods in Figure 3. For the tpi and splinel1-z2 methods, the spectrum
has non-negligible values in a band around the Nyquist frequency and in a vertical and horizontal cross structure. The cross
structure is also visible in the bic-z2 method and is due to the incorrect handling of the non-periodicity. Indeed it disappears
in the p+s-splinell-splinel and p+s-tpi-splinel methods, for which the error is mainly localized in a high-frequency band.
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- EmEN | | | | -0. = EEEE | | -0.05
II::II............. || II::II............. ||
-0.1
(b) tpi (£°(p) = 0.0877) (c) splinel1-z2 (E°(p) = 0.0877)

0.1
0.05
0
-0.05
0.1

(d) p+s-splinell-splinel (E°(p) = 0.0372) (e) p+s-tpi-splinel (E°(p) = 0.0372)

Figure 5: Difference image DI(y)¢ with spectrum clipping of ratio » = 5% for various interpolation methods. The
moderate homography ¢ used is defined by the matrix H, in (23). The error is clearly lower when the periodic plus smooth
decomposition is used.
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Figure 6: Evolution of the error after successive direct and inverse transformations for various interpolation methods (with
half-symmetric extension). Up to Nyanss = 50 random moderate homographies are used. For the error with spectrum
clipping (bottom), the bic and bic-z2 methods are not shown since not in the range. The curves of p+s-tpi-splinel and
p—+s-splinell-splinel are indistinguishable since the results are almost the same. Globally the errors tend to increase with
the number of transformations. The clipped versions of the error for the tpi, splinell-z2, p+s-splinell-splinel and p+s-
tpi-splinel methods are significantly smaller than the original error. We deduce that the error is mainly localized in a small
high-frequency band. To prevent an important increase of the error p+s-splinel1-*** or p-+s-tpi-*** methods must be
used.
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6 Conclusion

In this work, we introduced the reversibility error of interpolation methods. For a given image, it
measures the error after applying successively a moderate homography, a crop (removing boundary
artifacts) and the inverse homography. An average over random moderate homographies is made to
remove the dependency on the homography. The clipped reversibility error is obtained by clipping
the spectrum of the difference.

We also proposed new fine-tuned interpolation methods that are based on pre-existing interpola-
tion methods. The zoomed version of an interpolation method is obtained by applying it to the DFT
zoom-in of the image. It is closer to the trigonometric polynomial interpolation and has a better
performance but it suffers from artifacts due to the non-periodicity of the image. In the periodic plus
smooth version of interpolation methods, this non-periodicity is handled by applying the zoomed
version to the periodic component and a base interpolation method, possibly of low order, to the
smooth component.

In an experimental part, we have shown that the proposed fine-tuned methods have better re-
versibility errors than pre-existing interpolation methods and that the error is mainly localized in a
small high-frequency band. The periodic plus smooth versions should be used to interpolate images.
We recommend to use the periodic plus smooth versions of high order B-spline (e.g. p+s-splinell-
splinel). It is more efficient and provides better results than trigonometric polynomial interpolation.

A Influence of the Image Content

The conclusions of Section 5 on the order of the methods are clear-cut and do not depend on the choice
of the image. However the interpolation methods provide in general worse results for images with
a large amount of high-frequency content. Therefore the reversibility error is expected to increase
with the amount of high-frequency content.

This statement is confirmed by the following experiment where we used the same setup as in
Section 5.1 but with the Baboon image, which is the 512 x 512 color image shown in Figure 7.
Compared to the spectrum of the Rubber Whale image (see Figure 2), its spectrum is flatter, which
means that its energy is spread all over the frequencies. Indeed, 1% of the total energy is contained
in the 1% highest frequencies while for the Rubber Whale image this number was only of 0.2%.

The results are presented in Table 2. The errors are higher than in Table 1 but the order of the
interpolation methods and the conclusions remain the same.
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22 Standard test image (Baboon image)
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16

14

(b) Spectrum of (a)

(a) Baboon image

Figure 7: Example of image with important high-frequency content. The spectrum in (b) corresponds to the discrete Fourier
transform (RMS over the channels) in logarithmic scale = +— log(1 + x). The Baboon image in (a) is a 512 x 512 color
image that contains a large amount of high-frequency content. Compared to the spectrum of the RubberWhale image (see
Figure 2), the spectrum in (b) is flatter, which means that its energy is spread all over the frequencies. Indeed, 1% of the
total energy is contained in the 1% highest frequencies while for the RubberWhale image this number was only of 0.2%.

& & Time (s)

splinel 10.86765 | 10.76838 | 331
bic 6.81786 | 6.70694 | 402
spline3 4.98228 | 4.83559 | 405
splinell 2.52192 | 2.24597 | 1073
tpt 0.69723 | 0.24483 | 7436
splinel-z2 4.19696 | 4.08137 | 794
bic-22 1.22052 | 0.98217 | 842
spline3-z2 0.73076 | 0.31325 | 947
splinel1-22 0.69723 | 0.24483 | 1951
p+s-splinel 4.19382 | 4.08060 | 993
p+s-bic 1.20373 | 0.97732 | 1235
p+s-spline3-splinel 0.69731 | 0.29490 | 1137
p+s-splined 0.69731 | 0.29490 | 1237
p+s-splinel1-splinel | 0.65999 | 0.21919 | 2161
p+s-splinell-spline3 | 0.65999 | 0.21919 | 2268
p+s-tpi-splinel 0.65999 | 0.21919 | 16858
p+s-tpi-spline3 0.65999 | 0.21919 | 16876

Table 2: Estimation of the reversibility errors for the Baboon image and Nianss = 1000 random moderate homographies.
The same experimental setup as in Section 5.1 was used. The errors are higher than in Table 1 but the order of the
interpolation methods and the conclusions remain the same.
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