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Abstract

The objective of this work is to provide a sophisticated but accessible compartmental epidemic
model. Our algorithm is highly inspired from the compartmental model developed by Sofonea
and al. in 2020. This model has been used as a reference for several working groups in France
during the Covid-19 crisis. Each individual is allocated to a compartment according to her
age, her current state with respect to the disease, as well as the length of time she has been
in that state. The model then reproduces the mechanisms of transition from one state to
another: mathematically, this translates into a system of recurrence relations. It captures how
much individuals interact with one another through a parameter that estimates compliance with
hygiene measures and lifestyle habits. The present work aims to make the model implementation
fully transparent as well as the corresponding code available and give control to users so that
they are able to test the model in total transparency. Focus has been put on reproducibility
and explanation of the various parameters. The hard-coded parameters correspond to the data
for the Covid-19 epidemic in France.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1. Usage instructions are included in the readme.md file of the archive.
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1 Introduction

In the context of the Covid-19 crisis, epidemics models have been in the spotlight since they have
been considered to support government decisions to contain the propagation of the virus. When the
first wave of contagion reached Western Europe, the model elaborated by the team of N. Ferguson at
Imperial College [7] was foreseen as a realistic model to provide forecasts on the number of casualties
depending on a series of parameters (characteristics of the pandemic, sociodemographic data of the
population, behavior of citizens, structure of their contact network, etc.). In the early days of the
contagion in France, the use of such a model was discarded by the authorities, first because of its
complexity, and second, because it required the input of many parameters which were not available
with sufficient accuracy at the time. Inspired from another category of epidemic models, merely
known as compartmental models, some other propositions emerged in France in order to provide
tools for the policy-makers while taking into account the features of the present pandemic. The most
discussed propositions were those of three teams: Institut Pasteur ([5]), INSERM ([3]), Université de
Montpellier - ETE team ([4], [6]). These three approaches are sophisticated variants of the well-known
SIR (Susceptible-Infected-Recovered) or the SEAIR (Susceptible-Exposed-Asymptomatic-Infected-
Recovered). However, to the best of our knowledge at the time of the present work, we could not
find access to open source implementation of the proposed models, therefore reducing the capacity
to reproduce the results. In the present work, we propose a reproducible version of an SEAIR model
which follows the principles described in [6] with a finer description of compartments and including
divisions with respect to age groups and duration of stay in certain compartments.

2 A Compartmental Model with Age and Time Subdivi-

sions

2.1 A Compact View of the Model

The model developed in [6] proposes to consider an extension to the plain SEAIR model by adding
extra compartments to better account for the propagation process of the pandemic at the national
or regional level. The compartments introduced in their model are the following:

• S : Susceptible.

• J : Non critical infectious.

• Y : Critical infectious→ it designates individuals whose life is threatened by the disease. They
will need to be hospitalized at some point.

• W : Other critical hospitalized patients → it designates infectious individuals in critical con-
dition who will not benefit from a long stay in ICU. They will die either after a short stay in
ICU or in another ward.

• H : Long-stay ICU hospitalized → it designates infectious individuals in critical condition who
are admitted to the intensive care unit for a long stay - at least one day. After their long-stay
in ICU, they may either die or recover.

• R : Recovered immunized.

• D : Dead.
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Furthermore, all these compartments are subdivided according to age groups. Compartments J,
Y, H and W also include subdivisions according to the length of time the individual has remained
in that state. This subdivision allows to take into account the susceptibility of different age groups
to the virus, as well as the time dimension in the evolution of the disease. The model is described
schematically in Figure 1.

Figure 1: A compact view of the dynamics of the model. S stands for susceptibles, J for non critical infectious, Y for
critical infectious, H for people in ICU, W for other critical hospitalized patients, R for recovered, D for deaths. Each
compartment is duplicated for each age group, designated by subscript i. Subscripts i, j indicate the age group i and the
length of the current state j. Values above arrows indicate the rate of passage from the associated compartments. All these
transition probabilities are fixed, except for the force of the infection Λi calculated from the density of infected people J+Y
among the susceptible population S.

The objective of the present work is to provide a user’s guide for this type of compartmental-
ized model, for which numerous parameters are needed. Estimation of those parameters can be
complicated due to the diversity of data made available and their granularity.

2.2 Key Parameters of the Epidemic Model

2.2.1 Age Groups

The first parameters to be set are the age groups. The sub-division of the population according to
their age enables us to take into account their different sensitivities to the disease and the variability
of their exposure to it. Thus, the branching probabilities described below as well as the contact
factor will vary according to age groups.

2.2.2 Branching Probabilities

These probabilities determine the ratio of individuals at a fork between two possible compartments.
Their role is detailed in Figure 2 with the corresponding equations. The index i of each variable
relates to an arbitrary age group. For each compartment Q, Q′ stands for Q(t+ 1), the daily update
of the variable Q = Q(t).
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(a) θi: proportion of critical infected Yi,1
among the ΛiSi newly infected individuals.

J ′i,1 = (1− θi)ΛiSi
Y ′i,1 = θiΛiSi

(b) ψi: proportion of admissions in ICU
Hi,1 among the

∑h
j=1 ηjYi,j newly hospi-

talized critically infected individuals.

H ′i,1 = ψi
∑h

j=1 ηjYi,j

W ′i,1 = (1− ψi)
∑h

j=1 ηjYi,j

(c) µi: proportion of deaths Di among the∑r
j=1 ρjHi,j individuals out of ICU.

R′i = Ri + Ji,g + (1− µi)
∑r

j=1 ρjHi,j

D′i = Di +
∑u

j=1 vjWi,j + µi
∑r

j=1 ρjHi,j

Figure 2: Segments of Figure 1 to illustrate the role of branching probabilities.

• θi is the ratio of critical infected Y among all infected individuals Y+J , also called critical
illness frequency. Its purpose is illustrated in Figure 2(a).

• ψi is the ratio of individuals H among all hospitalized individuals H+W who are admitted to
intensive care for more than one day. ψi is also called long-stay ICU admission frequency. Its
purpose is illustrated in Figure 2(b).

• µi is the ratio of dead individuals D among individuals discharged from ICU D+R, also called
long-stay ICU fatality rate. Its purpose is illustrated in Figure 2(c).

These ratios strongly depend on the age groups i. The age groups and these ratios (except µi) are
computed from other metrics. The proposed values can be found in Table 1.

2.2.3 Interval Distributions

At every day step of the simulation the states are updated. The interval distributions determine
whether an individual transitions to a new state or stays in the same one by moving on to the next
time sub-division within this same state. The update method is not the same for all time sub-divided
states. Namely :
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(a) ηj : Probability for an individual critically
infected for j days to be hospitalized.∑h

j=1 ηjYi,j individuals out of Y each
day.

Y ′i,j = (1− ηj−1)Yi,j−1 1 < j ≤ h

(b) ρj : Probability for an individual in ICU
for j days to leave ICU.∑r

j=1 ρjHi,j individuals out of H each
day.

H ′i,j = (1− ρj−1)Hi,j−1 1 < j ≤ r

(c) vj : Probability for a critical individual
hospitalized in a non intensive care unit for j
days to die.∑u

j=1 vjWi,j individuals out of W each
day.

W ′i,j = (1− vj−1)Wi,j−1 1 < j ≤ u

(d) Individuals in J stay there for a fixed pe-
riod of time g. They move deterministically
from one time sub-compartment to the next
one.

Ji,g individuals out of J each day.

J ′i,j = Ji,j−1 1 < j ≤ g

Figure 3: Segments of Figure 1 to illustrate the role of interval distributions.

• Individuals in Y , H or W remain in these compartments for variable durations. It is then
necessary to determine for each of these compartments, a probability distribution that asso-
ciates to the current time of the state, the probability of leaving it. This distribution will also
determine the maximum duration of each state h, r and u (for Y , H and W respectively). The
transitions of Y , H and W time sub-divisions are depicted respectively in Figures 3(a), 3(b)
and 3(c).

• Individuals in J remain in this state until they are no longer considered contagious. For the
sake of simplicity, the average probability of contamination according to the time since infection
has been considered: it is the generation time distribution ζ. It results in a fixed duration g of
the J-state for all individuals. The transitions of J sub-divisions are depicted in Figure 3(d).

For states that do not include time sub-divisions, the update method is simpler:

• The transition probability of S depends on the force of infection Λi(t) (Definition 1).

• R and D are stable states. Individuals in these states remain in them. This assumes that a
recovered individual cannot be re-infected. This remains a daring hypothesis in view of current
knowledge of the disease ([1, 8]).
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At the end, the only compartments that require interval distributions are Y , H and W .

Definition 1. The force of infection Λi(t) is the probability of being infected for a susceptible
individual in age group i. This value is calculated daily from the current state of the population and
the transmission parameters.

2.2.4 Transmission Parameters

For the computation of the force of infection Λi mentioned above, some additional parameters are
needed. The transmission parameters are provided in the following definitions.

Definition 2. The generation time distribution ζj is the distribution of the delay between the
onset of the disease in one individual and its transmission to another one.

Definition 3. The basic reproduction number R0 used in this model is the number of secondary
infections generated by an infected individual during her entire infectious period at the onset of the
epidemic.

Definition 4. The contact factor ci(t) is a time-dependent behavioral parameter for each age
group which estimates the density of human contacts between individuals (ranging from zero to one).

The contact factor depends mostly on the political measures and the behavior of the population.
This parameter will temper the basic reproduction number R0 for the computation of the force of
the infection (Equation 9). The closer the contact factor is to 0, the lower the force of infection. The
aim of this parameter is to take into account, within the dynamics of the epidemic, the temporal
variations in exposure to the virus of the different age groups.

We note that, in order to limit the number of parameters of the demo, the contact factor is
common to all age classes, and varies on the lockdown and deconfinement dates. The contact factor
can be specified more precisely in the code.

2.3 System of Recurrence Relations

Algorithm 1 gives an overview of how the compartments are updated during a simulation. In this
section the system of recurrence relations below details the dynamics of each compartment.

Algorithm 1 Compartments evolution over time.

Initializing each compartment
t← 0
while t < tend do

Ī(t)←
∑
i

ci(t)
∑
j

ζj(Ji,j(t− 1) + Yi,j(t− 1))

foreach 0 ≤ i < nb age groups do

Λi(t) = Ī(t)

Ī(t)+
S0

ci(t)R0

Updating each compartment according to the system of recurrence relations ;
end
t← t+ 1

end

Identically to previous notations, Q′ = Q(t+ 1) refers to the next daily value of the Q compart-
ment. Figure 1 provides a schematic view of the model for an arbitrary age group i, where the rate
from one compartment to another is indicated above the corresponding arrow.
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S ′i = (1− Λi)Si, (1)

J ′i,1 = (1− θi)ΛiSi, J ′i,j = Ji,j−1, 1 < j ≤ g, (2)

Y ′i,1 = θiΛiSi, Y ′i,j = (1− ηj−1)Yi,j−1, 1 < j ≤ h, (3)

H ′i,1 = ψi

h∑
j=1

ηjYi,j, H ′i,j = (1− ρj−1)Hi,j−1, 1 < j ≤ r, (4)

W ′
i,1 = (1− ψi)

h∑
j=1

ηjYi,j, W ′
i,j = (1− vj−1)Wi,j−1, 1 < j ≤ u, (5)

R′i = Ri + Ji,g + (1− µi)
r∑
j=1

ρjHi,j, (6)

D′i = Di +
u∑
j=1

vjWi,j + µi

r∑
j=1

ρjHi,j. (7)

The force of infection Λi is computed for each age group. For a susceptible individual of group i
exposed at date t, it corresponds to the daily probability of being infected. To estimate it, we begin
by calculating Ī(t), the density of contagious individuals in the non-hospital community, weighted
by the degree of social distancing of each group ci(t) (ranging from a simple barrier gesture to total
confinement) as well as the degree of contagiousness corresponding to the time elapsed since the
beginning of the infection ζj of the individuals.

Ī(t) =
∑
i

ci(t)
∑
j

ζj(Ji,j(t) + Yi,j(t)). (8)

The force of infection can then be deduced from this

Λi :=
Ī(t)

S0
ci(t)R0

+ Ī(t)
. (9)

This system of recurrence relations has an advantage over regular ODEs in the sense that it does
not require resolution by integration: next day’s reports can be calculated directly from the previous
day.

3 Value Recommendations for Key Parameters

In order to run an experiment, some parameters are hard-coded or computed from others:

• age groups,

• branching probabilities.

The user can also select the following parameters:

• ICU fatality rate (used to compute some branching probabilities),

• interval distributions,

• transmission parameters,

• a set of initial conditions.
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3.1 Age Groups

It is crucial to differentiate between age groups that respond unequally to the disease and are targeted
differently by political measures (school closure, remote work, ...). The choice of age groups should
be made in such a way that:

• it is possible to differentiate groups affected by different policy measures,

• data is available to compute the branching probabilities for each group.

The ETE team [6] chose 3 age groups: 0−24, 25−64 and 65+. Then the branching probabilities
were computed by extrapolating data from other age groups. To avoid as much as possible extrap-
olation, we have chosen the most common age groups in the data, that is : 0− 9, 10− 19, 20− 29,
30− 39, 40− 49, 50− 59, 60− 69, 70− 79, 80− 89, 90+.

3.2 Branching Probabilities

We need to find three branching probabilities:

• θi: critical illness frequency,

• ψi: long-stay ICU admission frequency among critically infected individuals,

• µi: long-stay ICU fatality rate.

The long-stay ICU admission frequency among critically infected individuals ψi is not a value
we can directly find in public data. We compute the three branching probabilities in a similar way
as [6], based on four other metrics (estimated for each age group i):

• Infection Fatality Rate (IFR): death probability among all infected individuals.

• Proportion of hospitalized patients - critical or not - admitted in ICU ui.

• Death probability among those hospitalized (ICU or not) di.

• Long-stay ICU fatality rate µi.

The first three metrics are estimated in [5] and hard-coded in the present work. Values can be found
in Table 1. For the long-stay ICU fatality rate µi, we propose by default values calculated from
French public health data [2], but they can be modified in the parameters.

We can then estimate successively

ψ̂i :=
1

1− µi + di
ui

, (10)

and then θ̂i :=
IFRi

1− (1− µi)ψ̂i
. (11)

It can be noted that the ETE team [6] calculates these parameters with similar methods and then
calibrates them on the data with a correction factor.
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Age group 0-19 20-29 30-39 40-49 50-59 60-69 70-79 80+ Source

Fatality rate in ICU µ (%) 5.6 4.4 4.4 6.6 8.6 12.9 21.8 32.7 [2]*
p(H|U)(%) 22.2 11.6 15.9 22.2 27.6 30.8 24.9 5.6 [5]
p(D|U)(%) 0.6 1.1 1.9 3.3 6.5 12.6 21.0 31.6 [5]
Infection Fatality Rate (%) 0.001 0.005 0.02 0.05 0.2 0.7 1.9 8.3 [5]

Table 1: Chosen branching parameters. U corresponds to all infected hospitalized individuals - critically infected or not.
(*Adapted age groups.)

3.3 Interval Distributions

In Section 2.2, we came to the conclusion that only Y , H and W needed a transition policy. We
implemented the distributions suggested by [6].

• Choosing a distribution for the time spent in the state:

– Weibull distribution, with shape parameters greater than one for the duration of Y .
Fw(x, k, λw) = 1− e−(x/λw)k

– Exponential distributions for the durations of H and W .
Fe(x, λe) = 1− e−λex

We note F the chosen cumulative distribution function.

• Truncating the distribution so as to have a finite number of time sub-divisions. The truncation
is carried out at the upper-integer-rounded 99%-quantile of the original distribution. Then we
have to normalize the new cumulative distribution function obtained.

F ∗(x) =
F (x)

F (xm)
∀x ∈ [0, xm] where xm = argmin

x∈N
{F (x) ≥ 0.99}. (12)

• Computing the probability of exiting the state at day j, conditioned by not having exited the
state previously.

pj =
F ∗(j)− F ∗(j − 1)

1− F ∗(j − 1)
for 1 ≤ j ≤ xm. (13)

The choice of the parameters (λw, j) of the Weibull distribution for the duration of Y and the
parameter λe for the exponential law for the durations of H and W are left to the user’s choice.
However, we draw the reader’s attention to the role of λw and λe, which varies from one distri-
bution to another as can be seen in the cumulative distribution functions. A Weibull distribution
with parameters (λw, j=1) is equivalent to an exponential law with parameter λe = 1

λw
. All these

probabilities are computed in the function parameters init().

The default parameters of the interval distributions can be modified in the json parameter file
epidemiological parameters.json:

• Contamination to hospitalization interval distribution - k: 3.6

• Contamination to hospitalization interval distribution - λw: 16.1

• Long stay ICU interval distribution - λe: 0.06

• Other critical hospitalized patients interval distribution - λe: 0.15
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3.4 Transmission Parameters

Three parameters must be determined to compute the force of infection Λ:

• the basic reproduction number R0,

• the contact factor ci,

• the generation time distribution ζi.

The basic reproduction number R0 and the contact factor ci are chosen by the user. The contact
factor varies over the course of the epidemic. It can be interesting to specify it from one age group
to another, for example to model school closures. For reasons of simplicity, the parameters available
in the demo only allow the contact factor to vary over time. The generation time distribution is
computed with the same method as for the interval distribution, using a Weibull distribution with
chosen parameters. The only difference is that the probability does not need to be conditioned, since
transmitting the virus on day j is not considered to have any impact on the probability of transmission
in the following days. F being the cumulative distribution function of the chosen distribution as in
the previous sub-section, we obtain

F ∗(x) =
F (x)

F (g)
∀x ∈ [0, g] where g = argmin

x∈N
{F (x) ≥ 0.99}, (14)

ζj = F ∗(j)− F ∗(j − 1) for 1 ≤ j ≤ g, (15)

where g determines the number of time sub-sections in J . As we can see in Figure 3(d), all non
critical infected individuals stay in J for g days.

The default transmission parameters can be modified in the epidemiological parameters.json file:

• Generation time distribution - k: 2.24

• Generation time distribution - λw: 5.42

The contact factor can be defined over time in the user interface, along with the basic reproduction
number.

3.5 Initial Conditions

Initial conditions should be chosen depending on the country/region. More precisely, we let the user
choose the total number of individuals in the population N0. Please note that nursing homes are not
included in this model and then the 730,000 French people in nursing homes should not be included
in this initialization. The default values proposed in the user interface correspond to the French
population as on January 1, 2020 according to INSEE data.

In our code, initialization is done in the function conditions category init() inmodel/init utils.py.
It initializes the simulation at the very beginning of the epidemic based on the following rules:

• J is initialized with Ji,0 = 1/nb age groups in each age group i in the first temporal sub-
compartment. All other temporal sub-compartments are initialized to zero.

• Y , H, W , R and D are initialized to zero.

• S is deduced from the total number of studied individuals: Si(0) = N0,i − 1
nb age groups

for each
age group i.
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However, to initialize the model in the middle of an outbreak, other methods can be considered
and implemented instead of the function conditions category init():

• Individuals can be distributed equally across all time compartments.

• One can find the geometric sequence with common ratio R0ci(0) so as to have the right number
of people in total.

As the distribution of individuals within the compartments at initialisation has a great impact
on the results, it is important to think carefully about the selected approach.

4 A Simulation Example under the Demo Mode

In this section, we present the graphical outputs produced by a simulation run. In order to do so,
we have to set the parameters introduced by the model and presented above.

4.1 Example Parameters

• Transmission parameters

– Basic reproduction number: 2.46

• Scenario parameters

– Starting day of the simulation: 2020-01-03

– Simulation duration: 350

• Contact factor evolution: In the results below the contact factor is updated three times:

– 2020-03-17: 0.5

– 2020-05-29: 0.7

– 2020-10-31: 0.5

In the demo, the contact factor can only be updated three times for reasons of simplicity. These
parameters correspond approximately to 0.5 during lockdowns or curfews, and 0.7 for barrier
gestures and mask use. It is a very simplified version of the French evolution during the year
2020.

• Total number of individuals N0 at time 0: Table 2

Age group 0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90+ Source

N0 (106) 7.76 8.33 7.47 8.29 8.59 8.79 8.00 5.70 2.86 0.56 INSEE

Table 2: Number of individuals N0 per age group at time 0 (in millions).
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(a) Example plots of the contact factor evolution. (b) Example response for number of susceptible and
recovered individuals.

(c) Example response for number of non critical infec-
tions.

(d) Example response for number of critical infections.

(e) Example response for number of critical individuals
hospitalized or in ICU.

(f) Example response for number of deaths.

Figure 4: Graphical outputs of the model.

4.2 Simulation Graphical Outputs

All the model parameters have now been chosen. A simulation run then outputs the following figures:

• Figure 4a shows the evolution of the contact factor over time. The plot displays the instructions
from the user interface.

• Figure 4b shows the number of both susceptible (blue) and recovered (orange) individuals over
time.

• Figure 4c shows the number of non critical infected individuals over time.

• Figure 4d shows the number of critical infected individuals over time.

• Figure 4e shows the number of critical infected in ICU (blue) or hospitalized outside ICU
(orange) over time.

• Figure 4f shows the number of deaths over time.
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5 A More Advanced Simulation Example Based on the Code

Made Available

Figure 5 shows the results that can be obtained with our code. The contact factor evolves in a much
more complex way than what is allowed in the demo interface. The objective is to give a glimpse of
the potential of the algorithm.

(a) Example plots of the contact factor evolution. (b) Example response for number of susceptible and
recovered individuals.

(c) Example response for number of non critical infec-
tions.

(d) Example response for number of critical infections.

(e) Example response for number of critical individuals
hospitalized or in ICU.

(f) Example response for number of deaths.

Figure 5: Example of a full simulation of the French epidemics. The official deaths and ICU numbers on Figures (e) and
(f) are collected from Santé Publique France open data available on January 19, 2021.

6 Limitations and Confrontation with Observed Statistics

We now underline the following limitations which have been identified for this model:

• Fixed length for compartment J - This length is determined by the generation time distribution
ζ. The restriction comes from the fact that we only consider here the average contagion period
of individuals.

• Deaths not accounted by this model - According to the transitions admissible in this model,
people outside hospitals cannot die: deaths in nursing homes or at home are not included.
According to INSERM data, 1,362 covid-related deaths at home were recorded over March
and April in France. An estimated 10,560 people died in nursing homes (EHPAD or EMS) in
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France by September 22, 2020. For the case of France, this represents about half of the total
number of deaths which is an overwhelming fraction of the lethal impact of the virus. However
the impact on this part of the population should probably be better described by dedicated
models.

• Constraints on the temporal subdivisions of states - Relaxing these constraints would better
capture the actual characteristics of the propagation but at the same time, would significantly
increase the model complexity and the uncertainty on the initialization of the simulation as
well.

• Relevance of compartment W - The choice of considering compartments H and D can be
supported by the fact that their corresponding statistics are collected in hospitals. In this
respect, the compartment W may seem artificial since it combines two completely different
situations: (i) either it reflects diverse choices of treatment and care for patients in critical
condition, or (ii) it covers the case where the ICU is overloaded. A finer model may be proposed
to handle this particular category.

7 Next Steps

Working on a transparent and reproducible version of the model was the first major motivation of
the present work. It offers a building block for the policy and decision maker toolbox. In order to
enrich this toolbox, future work based on the current approach may focus on a sensitivity analysis
on the parameters using Sobol indices for instance. It would allow policy makers to make a better
use of the model outputs depending on which data are available at a precise point in time during the
epidemic. The sensitivity analysis can also drive the effort for the collection of data supporting the
estimation on input parameters. Indeed, in order to lower the dispersion of the simulation output, the
precision on highly sensitive input parameters should be improved. Future work may also focus on
how to specify a method for initializing the model based on publicly available data. This initialization
consists of determining the number of individuals in each compartment and sub-compartment at a
chosen start date. For instance, a warm start approach taking advantage of known statistics for
other countries/regions or for similar epidemics may be developed.
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