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Abstract

This paper proposes a cloud detection algorithm for Earth observation images obtained by
pushbroom satellite imagers. The pushbroom technology induces an inter-band acquisition delay
leading to a parallax effect for the clouds. We propose a method exploiting this characteristic
thanks to the analysis of the inter-band disparity. Several other features discriminating clouds
are also defined and all are merged to build a robust a contrario statistical decision. Experiments
applied on scenes acquired by various pushbroom satellites such as Sentinel-2, RapidEye and
WorldView-2 show the effectiveness of the proposed method. In particular, we demonstrate a
balanced accuracy rate close to 98% for cloud and non cloud classification for Sentinel-2 images.
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Source Code

The source code of a C implementation of the proposed algorithm is provided on the web page1

of the article.

Supplementary Material

The 9789 annotated Sentinel-2 366×366 tiles extracted from the Hollstein et al. dataset [9] and
used for the experiments are provided as supplementary material.
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1 Introduction

Unless observed for meteorological purposes, clouds are an overwhelming nuisance for optical satellite
imagery. Not only they hide the ground, but their detection is also a major concern to avoid detection
and interpretation errors in automatic image analysis. Being so numerous and large, satellite images
nevertheless require automatic analysis. Hence it is very important to detect automatically and
accurately all clouds in any image.

Furthermore, a number of companies in the Earth observation industry are launching constella-
tions of dozens to hundreds of satellites to get a short revisit time over any region. Most of these
satellites only acquire a few spectral bands in the visible light range of the electromagnetic spectrum.
Thus, many lack specifically designed spectral bands for cloud detection (such as, for example, the
cirrus band B10 of Sentinel-2).

In this paper, our intention is to demonstrate that this limitation can be compensated, for cloud
detection, in the particular case where images are acquired with a pushbroom satellite such as
Sentinel-2, Landsat-8, Pléiades or RapidEye. The pushbroom imaging mode acquires spectral bands
one after the other by a scanning process. This procedure causes an acquisition delay during which
the satellite moves from a position S0 to S1 and induces a parallax effect (see Figure 1).
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Figure 1: Principle of the parallax effect in the ideal case where the satellite has a translation motion and the ground has
no relief. Let F0 and F1 be the focal planes of the satellite at positions S0 and S1 respectively at times t0 and t1. Points
O0 and O1 are their respective centers. Points H0 and H1 are the projection of O0 and O1 on the ground. For each point
Q located on the ground (i.e. on the line (H0H1)), its projections over the focal planes are respectively Q0 and Q1. The

observable disparity between Q0 and Q1 is
−−−→
O0Q0 −

−−−→
O1Q1 = α

−−−→
H0H1. The observable disparity for a point P located on a

cloud is
−−−→
O0P0 −

−−−→
O1P1 = β

−−−→
H0H1. After the registration process (corresponding, in the case of Sentinel-2 to the Level-1A

processing [5]), operated as a global translation of the image u1 to u0, the new observable disparity on the ground is zero

while there is a nonzero disparity (β − α)
−−−→
H0H1 for pixels located on clouds.

In this study, we present an algorithm based on the exploitation of the inter-band parallax infor-
mation to detect clouds. As this method is intended to be general and common to the aforementioned
satellites, we restrict our input data to spectral bands in the visible range of the spectrum. We eval-
uate qualitatively and quantitatively this method with the Hollsteinet al. [9] ground truth Sentinel-2
dataset. In addition, we show some results on RapidEye, SkySat and WorldView-2 images.

This article is organized as follows: Section 2 describes related works. Section 3 describes the
proposed algorithm. Section 4 deals with the setup of the experimental protocol and compares the
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efficiency of the different strategies applied to Sentinel-2 data. Finally, we present the conclusions in
Section 5.

2 Related Work

The idea to exploit the parallax information using a stereoscopic approach has been developed since
the middle of the 90’s. Given a series of satellite images in quick succession, a parallax effect is
generally perceptible, caused by the clouds relative altitude with respect to the ground. In addition,
knowing the geometrical properties and positions of the satellite, it is possible to estimate the clouds
top height with stereo-matching algorithms. Shin and Pollard [16] proposed to detect clouds over
seas from data acquired by an Along-Track Scanning Radiometer (ATSR). Manizade et al. [11]
applied discrete correlation to binary series obtained by the slicing of the 8-12 µm infrared band
into 18 temperature ranges. This permitted to refine the cloud altitude estimation up to ±390
m. Working with the Multi-angle Imaging SpectroRadiometer (MISR) of the Terra satellite, a
radiometer composed of nine pushbroom cameras with a time delay between adjacent cameras of
about 45 seconds, Mulleret al. [13] studied a set of fast algorithms to obtain cloud-top height and
motion. They used a combination of area-based and feature-based stereo-matchers with only pixel-
level acuity.

Wu et al. [21] proposed to merge stereo-matching results with external information coming from
a digital elevation model acquired by the Shuttle Radar Topography Mission (SRTM). As shown
by the authors, the wind speed cannot be neglected when working with high resolution images: the
diffusion of the cloud layers during the acquisition can lead to bad estimations of the clouds altitudes.
A significant enhancement has been presented by Panem et al. [14], using SPOT5 images which
remedies this temporal sampling problem. The parallax of images is obtained by dense matching
after aligning panchromatic and multispectral images with SRTM. As parallax changes are significant
at the edges of cloudy areas, these areas can be automatically extracted. This means that given
multi-spectral data recorded by a satellite at a single time t, it is possible to estimate the clouds
apparent motion. The authors notice however, that given the short baseline between panchromatic
and multispectral images, this method can extract only clouds higher than 600 m. From Research
Scanning Polarimeter (RSP) data, Sinclairet al. [17] determine the clouds top height thanks to a
set of selected consecutive nadir reflectances and the cross correlations between this set and the
collocated sets at other viewing angles. Under the assumption that cloud reflectances are isotropic,
local peaks in the obtained correlation profile indicate cloud layers.

Frantzet al. [4] proposed to separate clouds and land surfaces thanks to the spectrally correlated
NIR bands 7, 8 and 8A of Sentinel-2 which are affected by a small view angle parallax. Defining
first the two ratios R8A,8 = B8/B8A and R8A,7 = B7/B8A they convolve them with a variance filter
to obtain the texture indices V8A,8 and V8A,7 respectively. Finally they define an index called Cloud

Displacement Index (CDI) by
V8A,7−V8A,8

V8A,7+V8A,8
. CDI values lower than −0.5 are considered to be clouds.

The authors don’t explain why they didn’t involve the NIR bands 5 and 6 as well, despite the fact
that these bands have the same resolution as the aforementioned, are spectrally close, and also induce
pairwise parallaxes. Bands 8 and 8A seem to be used together because band 8A (864 ± 10 nm) is
a spectral subset of band 8 (832± 53 nm); their extreme similarity makes equalization unnecessary.
Some comparisons with our method are shown in Section 4.
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3 Algorithm Overall Description

The algorithm input is an RGB image, seen as a triplet u = (uR, uG, uB) of gray level images defined
on the same discrete domain Ω = J1,W K × J1, HK where W (resp. H) is the image width (resp.
height) and Ja, bK a discrete interval from integer a to integer b. The pixels positions are denoted by
x = (x, y)>. The algorithm output is a Boolean map B̃ such that

B̃(x) =

{
1 if the ground is hidden by cloud,

0 if the ground is clear.
(1)

Our algorithm is mainly based on the analysis of the parallax effects observed between the three
color bands uR, uG and uB. Given a point of the scene that is observed at position xR in uR, we
study its respective positions xG and xB in uG and uB. From a theoretical point of view, denoting
DRG (resp. DGB, DRB) the displacement map defined on the continuous domain Ω′ = [1,W ]× [1, H]
between uR and uG (resp. uG and uB, uR and uB), we should have for all xR ∈ Ω′ the relation

DRB(xR) = DRG(xR) +DGB(xG). (2)

Based on the three vectors of relation (2), we define three complementary and non redundant features,
namely the angular error, the composition error ratio and the modulus, the meaning of which is
clarified in Section 3.2. In order to leverage all the information available in a single image, we do
not limit ourselves to the optical flow analysis. We also consider two features computed from the
luminance and chrominance properties of the clouds.

Based on the empirical probability distribution function of each feature, we define an a contrario
multi-feature hypothesis testing [3]. This leads to combine the five features into a single detector. For
that we propose to sum a normalized measure of each feature. As a result, we obtain a probability
threshold yielding a Boolean map. The application of an optional morphological post-processing to
remove small artefacts gives the final Boolean map B̃. The algorithm is described in Algorithm 1.
Its parameters are summarized in Table 1.

3.1 Disparity Map Computation

Disparity map computation in stereovision is a very active field of research, so methods are numerous.
In the present case, a subpixel precision is needed in order to detect small parallax effects. To this
end we use an optical flow method.

Histogram equalization Optical flow algorithms assume that the aspect of observed objects
remains nearly constant in consecutive frames u and v. Yet in satellite imaging the observable
textures and luminances in the green and blue bands are generally quite close, but the red band
produces large differences hence this hypothesis does not stand.

To stabilize locally the dynamics, several approaches exist: midway equalization [7] where each
image is equalized by the midway histogram of both (in the sense of a transport equation) or the
local approach by Sabater et al. [15] consisting in transferring the local mean and variance of v to
u. Both methods have a tendency to transfer the texture of v to u, thus leading to the creation of
artificial patterns. We therefore decided to apply the Zabih and Woodfill [22] rank transform (RT),
which encodes for each pixel the rank of its grey value in its neighborhood VRT(x):

RT(x) = #{y ∈ VRT(x) |u(y) < u(x)}. (3)

By construction, this method decreases dramatically the image dynamic range, which is reduced to
the size of the transformed neighborhood. With this method the optical flow estimation becomes
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Algorithm 1: ComputeCloudMap[u, (fc)c∈{λ,κ,ξ,ρ,φ}, ε, s, a] — Computation of the cloud
map.

Input: u the visible band triplet, (fc)c∈{λ,κ,ξ,ρ,φ} the features probability laws, ε the NFA
threshold, s the post-processing threshold, a the step of the square 9-neighborhood.

Output: B̃ the Boolean map.

1 // Equalization of the channels
2 for b ∈ {R,G,B} do
3 ũb ← compute the rank transform (3) [ub,VRT = 35× 35]

4 // Computation of the disparity maps
5 dRG ← apply the optical flow (4) [uR, uG, α = 20, γ = 1]
6 dGB ← apply the optical flow (4) [uG, uB, α = 20, γ = 1]
7 dRB ← apply the optical flow (4) [uR, uB, α = 20, γ = 1]
8 d′GB ← apply the optical flow (4) [uG, uB, α = 200, γ = 1]
9 dG̃B ← interpolate by bilinear filter [dRG,dGB,dRB]

10 // Computation of the feature maps
11 for x ∈ Ω do
12 xx,φ ← compute feature φ according to (5) [dRG,dRB,dG̃B]
13 xx,ξ ← compute feature ξ according to (6) [dRG,dRB,dG̃B]
14 xx,ρ ← compute feature ρ according to (7) [d′GB]
15 xx,λ ← compute feature λ according to (8) [u]
16 xx,κ ← compute feature κ according to (9) [u]

17 // Uniformization
18 for c ∈ {λ, κ, ξ, ρ, φ} do
19 for x ∈ Ω do
20 wx,c ← Fc(xx,c)

21 // Combination of the features, thresholding of the nfa map
22 for x ∈ Ω do
23 yx ←

∑
y∈V(x)

∑
cwy,c according to (20) [a]

24 B(x)← NFA(yx) < ε according to (13) and (15) [9×#c]

25 // Morphological filtering

26 B̃ ← remove small regions by Equation (23) [B, s]

27 return B̃

coarse which is a priori counterproductive. Yet it is not important that the ground be correctly
matched provided that clouds are; this difference will actually be exploited in Section 3.2.

Experimentally (see Figure 2), we observe that, as clouds have similar reflectances in the red,
green and blue bands (see Kokhanovsky [10]) their rank transform is very stable while the ground,
which often induces contrast inversions, is chaotic.

Optical flow estimation Numerous methods are available to compute disparity maps. We apply
the optical flow method of Monzónet al. [12]. It is preferred here because it has an automatic
mechanism to weight the flow regularization term and preserve discontinuities. As shown in [2] its
results are accurate. The functional to minimize is defined by
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Table 1: Table summarizing the parameters of the proposed method. Among these, only the last three can be changed to
refine the cloud maps. Indeed, the parameters α and γ play an intermediate role and are fixed once for all and the function
values (φ, ξ, ρ, λ and κ) have been computed empirically.

α The regularization term on the flow in the optical flow estimation
γ The regularization term on the image in the optical flow estimation
φ The angular error function
ξ The composition error ratio function
ρ The modulus function
λ The luminance function
κ The color saturation function
a The 9-neighborhood step of the pixel x
ε The NFA threshold
s The surface threshold of the morphological post-processing

Figure 2: From top to bottom and left to right: the blue and red bands, their rank transforms with VRT a 35 × 35 pixels
square patch, the absolute difference (low values are in black) between the rank transforms, the disparity map computed
from them. The rank transform exacerbates the differences of textures on the ground due to reflectance variations. This
implies that the optical flow algorithm produces a heterogeneous vector field on cloud free regions. The flow is much more
regular in cloudy regions.

E(d) =

∫

Ω

Ψ
(
(v(x + d(x))− u(x))2) dx + γ

∫

Ω

Ψ
(
|∇v(x + d(x))−∇u(x)|2

)
dx

+ α

∫

Ω

Ψ
(
Φ(∇u(x))(|∇d1(x)|2 + |∇d2(x)|2)

)
dx (4)

172



Cloud Detection by Luminance and Inter-band Parallax Analysis for Pushbroom Satellite Imagers

where d(x) = (d1(x), d2(x))>, Ψ(s2) =
√
s2 + ε2, ε = 0.001 is a predefined small constant to ensure

that Ψ is strictly convex, Φ(∇u) is a smoothness function equal to exp(−λauto|∇u|) where λauto
is automatically computed to avoid instabilities and the coefficients γ and α are the weights. In
particular, the third term weighted by α regularizes the field of displacements: the more α is large,
the more the field is smooth.

Numerical considerations Numerically, we work with the disparity maps d computed on each
pair extracted from (uR, uG, uB). We denote respectively by dRG,dGB and dRB the disparity maps
computed respectively between the frames uR and uG, the frames uG and uB and the frames uR and
uB. As these three disparity maps are defined on Ω and in order to study them according to the
variable xR, we have to introduce a fourth map dG̃B which is defined for each integer position x ∈ Ω
by dG̃B(x) = dGB(dRG(x) + x). Indeed, the position y = dRG(x) + x is not an integer in general.
The value dG̃B(x) is computed by bilinear interpolation from dGB at the four closest integer positions
in the neighborhood of dRG(x) + x. In addition, for each disparity map we consider the associated
modulus map ρ and direction map θ.

3.2 Detection Features

In this section we will define the five features that we propose to consider. An illustration of the dis-
criminative quality of each of the proposed features is shown on Figure 4. It represents the empirical
probability laws of each feature, according to the nature of the classified pixel from Hollsteinet al. [9]
ground truth dataset (see Section 4).

Angular error We analyze the collinearity of the three optical flows using the angular error (see
Figure 3) defined by

φ(x) = min
i,j,k

((|θk(x)− θj(x)| mod 2π) + (|θj(x)− θi(x)| mod 2π)) (5)

for distinct i, j, k ∈ {RG, G̃B,RB}, where θi(x) is the direction angle of disparity di(x). As the
maximal angular error is reached when the three normalized optical flows are equidistant on the unit
circle, it follows that φ has values in [0, 4π/3). The interest of formula (5) is that it has a large value
when two vectors have opposite directions. On cloudy pixels, due to the parallax effect, the three
optical flows should have a coherent direction and the angle error φ is expected to be small. On
the other hand, because the image bands are well registered, cloud free areas should have very small
optical flow vectors and the noise should dominate; thus, we expect to observe larger angular errors.
This property is illustrated in the middle-right graph of Figure 4.

For this feature, the disparity maps were computed after a rank transform with VRT a square
patch of size 35× 35 pixels, and the optical flow ran with the weights α = 20 and γ = 1.

Composition error ratio We define the composition flow error ratio (see Figure 3) by

ξ(x) =
|dRB(x)− dRG(x)− dG̃B(x)|

|dRB(x)| . (6)

We justify the use of such a feature because the angular error may not be sufficient: experi-
ments show that the regularization term of Equation (4) used in the optical flow induces some-
times local collinearity even in cloud-free regions. We generally observe the expected relation
|dRB(x)| ' 2dRG(x)| ' 2|dG̃B(x)| in the cloudy regions while in the cloud-free regions these values
are uncorrelated. So, considering in first approximation that these vectors are quite collinear, we
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Angular error φ Composition error ratio ξ

x

y
dRB(x)

dRG(x)

d
G̃B

(x)

φ
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y

ξ
dRB(x)

dRG(x)

d
G̃B

(x)

Figure 3: While the three optical flows dRG(x),d
G̃B

(x) and dRB(x) should theoretically verify Chasles’ relation and a
perfect collinearity, numerous factors such as the numerical approximations, the flow regularization, the noise, etc., produce
non collinear vectors. On the left, we define the angular error φ as the angle formed by two of the vectors and corresponding
to the smallest angle whose conic domain contains the third vector. On the right, we define the composition error ratio ξ
based on the residual vector (in red).

should observe a ratio ξ(x)� 1 when position x is in a cloud, and no particular value when x is in
a cloud-free region. These properties are illustrated in the bottom-left graph of Figure 4.

For this feature, the disparity maps were computed after a rank transform with VRT a square
patch of size 35× 35 pixels, and the optical flow ran with the weights α = 20 and γ = 1.

Modulus We take into account the modulus of the displacement between the green and blue bands

ρ(x) = ρGB(x) = |d′GB(x)|. (7)

This modulus is computed with a pair of parameters (α, γ) that are different from those of relations (5)
and (6). We denote by d′GB the associated disparity map. Using the rank transform is a good way to
randomize the flow directions in the cloud-free regions. Yet the counterpart is that the flow modulus
is often of the same order of magnitude in both cloudy and cloud-free regions. So to make the
amplitude flow more accurate in cloud-free regions, we regularize more the flow and use the green
and the blue bands which are similar. To save computation time, we limit ourselves to one optical
flow for the modulus; we could have defined an average modulus as well, using the three flows. The
middle-left graph of Figure 4 shows the empirical distributions of this feature, for both cloud and
non-cloud classes.

For this feature, the disparity maps were computed after a rank transform with VRT a square
patch of size 35 × 35 pixels, and the optical flow ran with the weights α = 200 and γ = 1. The
reason for applying a different factor α relative to the previous two features, is that it acts on both
the smoothness of the disparity field and the accuracy of its amplitude. While this second property
has a few impact on the angle and the composition error ratio, it is not negligible for the modulus.
In particular we observe that the amplitudes on cloud-free areas, which should have values very close
to zero, are greater when α = 20 than when α = 200.

Luminance It is straightforward that clouds have a high luminance and, if we except snow, are
most of the time brighter than the ground (see the top-left graph of Figure 4). Hence we define the
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Figure 4: Empirical probability laws of each feature, obtained from the Hollsteinet al. [9] ground truth dataset. The disparity
maps were computed after a rank transform with VRT a square patch of size 35×35 pixels. Optical flow ran with the weights
α = 20, γ = 1 for the features φ (Equation (5)) and ξ (Equation (6)) and α = 200, γ = 1 for feature ρ (Equation (7)).
The angular error distribution of the cloud free classes is close to the theoretically uniform distribution in [0, 4π/3). The
peaks observed on the distributions of the cloud free classes for the luminance and the saturation features are mainly due
to the snow category.
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average luminance feature by

λ(x) =
1

3
(uR(x) + uG(x) + uB(x)). (8)

Color saturation Another criterion is based on the color saturation of the clouds. As in the visible
spectral bands their reflectance is quasi-uniform (see Kokhanovsky [10]), they should look gray with
various intensities. To quantify this property, we then define κ as the standard deviation

κ(x) =
√

var(log u(x)) =

√√√√
∑k

i=1

(
log(ui(x))− µ(x)

)2

k
, (9)

with

µ(x) =

∑k
i=1 log(ui(x))

k
, (10)

where the index i runs on the k bands of the image u (e.g. k = 3 for RGB images). The usage
of the log function penalizes the dark values more by increasing their standard deviation. It leads
us to attribute a great value to κ(x) when the luminance is low, and conversely a low value when
the intensity is high, for variations of u(x) with the same order. The top-right graph of Figure 4
shows the empirical distributions of this feature, for both cloud and non-cloud classes. This feature
complements the luminance. Indeed the luminance may be high as soon as one of the bands is
saturated. Moreover, these two features assume that an appropriate radiometric calibration was
applied to the images (which is the case for example with Sentinel-2 L2A images).

3.3 A Contrario Multi-features Hypothesis Testing Approach

Our objective is not to classify the clouds as one more category among others such as vegetation or
urban, but merely to separate them from cloud-free areas. This amounts to considering only two
categories. On the other hand, the characterization of clouds is far from obvious. Indeed, since they
have extremely variable motions, shapes and textures, it seems difficult to establish cloud models
that are both simple and robust. These reasons led us to favor an a contrario statistical method [3],
where the data are compared to a null hypothesis H0 which, in our case, is the absence of cloud.

For each pixel x of Ω we shall consider an a contrario ground stochastic model

H0 : Yx ∼ fYx (11)

where Yx is the random variable associated to x and fYx is its probability density function, modeling
the pixel behavior in absence of clouds. In the case of a simple binary decision, hypothesis testing
would lead to threshold the p-value defined by

P(Yx ≥ yx |H0) (12)

where yx is the observed value of Yx. However, as this test is applied separately on each pixel, i.e.
more than 100,000 times per image, chances that false rejections ofH0 happen are huge. To overcome
this situation by controlling the total number of false rejections several approaches exist (see [20,
§ 10.7]). The method computes a number of false alarms (NFA)

NFA(yx) = #T ×P(Yx ≥ yx |H0) = #T × (1− FYx(yx)) (13)

where #T is the number of tests and FYx the cumulative distribution function of Yx. The NFA
method verifies the consistency requirement, under the null hypothesis [6]:
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Definition 1. Let (Yx)x∈Ω be a set of random variables. A function G is an NFA (number of false
alarms) for the random variables {Yx} if

∀ε, E

[∑

x∈Ω

1{G(Yx)≤ε}

]
≤ ε. (14)

where 1 is the indicator function.

The threshold ε becomes the input decision parameter to compute the Boolean map B defined
as

B(x) = 1{NFA(yx)≤ε}. (15)

As we shall use several detection criteria, Yx will be a combination of the random variables associated
to these features. For each one of these random variables, a probability density function must
therefore be estimated.

3.4 Feature Combination

Hypothesis testing requires to define random variables for the different features and their associated
probability and cumulative distribution functions. We consider the empirical distributions respec-
tively denoted f̂ and F̂ and justify this choice in Section 3.6. To clarify the notation, we shall index
by c the random variables X associated to the aforementioned criteria and suppose that

Xx,c ∼ f̂c, ∀x ∈ Ω, ∀c ∈ {λ, κ, ρ, φ, ξ}. (16)

As the shapes of the distributions F̂c of the preceding criteria are all different we cannot apply directly
the NFA test. We first apply the following transformations to the previous random variables:

Wx,c = F̂c(Xx,c), for c ∈ {ρ, λ}, (17)

Wx,c = 1− F̂c(Xx,c), for c ∈ {φ, κ, ξ} (18)

in order to work with distributions Wx,c which are uniform on [0, 1] and such that values Wx,c ≈ 1
should correspond to clouds in all cases. In this way, the hypothesis testing will be performed always
on the right tail of the distribution Yx (11). (Transformation (18) flips the empirical distributions
F̂φ, F̂κ and F̂ξ so as to evaluate the rare events in the right tail of Yx.)

Among the numerous ways to combine the random variables Wx,c into the random variable Yx of
Equation (11), we propose to use their sum. In addition, to increase the discrimination and ensure
some regularity, we consider the 9-neighborhood V(x) of the tested pixel defined by

V(x) = {(x± a, y ± a), (x, y ± a), (x± a, y), (x, y)} (19)

where a ∈ N∗. In practice, we use a ≥ 2 which results in a fairly good decorrelation of the spatial
variables. At the image borders we use the constant boundary extension.

Sum sample based combination We propose to combine the different features by their sum

Yx =
∑

y∈V(x)

∑

c

Wy,c. (20)

In the background model H0 all the random variables Wy,c follow a uniform distribution. We will
also assume that they are also independent random variables. While not strictly true, they are fairly
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decorrelated. Then, the sum of independent random variables following a uniform distribution has

a closed form distribution called the Irwin-Hall [8] law. Denoting n
def
= #{λ, κ, ρ, φ, ξ} × |V(x)| the

size sample, the cumulative distribution associated to Equation (20) is

FY (x) =





1

n!

bxc∑

i=0

(−1)i
(
n

i

)
(x− i)n, ∀x ∈ [0, n],

1, n ≤ x,

0, x ≤ 0.

(21)

When the neighborhood size increases, the probability distribution Yx asymptotically tends to the
normal distribution [1]

N
(
µ =

n

2
, σ =

√
n

12

)
. (22)

We use this approximation as soon as n is higher than 10.
This approach leads to take into account #T = 3|Ω| tests in Equation (13). Indeed, given y in the

neighborhood V(x), the five features are combined into a single test per pixel from the definition (20)
of
∑

cWy,c. However, when we evaluate a posteriori in Equation (5) the realization of the angular
error φ with the minimal value we need to perform three tests. These three tests must be taken a
priori into account when we introduce the feature φ into the sum

∑
c. Moreover, the summation

over V(x) does not change this number per pixel. Finally, summing over the whole image of size |Ω|
leads to the aforementioned result.

3.5 Morphological Post-processing

A number of false or no detection areas may appear spatially isolated in the Boolean map B defined
by Equation (15). These are generally detection errors that can be easily eliminated by considering
a surface threshold s ≤ |Ω| consistent with the image resolution and the minimal acceptable surface
of clouds. Denoting R the set of all connected regions of image B, we fill the undesirable holes
according to

∀ω ∈ R, ∀x ∈ ω, B̃(x) =

{
1−B(x) if |ω| < s,

B(x) otherwise.
(23)

This task is performed thanks to the Boolean image partitioning approach of Tarjan and Endre [19].
Numerically it is computed by the module ccproc of the imscript library2.

3.6 Discussion

With hypothesis testing, using empirical distributions entails an over-fitting risk, because of their
explicit relation to the input data. This objection is legitimate for the features λ and κ which are
implicitly based on the Sentinel-2 data calibration process. Yet the objection is not serious for op-
tical flow based features. Indeed, the optical flow does not work directly on the input data, and
its behaviour depends more on the observable motions coupled with its input parameters. Conse-
quently, images from other satellites than Sentinel-2 can be processed using the same five empirical
distributions, provided that their dynamic is adapted to match the typical dynamic of Sentinel-2
images (see Section 4.2).

2https://github.com/mnhrdt/imscript
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Another remark concerns the Independence of the variables. The Irwin-Hall law we use to combine
the features assumes such a property. On the one hand, it is clear that the regularized optical flow
maps induces dependent values in close neighborhoods and so are spatially the three features (φ, ξ and
ρ) deduced from them; using a ≥ 2 in Equation (19) decreases this dependence. On the other hand
there is no evidence of dependency between these features and the pixel value-based ones (i.e. the
luminance and the color saturation). In order to take into consideration the dependency of variables,
it could be possible to define a more complex statistical model including other mathematical entities
(e.g. covariance matrices). Nevertheless, given the fairly decorrelation of the variables, this would
probably not lead to a dramatic enhancement of the performances. Thus, we preferred to keep a
simple formulation (with some theoretical approximations) which produces good results in practice.

Another remark concerns the use of supplementary input data if such are available. In particular,
it is legitimate to question the interest of integrating the near infrared bands 5, 6, 7, 8 and 8A in the
algorithm, since some authors like Frantzet al. [4] use some of them. The fact is that these bands
are physically located on the same detectors (see Gasconet al. [5]) so that a parallax is observable
between these 5 bands. However some of these bands are less resolved, which implies a priori less
accuracy for the optical flow. Their use would involve calculating a much larger number of optical
flows and reviewing the definition of the current criteria, which are mainly based on the existence
of a triplet of flows. Furthermore, it is not obvious that increasing the complexity of the algorithm
would significantly improve the results.

A final remark concerns our approach itself. Since the parallax observed is due to the displacement
of the satellite, one could compute a 1D optical flow in its direction. In addition, this method could
increase the flow accuracy and speed up the calculations. Yet we found experimentally that directions
differing from the direction of the one induced by the satellite motion are observable. This situation
occurs mainly at the border of the 12 staggered detectors mounted in Sentinel-2 focal plane (see
Figure 5), or when the clouds are pushed by a sustained wind. Consequently, our 2D approach is
more robust to these cases.

Figure 5: Sentinel-2 images produced by ESA can contain shifted parts due to the staggered positioning of the 12 detectors
on the focal planes. This leads to observe opposite directions when computing the optical flow (yellow and purple patterns).
This does not decrease the performance of our detector.
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4 Experiments

We present in this section quantitative results obtained by our method on a Sentinel-2 dataset and
show some cloud masks computed on Sentinel-2, RapidEye, SkySat and WorldView-2 images.

4.1 Experimental Setup

In order to evaluate quantitatively the performance of the proposed algorithm, we used the Sentinel-2
dataset created by Hollsteinet al. [9]. This dataset is composed of 108 scenes located all over the
world (each is a 10980× 10980 pixels tile) with their ground truth represented by manually labelled
polygons. We retrieved only 100 tiles of them, the others being unavailable (see Table 3 for the
complete list of the tested tiles). As the ground truths are sparse, we split each tile into images of
size 366× 366, giving a series of 900 images per tile. We processed only the annotated ones, leading
to a full data set of 9789 images.

The disparity maps were computed by the optical flow algorithm parameterized with α = 20, γ =
1, for the features (5) and (6) and α = 200, γ = 1 for the modulus (7) after the application of the
rank transform on the visible R,G,B bands with VRT a square patch of size 35 × 35 pixels. The
9-neighborhood step a is set to 3.

The original classification of the dataset has six categories: opaque clouds, cirrus, clear ground,
water, shadows and snow. The cirrus category has not been taken into account because of the
numerous ambiguities in its annotation. Indeed, the ground truth classification of cirrus is based
on their meteorological definition. However, in terms of visibility, a cirrus can be translucent when
thin, or opaque when several layers superimpose. According to the capabilities of our algorithm,
we reduced this classification to two groups: opaque clouds and cloud-free, the latter containing
clear ground, water, shadow and snow. We consider the first group as the positive examples and
the second as the negative examples whose populations are respectively P = 3, 567, 188 pixels and
N = 16, 188, 312 pixels.

4.2 Experimental Results

Sentinel-2 dataset evaluation To identify the various feature combinations that we evaluate, we
use the following abbreviations:

• M: average modulus ρ, Equation (7);

• A: angular error φ, Equation (5);

• R: composition error ratio ξ, Equation (6);

• K: color saturation κ, Equation (9);

• L: luminance λ, Equation (8).

The metrics with which we evaluate the performances of classification are

• the balanced accuracy : BACC = (TNR + TPR)/2;

• the accuracy : ACC = (TP + TN)/(P + N);

• the F1 score : F1 =
2TP

2TP + FP + FN
;
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where TNR = TN/(TN+FP) is the true negative rate, TPR = TP/(TP+FN) the true positive rate
and TP, TN and FN are respectively the number of pixels correctly identified as opaque cloud, non
cloud and incorrectly identified as non cloud. In the present case, we favor the balanced accuracy
in the interpretation. It is more appropriate than the accuracy metric and the F1 score because
the populations are imbalanced: positive examples represent only 18,05% of the ground truth (see
Sokolova et al. [18]).

We present in Figure 6 the results of the true positive rate, false positive rate and balanced
accuracy, obtained for different combinations of features and a 9 pixel neighborhood with an a = 3
pixel step and after a post-processing step where s = 100 when varying the log ε threshold. The
value of the parameter s is equivalent to a surface of 1 ha, according to the Sentinel-2 resolution.
Table 2 shows the maximal scores in term of balanced accuracy, accuracy and F1 score achieved by
these combinations.
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Figure 6: True positive rate, false positive rate and balanced accuracy expressed in percents for various combinations.

Overall the results are quite satisfactory, because the combinations considered have in majority
an average balanced accuracy higher than 97.5%. These results quantitatively show the advantage
of using the parallax phenomenon. On the one hand, by taking the displacement modulus into
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Table 2: Maximal values obtained by various combinations. Taking into account the acceptable number of false alarms,
the MAK and MAKL combinations have the best performances.

Combination log ε Balanced accuracy Accuracy F1 score
AKL -3 95.69 95.83 88.92
MKL 2 95.84 96.83 91.20
MAL 2 97.35 98.45 95.63
MAK 2 97.70 98.60 96.07
MAKL -1 97.78 98.56 95.98
MARK 8 97.66 98.57 96.00
MARKL 10 97.75 98.54 95.94

account, the balanced accuracy is increased by at least 2 points by going from the AKL combination
to MAKL. On the other hand, the measurement of the coherence of the optical flow, represented
by the angular error, is also a preponderant factor to increase the precision: while the combinations
MKL and MAKL have the same rate of false alarms, the rate of true positives is significantly higher
for MAKL. The balanced precision is thus increased by nearly two points when switching from MKL
to MAKL. Adding the R criterion does not improve the scores and shifts the MARK and MARKL
curves to higher log ε values, increasing the risk of false alarms.

When considering the MAL and MAK combinations, the K criterion seems more discriminating
than the luminance. When the two criteria K and L are combined, there is little improvement in
the scores, and we observe a translation of the MAKL curve of the balanced accuracy, compared to
those of MAK and MAL, according to a lower value log ε. These two phenomena seem to indicate
that the parameters K and L are quite dependent.

Thus, the criterion K based on the color saturation seems necessary to achieve good performance,
confirming that the optical flow based features are incomplete. This justifies carrying out a good
correction and a white balance during the preprocessing of the raw images in order to stay within
the Kokhanovsky observations [10].

Finally, according to the curves and the results of the table, the best combinations are MAK
and MAKL. Figures 7 and 8 show some qualitative results on various grounds, using the MAK
combination.

CDI index comparison Figure 9 shows several results obtained with the Frantz et al. [4] approach
(see Section 2). The CDI index over-detects cloudy regions most of the time. This behavior seems
to confirm (see [4, §3.3]) that the CDI index is more of a means to corroborate the cloud detections
in the Fmask processing workflow, rather than a standalone detector.

Algorithm generalization evaluation In order to test the generalization of the method we
applied it on scenes from RapidEye, WorldView-2 and SkySat. As we could not compute the empirical
probabilities of the aforementioned images by lack of data, we adapted their dynamics to fit those of
the Sentinel-2 images. While the RapidEye, SkySat and Sentinel-2 images have the same dynamics,
we linearly stretched the SkySat dynamics by a factor 16.

Results of the RapidEye and SkySat scenes are shown in Figure 10 and WorldView-2 in Figure 11.
The results are globally satisfactory, all the more so in the case of the WorldView-2 image, because
we no longer use the criteria M, K and L. Indeed, the pushbroom mechanism of WorldView-2 has
only one shift so that there is no parallax between the blue and green bands.
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Figure 7: Examples of scenes extracted from the Sentinel-2 Hollstein dataset with their associated B̃ cloud maps estimated
by our method (MAK combination with a = 3, ε = 1, s = 100).
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Figure 8: Examples of scenes extracted from the Sentinel Hollstein dataset with their associated B̃ cloud maps estimated
by our method (MAK combination with a = 3, ε = 1, s = 100).
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Figure 9: Examples of scenes (top row) extracted from the Sentinel Hollstein dataset with their associated CDI maps
estimated by the Frantzet al. [4] method (middle row) and by our method (bottom row).
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Figure 10: Application of our method to a scene acquired by RapidEye (up left) and SkySat (up right) imagers. Middle
line, our cloud maps computed according to the MAK summation criteria strategy with a = 3, log ε = 0 and s = 100.
Bottom, the UDM cloud maps provided by Planetscope. The relative failure in the Skysat detection (up right) comes from
the absence of an observable motion at the center of the cloud impacting the features M and A.
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Figure 11: On the left, a scene acquired by WorldView-2. On the right, our cloud map computed according the MKL
combination with a = 3, log ε = 7 and s = 100. Notice that the features A and R are ineffective because the pushbroom
has only one shift, so that green and blue bands are synchronized. The cloud map is correctly estimated, in particular in
the translucent regions located on the top and with few false alarms.

5 Conclusion

In this paper we have presented an unsupervised algorithm for detecting clouds in images made
of three asynchronous spectral bands acquired by a pushbroom satellite. Our method has three
steps: histogram equalization of the image bands by the rank transform, disparity map estimation,
cloud detection by multi-features hypothesis testing. Quantitative experiments were conducted on a
representative dataset of Sentinel-2 scenes. Our method reaches success rates of over 97.5% for both
the cloudy and cloud free areas. Our experiments on RapidEye, SkySat and WorldView-2 scenes
also show satisfactory results when compared with their native cloud maps.

In addition, this study allowed us to show that the parallax effect is highly discriminant for the
cloud detection problem. We think therefore that optical flow maps could be used as an input in
deep learning methods to reduce the architecture complexity or the training dataset size.
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Input Data

The complete list of the tiles used in this study from the Hollsteinet al. [9] dataset is shown on
Table 3.

Table 3: Complete list of the tiles used in this study from the Hollsteinet al. [9] dataset.

S2A OPER MSI L1C TL MPS 20160210T132231 A003321 T38TKL N02.01 S2A OPER MSI L1C TL MPS 20160210T132231 A003321 T38TLL N02.01

S2A OPER MSI L1C TL MPS 20160506T134142 A004552 T35VLJ N02.02 S2A OPER MSI L1C TL MPS 20160831T133451 A006225 T35VLJ N02.04

S2A OPER MSI L1C TL MPS 20160921T112552 A006524 T36JTS N02.04 S2A OPER MSI L1C TL MTI 20151204T202604 A002354 T15TVJ N02.00

S2A OPER MSI L1C TL MTI 20151204T202604 A002354 T15TWJ N02.00 S2A OPER MSI L1C TL MTI 20151206T095033 A002377 T37PFP N02.00

S2A OPER MSI L1C TL MTI 20151206T095033 A002377 T37PGQ N02.00 S2A OPER MSI L1C TL MTI 20151209T100106 A002420 T38SKB N02.00

S2A OPER MSI L1C TL MTI 20151209T100106 A002420 T38SLB N02.00 S2A OPER MSI L1C TL MTI 20151209T100106 A002420 T38SLF N02.00

S2A OPER MSI L1C TL MTI 20151209T100106 A002420 T38SMD N02.00 S2A OPER MSI L1C TL MTI 20151209T100106 A002420 T38SMG N02.00

S2A OPER MSI L1C TL MTI 20151218T200553 A002555 T11SPD N02.01 S2A OPER MSI L1C TL MTI 20151218T200553 A002555 T12SUJ N02.01

S2A OPER MSI L1C TL MTI 20151225T115351 A002649 T36NTG N02.01 S2A OPER MSI L1C TL MTI 20151227T203753 A002681 T19FCD N02.01

S2A OPER MSI L1C TL MTI 20151227T203753 A002681 T19FCE N02.01 S2A OPER MSI L1C TL MTI 20151227T203753 A002681 T19FEE N02.01

S2A OPER MSI L1C TL MTI 20151231T201721 A002741 T11SLT N02.01 S2A OPER MSI L1C TL MTI 20160122T190934 A003053 T19HEB N02.01

S2A OPER MSI L1C TL MTI 20160204T095011 A003235 T36MYV N02.01 S2A OPER MSI L1C TL MTI 20160204T095011 A003235 T37MCS N02.01

S2A OPER MSI L1C TL MTI 20160207T114227 A003278 T35JPJ N02.01 S2A OPER MSI L1C TL MTI 20160207T114227 A003278 T35JQK N02.01

S2A OPER MSI L1C TL MTI 20160210T195026 A003324 T27VWL N02.01 S2A OPER MSI L1C TL MTI 20161115T215646 A007317 T11SNC N02.04

S2A OPER MSI L1C TL SGS 20151203T163340 A002336 T30SXH N02.00 S2A OPER MSI L1C TL SGS 20151203T163340 A002336 T30SYH N02.00

S2A OPER MSI L1C TL SGS 20151206T075514 A002375 T46RFU N02.00 S2A OPER MSI L1C TL SGS 20151206T075514 A002375 T46RGV N02.00

S2A OPER MSI L1C TL SGS 20151206T113048 A002378 T34SDH N02.00 S2A OPER MSI L1C TL SGS 20151206T113048 A002378 T34SEJ N02.00

S2A OPER MSI L1C TL SGS 20151206T113048 A002378 T34SFH N02.00 S2A OPER MSI L1C TL SGS 20151207T091210 A002390 T44SKE N02.00

S2A OPER MSI L1C TL SGS 20151207T091210 A002390 T44SLF N02.00 S2A OPER MSI L1C TL SGS 20151207T091210 A002390 T44TMQ N02.00

S2A OPER MSI L1C TL SGS 20151207T091210 A002390 T44TNP N02.00 S2A OPER MSI L1C TL SGS 20151208T152443 A002407 T32SNE N02.00

S2A OPER MSI L1C TL SGS 20151208T152443 A002407 T32SPE N02.00 S2A OPER MSI L1C TL SGS 20151209T152100 A002422 T30UWB N02.00

S2A OPER MSI L1C TL SGS 20151209T152100 A002422 T30UXC N02.00 S2A OPER MSI L1C TL SGS 20151209T152100 A002422 T30UXD N02.00

S2A OPER MSI L1C TL SGS 20151209T152100 A002422 T30UXV N02.00 S2A OPER MSI L1C TL SGS 20151209T152100 A002422 T30UYB N02.00

S2A OPER MSI L1C TL SGS 20151211T123450 A002449 T36RUU N02.00 S2A OPER MSI L1C TL SGS 20151211T123450 A002449 T36RVV N02.00

S2A OPER MSI L1C TL SGS 20151211T173733 A002450 T32SLE N02.00 S2A OPER MSI L1C TL SGS 20151211T173733 A002450 T32SMF N02.00

S2A OPER MSI L1C TL SGS 20151216T151003 A002522 T30SVJ N02.01 S2A OPER MSI L1C TL SGS 20151216T151003 A002522 T30TVK N02.01

S2A OPER MSI L1C TL SGS 20151223T181253 A002624 T19HDE N02.01 S2A OPER MSI L1C TL SGS 20151223T181253 A002624 T19HEE N02.01

S2A OPER MSI L1C TL SGS 20151223T181253 A002624 T19JFG N02.01 S2A OPER MSI L1C TL SGS 20151224T161331 A002636 T33UUU N02.01

S2A OPER MSI L1C TL SGS 20151224T161331 A002636 T33UVU N02.01 S2A OPER MSI L1C TL SGS 20151226T112710 A002663 T36LXM N02.01

S2A OPER MSI L1C TL SGS 20151226T112710 A002663 T36LYN N02.01 S2A OPER MSI L1C TL SGS 20151228T085259 A002687 T54HYD N02.01

S2A OPER MSI L1C TL SGS 20151228T085259 A002687 T55HCA N02.01 S2A OPER MSI L1C TL SGS 20151228T085259 A002687 T55HCU N02.01

S2A OPER MSI L1C TL SGS 20151229T114601 A002706 T37PCN N02.01 S2A OPER MSI L1C TL SGS 20151229T114601 A002706 T37PDQ N02.01

S2A OPER MSI L1C TL SGS 20160102T195442 A002768 T16PHS N02.01 S2A OPER MSI L1C TL SGS 20160102T195442 A002768 T17PKK N02.01

S2A OPER MSI L1C TL SGS 20160102T195442 A002768 T17PKL N02.01 S2A OPER MSI L1C TL SGS 20160109T211805 A002867 T18FXM N02.01

S2A OPER MSI L1C TL SGS 20160109T211805 A002867 T18GYP N02.01 S2A OPER MSI L1C TL SGS 20160109T230542 A002870 T10UEV N02.01

S2A OPER MSI L1C TL SGS 20160109T230542 A002870 T10UGA N02.01 S2A OPER MSI L1C TL SGS 20160112T094610 A002903 T49MGM N02.01

S2A OPER MSI L1C TL SGS 20160112T094610 A002903 T49MGN N02.01 S2A OPER MSI L1C TL SGS 20160112T094610 A002903 T49MHM N02.01

S2A OPER MSI L1C TL SGS 20160116T091329 A002960 T50MRD N02.01 S2A OPER MSI L1C TL SGS 20160116T091329 A002960 T51MTT N02.01

S2A OPER MSI L1C TL SGS 20160121T065055 A003030 T55GDN N02.01 S2A OPER MSI L1C TL SGS 20160121T065055 A003030 T55GEN N02.01

S2A OPER MSI L1C TL SGS 20160126T055615 A003103 T49JGL N02.01 S2A OPER MSI L1C TL SGS 20160126T055615 A003103 T49JHM N02.01

S2A OPER MSI L1C TL SGS 20160205T174515 A003251 T31TGL N02.01 S2A OPER MSI L1C TL SGS 20160205T174515 A003251 T32TLR N02.01

S2A OPER MSI L1C TL SGS 20160215T212109 A003398 T16WFT N02.01 S2A OPER MSI L1C TL SGS 20160215T212109 A003398 T16WFU N02.01

S2A OPER MSI L1C TL SGS 20160217T115519 A003421 T37PDT N02.01 S2A OPER MSI L1C TL SGS 20160217T115519 A003421 T37PET N02.01

S2A OPER MSI L1C TL SGS 20160217T182738 A003423 T29RMP N02.01 S2A OPER MSI L1C TL SGS 20160217T182738 A003423 T29RNQ N02.01

S2A OPER MSI L1C TL SGS 20160217T182738 A003423 T29RPQ N02.01 S2A OPER MSI L1C TL SGS 20160217T182738 A003423 T29SQR N02.01

S2A OPER MSI L1C TL SGS 20160310T173833 A003737 T32TNR N02.01 S2A OPER MSI L1C TL SGS 20160323T160631 A003923 T32TMR N02.01

S2A OPER MSI L1C TL SGS 20160327T140224 A003980 T35VLJ N02.01 S2A OPER MSI L1C TL SGS 20160417T165340 A004281 T29RPQ N02.01

S2A OPER MSI L1C TL SGS 20160419T160334 A004309 T32TNR N02.01 S2A OPER MSI L1C TL SGS 20160422T142445 A004352 T32TMR N02.01

S2A OPER MSI L1C TL SGS 20160624T173213 A005253 T32TMR N02.04 S2A OPER MSI L1C TL SGS 20161029T172901 A007069 T32TMR N02.04

S2A OPER MSI L1C TL SGS 20161108T154744 A007212 T32TNR N02.04 S2A OPER MSI L1C TL SGS 20161108T154744 A007212 T32TNS N02.04
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