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École Normale Supérieure, PSL University, 75005 Paris, France
(jonathan.vacher@ens.fr)
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Abstract

Texture synthesis is a prolific subarea in computer vision where statistical methods are often
successful. The Portilla and Simoncelli (PS) texture algorithm is one of such methods that
became very popular and has influenced visual perception studies. For many reasons it can still
be considered as a state-of-the art texture synthesis algorithm: (i) it generates textures that
are often indistinguishable from the original without scrutiny; (ii) it relies on few parameters
compared to recent deep learning methods; (iii) recent algorithms often compare to it. Here, we
review the scientific impact of this algorithm and give a detailed explanation. Briefly, the PS
algorithm synthesizes a new texture by iteratively imposing to a Gaussian white noise image
a set of high-order statistics of wavelet coefficients precomputed on a texture example. After
few iterations the initial white noise image is transformed into a texture that is similar to the
texture example. We provide a fast C++ implementation, evaluate the effect of the algorithm
parameters and illustrate its capabilities with many synthesis examples. In addition, we propose
two notable new features to the original implementation: (i) the possibility to interpolate be-
tween two textures; (ii) the possibility to handle non-periodicity using the “periodic+smooth”
decomposition.

Source Code

The C++ source code and the online demo are accessible at the web page of this article1.
Compilation and usage instruction are included in the README.txt file of the archive.

Keywords: texture synthesis; multi-scale pyramid decomposition; image filtering; summary
statistics; texture perception
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The Portilla-Simoncelli Texture Model: towards Understanding the Early Visual Cortex

1 Introduction

The Portilla-Simoncelli (PS) algorithm performs texture synthesis by iteratively imposing high-order
statistical constraints on local image features [41]. The set of statistical constraints is inspired by
the primary visual cortex (area V1) architecture [25] and the long-standing Julesz hypothesis in
psychophysics that textures with similar statistics are indistinguishable to humans [27] (without
scrutiny or in peripheral vision).

From texture perception to texture synthesis algorithms. The Julesz hypothesis was orig-
inally about the second order statistics of pixels. After multiple falsifications of his initial hypoth-
esis [29, 30, 12], Julesz proposed as an alternative that first order spatial statistics (densities) of
deterministic features dubbed “textons” would be sufficient to explain texture discrimination [28].
This approach was later abandoned to understand texture perception (see [33] for a review). How-
ever, on the one hand, the idea of “textons” density led to a mathematical theory of micro-texture
synthesis [19]. In this approach a texture is generated by convolution between a white noise image
and a specific “texton”, which leads to efficient texture synthesis algorithms [20] and multiple equiv-
alent formulations of a parametric texture model to study vision [54]. On the other hand, the Julesz
hypothesis led to the Heeger-Bergen (HB) [10, 24] and PS [41] algorithms, which rely on local feature
statistics. In a way, this corresponds to statistics between sub-bands obtained by convolution with
generic “textons” such as scaled and oriented Gabor functions, which are known to correctly model
neuron receptive fields [26]. Thus, the two hypotheses (statistics and “textons”), which were seen
as alternatives by Julesz, were finally combined successfully in the PS texture synthesis algorithm.
Textures generated by the PS algorithm are shown to be almost indistinguishable from their original
version [1].

Improvements of the PS algorithm. The PS algorithm can be viewed as an extension of the
HB algorithm, which consists in adjusting higher-order wavelet sub-bands statistics. While the HB
algorithm convergence can be refined using optimal transport theory [50], the PS algorithm still lacks
a proper mathematical framework, and its convergence is still empirical. A variational approach,
combining first-order statistics of decomposition coefficients in a sparse adapted feature dictionary
and second order statistics of pixel values, provides visually similar synthesized textures [49]. Yet,
this algorithm is somehow less generic than the PS algorithm because a different set of features is
learned on each texture. From a neurally inspired perspective, convolutional neural networks (CNN)
are successfully used to generate textures by simply matching second order statistics of each layer
outputs [21]. The synthesized textures show an impressive quality and are often indistinguishable
from their original version even when scrutiny is allowed [56]. In addition, CNN approaches allow for
computational efficiency when trained on a single example texture [51]. However, it is likely that CNN
performances are more due to the very high-dimensional decomposition than to the specificity of the
learned filters. Indeed, synthesizing textures is also feasible using random convolutional units [23].
In comparison with most CNN-based approaches that use 50K parameters, the PS algorithm is
still remarkably more parsimonious as it only requires around 1K parameters. However, we note
that recent progresses have reduced the high parameter numbers of CNN-based texture synthesis
methods [16].

Probing visual perception using texture synthesis algorithms. Explicitly inspired by bio-
logical vision, the PS algorithm soon became a computational model that served texture perception
studies [1]. In particular, it is used to predict human categorization of textures both in attentive [2]
and peripheral settings [3], visual crowding (impaired performances in peripheral vision in presence
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of multiple visual objects) [4] and visual search [44]. The importance of the PS model increases
specifically for the understanding of peripheral vision that is proposed to rely mainly on texture
features [17, 55]. One conclusion is that texture features, i.e. PS statistics, might be represented
in the area V2 of the visual cortex [18]. Characteristics of this representation, like robustness [60]
and contextual modulation [61], have been further studied. Moreover, the higher-level visual cortex
area V4 also plays a role in texture representation [38, 53]. While the hypothesis that peripheral
vision relies on texture statistics generates great progress in understanding the visual cortex, it is
still incomplete as it does not account for global scene features such as segmentation [57, 43]. Recent
deep learning approaches are promising to bridge the gap between low-level texture perception and
high-level tasks like scene segmentation and object recognition [21, 56, 13, 52]. Deep neural networks
are now used to better probe neural sensitivity in the higher visual cortex [5, 40] and their reduced
algorithmic load provides more practicable theoretical ground to further model vision [53].

Texture interpolation. Despite not being well-known, the PS algorithm can be used to perform
interpolation of textures i.e. to continuously morph one texture into another one. Texture inter-
polation has been used previously in vision studies. First, to quantify texture naturalness [18] by
interpolating between the micro-texture [19] and naturalistic [41] syntheses of textures. Second, to
enrich a texture dataset used in neurophysiological recordings [38]. Texture interpolation is often
well-formalized using optimal transport theory, which allows to define the barycenter of probability
distributions [42, 58]. Recently, Gatys et al. approach has been corrected and extended to perform
texture interpolations that are appropriate to study vision [53].

Algorithm overview. The PS algorithm can be summarized as follows. First, in order to mimic
the phase invariant responses of “complex” cells in the primary visual cortex [36, 32], a texture
example is decomposed into complex wavelet sub-bands at multiple orientations and scales. From
these complex wavelets coefficients, hundreds of cross-statistics are calculated to form multiple sta-
tistical constraint sets. Second, an output texture is synthesized using an iterative scheme with a
white noise initialization. At each step, the current output texture is first decomposed into complex
wavelet sub-bands at the same orientations and scales. Then, from the coarsest scale and for each
statistical constraint, the wavelet coefficients from which it depends are projected onto the set defined
by the statistical constraint. When all wavelet coefficients at one scale have been projected onto the
desired statistical constraint sets, they are recomposed together to obtain the upper scale low-pass
sub-band. By iterating these steps, the output texture empirically converges towards a new texture
sample that is qualitatively similar to the texture example.

Contributions. We propose a precise description of the Portilla and Simoncelli algorithm along
with a C++ implementation that is faster than the original MATLAB implementation2. Our im-
plementation also comprises the extension to perform texture interpolation that was used in vision
studies [38, 18] and the possibility to handle non-periodicity using the periodic+smooth decomposi-
tion [35]. In particular, we describe the complex steerable pyramid decomposition as a template of
the “complex” cells found in the primary visual cortex along with implementation details. Moreover,
we explain how the authors proceeded to choose the relevant set of statistics and how they enforced
these statistics on a white noise image to perform the synthesis. Finally, we show multiple texture
synthesis results and we test the free parameters of the algorithm.

The remainder of this article is organized as follows. In Section 2, we present the steerable pyramid
decomposition and reconstruction. Then, in Section 3, we describe in detail the PS algorithm. Finally,

2https://github.com/LabForComputationalVision/textureSynth
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in Section 4, we show many synthesis results and test the impact of multiple features (free parameters,
constraints) of the PS algorithm.

2 The Steerable Pyramid Decomposition and Reconstruc-

tion

The steerable pyramid decomposition is a wavelet transform, that linearly decomposes an image into
multiple scaled and orientated sub-bands, proposed by E. Simoncelli and his co-authors (see [47, 46]
and the references therein). An input image is first split into a high-frequency part and a low-
frequency part, the latter is then split into oriented sub-bands and down-sampled. The output of the
steerable pyramid decomposition is a collection of sub-bands (corresponding to filtering of the input
image) of different sizes and referred to as a pyramid. Each sub-band corresponds to a specific scale
and orientation, apart from the high-frequency and the low-frequency residuals. This decomposition
is invertible and the initial image can be reconstructed from the pyramid. The filters involved are
described in [41] and correspond to a complex version of the filters used in [10].

First, the filters are defined in Section 2.1. Then, the decomposition and reconstruction processes
of continuous images are detailed in Section 2.2. The method for filtering discrete images is presented
in Section 2.3. Finally, the practical algorithms for the decomposition and the reconstruction are
given in Section 2.4.

2.1 Definitions of the Filters

The filters involved in the steerable pyramid computation are given in the frequency domain by
continuous functions. Therefore, we need to define the Fourier transform.

Definition 1 (Fourier transform). The continuous Fourier transform applied to L1(R2) and its
inverse, denoted F and F−1, are defined by

∀u ∈ L1(R2), ∀y ∈ R2, û(y) = F(u)(y) =

∫

R2

u(x)e−ıx·ydx, (1)

and, if û ∈ L1(R2), ∀x ∈ R2, u(x) = F−1(û)(x) =
1

(2π)2

∫

R2

û(y)eıx·ydy. (2)

The Fourier transform extended to L2(R2) and to tempered distributions [45, 48] is still denoted F .

The steerable pyramid filters can be applied through convolution in the spatial domain as follows.

Definition 2 (Convolution). The convolution between two functions (u, v) ∈ L1(R2) is given by

∀x ∈ R2, u ∗ v(x) =

∫

R2

u(y)v(y − x)dy. (3)

The convolution extended to L2(R2) and, under stronger hypotheses, to tempered distributions [45, 48]
is still denoted ∗.

Equivalently, the filters can be applied in the Fourier domain by multiplication thanks to the
famous property of convolution reminded in the following proposition.

Proposition 1 (Fourier transform and convolution). Let (u, v) ∈ L1(R2), then

F(u ∗ v) = F(u)F(v). (4)

This result holds on L2(R2) and on the space of tempered distributions under stronger hypotheses.
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Since the filters will be defined in terms of polar coordinates on the plane, let us define the
standard polar transformation ρ to go from Cartesian to polar coordinates.

Definition 3 (Polar transformation). The polar transformation ρ is defined by

ρ : R2 −→ R+×]− π, π]

(x, y) 7−→ (r, θ) =





(|x|, π) if y = 0 and x ≤ 0,(√
x2 + y2, 2 arctan

(
y

x+
√
x2+y2

))
otherwise.

(5)

Its inverse ρ−1 is defined by

ρ−1 : R+×]− π, π] −→ R2

(r, θ) 7−→ (r cos θ, r sin θ).
(6)

For clarity we first introduce the real version of the steerable pyramid filters and the complex
version later on. Let Q ≥ 3 be the number of orientations of the pyramid.

Definition 4 (Filters in polar coordinates). For any polar coordinate (r, θ) ∈ R+×]−π, π], we define

L(r, θ) = L(r) =





1 if r 6 π
4
,

cos(π
2

log2(4r
π

)) if π
4
6 r 6 π

2
,

0 if r > π
2
,

(7)

and

H(r, θ) = H(r) =





0 if r 6 π
4
,

cos(π
2

log2(2r
π

)) if π
4
6 r 6 π

2
,

1 if r > π
2
,

(8)

which correspond respectively to a low-pass filter and a high-pass filter. For q ∈ {0, . . . , Q − 1}, we
also define the following cone-shaped filters

Gq(r, θ) = Gq(θ) = αQ

∣∣∣∣cos

(
θ − qπ

Q

)∣∣∣∣
Q−1 (

1|θ−πqQ |6π
2

+ 1|θ−π(q−Q)
Q |6π

2

)
, (9)

where the normalizing constant αQ is given by

αQ = 2Q−1 (Q− 1)!√
Q(2(Q− 1))!

. (10)

Then, the high-pass, the low-pass and the oriented symmetrical filters are defined by

L0(r, θ) = L0(r) = L
(r

2

)
, (11)

H0(r, θ) = H0(r) = H
(r

2

)
, (12)

Bq(r, θ) = H(r)Gq(θ), q ∈ {0, . . . , Q− 1}. (13)

The corresponding filters in the spatial domain are then defined as follows (see Figure 1).

Definition 5 (Filters in spatial domain). The low-pass filters l0 and l, the high-pass filter h0 and
the oriented symmetrical filters bq are defined by

l0 = F−1(L0 ◦ ρ) and l = F−1(L ◦ ρ), (14)

h0 = F−1(H0 ◦ ρ), (15)

bq = F−1(Bq ◦ ρ), q ∈ {0, . . . , Q− 1}. (16)

The low-pass filters l0 and l are L2(R2) functions. The high-pass filter h0 and the oriented filters
(bq)q∈{0,...,Q−1} are tempered distributions.
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The specificity of the PS algorithm is the use of complex wavelets that are obtained using a type
of 2D Hilbert transform [11]. The choice of the Hilbert transform naturally follows the reference
direction πq

Q
of the oriented symmetrical filter bq as described in the following definition.

Definition 6 (Hilbert filter and transform). For q ∈ {0, . . . , Q− 1} denote by nq the normal vector
to the orientation πq

Q
given by

nq =

(
− sin

(
πq

Q

)
, cos

(
πq

Q

))
. (17)

The Hilbert filter mq is a tempered distribution defined through its Fourier transform Mq ◦ ρ,

∀x ∈ R2, (Mq ◦ ρ) (x) = 1 + sign(〈nq, x〉) (18)

where 〈 , 〉 denotes the Euclidean scalar product. In polar coordinates it is defined by

Mq(r, θ) =





2 if |θ − πq
Q
| < π

2
,

1 if |θ − πq
Q
| = π

2
,

0 if |θ − πq
Q
| > π

2
.

(19)

The Hilbert transform with orientation πq
Q

of a function u ∈ L2(R2) is defined as its convolution
with the Hilbert filter mq or equivalently by the inverse Fourier transform of a multiplication in the
Fourier domain

Hq(u) = mq ∗ u = F−1((Mq ◦ ρ)F(u)) ∈ L2(R2).

Such a choice of 2D Hilbert transform corresponds in fact to successive classical 1D Hilbert
transforms along the lines that are orthogonal to the line passing through the origin with orientation
πq
Q

. See [31] for details.
Noting that the Fourier transforms of bq and mq are bounded functions, the oriented filter mq ∗ bq

is a well defined tempered distribution. It can be applied directly, as in Algorithm 2, using its Fourier
transform that is given in the following proposition.

Proposition 1. The Fourier transform (MqBq) ◦ ρ of the tempered distribution mq ∗ bq is given in
polar coordinates by

(MqBq)(r, θ) = 2αQH(r) cos

(
θ − πq

Q

)Q−1

1|θ−πqQ |6π
2
. (20)

Proof. This is obtained by combining (9), (13) and (19). The absolute value in (9) can be removed
because the cosine function is non-negative on [−π

2
, π

2
]. The case |θ− πq

Q
| = π

2
in (19) can be simplified

because cos
(
±π

2

)
= 0.

The resulting wavelet mq ∗ bq is a complex-valued function whose real part is equal to the original
real wavelet bq and whose imaginary part is a quadrature phase wavelet with similar orientation πq

Q

(see Figure 2 left). One relevant feature for vision neurosciences is the property of phase invariance
of this complex filter. In other words, the norm of the projection of a plane wave image (also known
as a drifting grating in neurosciences) onto this wavelet does not depend on its phase (see Figure 2
right). For that reason such a complex wavelet is a good model of the “complex” cells that are
present in the primary visual cortex [36, 32].

Finally, because the steerable pyramid decomposition is a multiscale transform, we introduce the
zoom-in and zoom-out operators.
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L0 H0 B0 B1

0 1 2 3

radius (r)

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

radius (r)
−1 0 1

angle (θ)
−2 −1 0

angle (θ)

Figure 1: First and second rows: the filters given in Definition 4 in the spectral domain. The second row displays the profile
of the section indicated in red in the first row. Third row: the filters given in Definition 5 in the spatial domain. The
oriented filters are represented with Q = 4. The gray scale is arbitrary but increasing from black to white. The figure is
best seen in color.
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Figure 2: Left: Hilbert transform m0 ∗b0 of b0. Real and imaginary parts are in phase quadrature. Gray scale is arbitrary but
increasing from black to white. Right: Simulation of the response of simple and complex cell to a drifting grating stimuli.
The simple cell is sensitive to the phase while the complex cell is phase-invariant.
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Definition 7 (Zoom-in and zoom-out). Let u ∈ L2(R2). The zoom-in operator ↑2 is defined by

∀x ∈ R2, ↑2 (u)(x) = u
(x

2

)
. (21)

The zoom-out operator ↓2 is defined by

∀x ∈ R2, ↓2 (u)(x) = u (2x) . (22)

These operators extended to tempered distributions are still denoted ↑2 and ↓2.

Note that L2(R2) is stable by the application of the zoom-in and zoom-out operators, and of all
the filters defined above (because their Fourier transforms are bounded functions). This property
insures that the linear operators of the following section can be defined.

2.2 Image Decomposition and Reconstruction

The steerable pyramid filters are built so that they allow one to decompose an image into sub-bands
and to reconstruct an image from sub-bands. In other words, the filters have properties that make
the steerable pyramid decomposition a pseudoinvertible operator [6]. These properties are detailed in
the original publication [46]. In the following section we explain how to decompose and reconstruct
an image u ∈ E = L2(R2).

The steerable pyramid operator has two parameters: the number of scales P (default value 4)
and the number of orientations Q ≥ 3 (default value 4).

Decomposition. The complex steerable pyramid decomposition can be viewed as the composition
of two linear operators: the first corresponds to the real steerable pyramid decomposition and the
second to taking the Hilbert transforms of the oriented sub-bands. To be more precise, we define the
linear operators W and W0 by

W : E −→ EQ+1

u 7−→ (b0 ∗ u, . . . , bQ−1 ∗ u, ↓2 (l ∗ u))
(23)

and
W0 : E −→ EQ+2

u 7−→ (h0 ∗ u,W(l0 ∗ u))
(24)

Then, for all integers n ≥ 1, we define the linear operator Rn
W associated to the linear operator W ,

Rn
W : En+1 −→ En+Q+1

(u0, . . . , un) 7−→ (u0, . . . , un−1,W(un)).
(25)

This allows one to define the recursive application ofW . Hence, the linear operator PR corresponding
to the real steerable pyramid decomposition previously described in [10] is

PR = R
(P−1)Q+1
W ◦ · · · ◦RQ+1

W ◦W0. (26)

A total of PQ + 2 real sub-bands are created during the real decomposition. In order to define the
complex decomposition, we only need to define the additional linear operator H̃ that consists in
computing the Hilbert transforms of the PQ oriented sub-bands while leaving the high-pass (first
position) and low-pass (last position) residuals unchanged. This is given by

H̃ : EPQ+2 −→ EPQ+2

(u0, . . . , uPQ+1) 7−→
(u0, m0 ∗ u1, . . . , mQ−1 ∗ uQ,

... . . .
...

m0 ∗ u(P−1)Q, . . . , mQ−1 ∗ uPQ, uPQ+1).

(27)
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Finally, the complex steerable pyramid operator PC is given by

PC = H̃ ◦ PR. (28)

The complex steerable pyramid decomposition is illustrated in the left-hand side of Figure 3 and the
corresponding algorithm is detailed in Algorithm 2.

Reconstruction. The complex steerable pyramid operator admits a pseudoinverse, which, us-
ing (28), comes down to

P†C = (H̃ ◦ PR)† = P†R ◦ H̃†. (29)

The pseudoinverse of H̃ is

H̃† : EPQ+2 −→ EPQ+2

(u0, . . . , uPQ+1) 7−→ (u0,Re(u1), . . . ,Re(uPQ), uPQ+1)
(30)

where Re denotes the real part operator. This follows from an ad hoc property of the Hilbert
transform [31]. In order to define the pseudoinverse of PR, we need to introduce the pseudoinverses
of Rn

W , W and W0. The pseudoinverse of W is the reconstruction of an image from its sub-bands at
a single scale

W† : EQ+1 −→ E

(u0, . . . , uQ) 7−→ l ∗ ↑2 (uQ) +
∑Q−1

q=0 (bq ∗ uq). (31)

From the pseudoinverse W† we can define the pseudoinverses of Rn
W and W0 as

Rn
W
† : En+Q+1 −→ En+1

(u0, . . . , un−1, un, . . . , un+Q) 7−→ (u0, . . . , un−1,W†(un, . . . , un+Q)),
(32)

and
W†0 : EQ+2 −→ E

(u0, u1, . . . , uQ+1) 7−→ h0 ∗ u0 + l0 ∗W†(u1, . . . , uQ+1).
(33)

Finally, the pseudoinverse of PR writes

P†R =W†0 ◦RQ+1
W

† ◦ · · · ◦R(P−1)Q+1
W

†
. (34)

The complex steerable pyramid reconstruction is illustrated in the right-hand side of Figure 3 and
the corresponding algorithm is detailed in Algorithm 3.

2.3 Filtering of Discrete Images

Because the steerable pyramid filters are defined by continuous functions in the Fourier domain, we
have described the steerable pyramid decomposition and reconstruction in terms of operators over
E = L2(R2) functions. In practice, images are a finite collection of samples corresponding to gray
level intensities. Applying filters defined by continuous functions in the Fourier domain to discrete
images is usually performed using computations based on the discrete Fourier transform (DFT).
These computations are theoretically justified in [9].

In this section we describe the practical method used to apply the filters to discrete images. In
the following, M and N are two even numbers corresponding to the image size.
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PC︷ ︸︸ ︷
P†
C︷ ︸︸ ︷

h0 h0

l0 l0b0 m0 Re b0

b1 m1 Re b1

bQ−1
mQ−1 Re bQ−1

l l↓2 ↑2

Figure 3: Block diagram representing the complex steerable pyramid decomposition (left-hand side) and reconstruction
(right-hand side). The white dots represent single sub-bands while the black dots represent the sub-bands at the next
scale. The symbol Re is the real part operator while ↓2 and ↑2 are respectively the zoom-out and zoom-in operators (see
Definition 7).

Definition 8 (Discrete domains). The discrete spatial domain ΩM,N is defined by

ΩM,N = {0, . . . ,M − 1} × {0, . . . , N − 1}. (35)

The discrete Fourier domain Ω̂M,N , associated to ΩM,N , is defined by

Ω̂M,N =

{
−M

2
, . . . ,

M

2
− 1

}
×
{
−N

2
, . . . ,

N

2
− 1

}
. (36)

Definition 9 (Discrete Fourier transform). The discrete Fourier transform (DFT) of u ∈ CΩM,N is

denoted FM,N(u) ∈ CΩ̂M,N and is defined by

∀(m,n) ∈ Ω̂M,N , FM,N(u)m,n =
∑

(k,l)∈ΩM,N

uk,le
−2πi(km

M
+l n

N
). (37)

The inverse discrete Fourier transform (iDFT) of v ∈ CΩ̂M,N is denoted F−1
M,N(v) ∈ CΩM,N and is

defined by

∀(k, l) ∈ ΩM,N , F−1
M,N(v)k,l =

1

MN

∑

(m,n)∈Ω̂M,N

vm,ne
2πi(m k

M
+n l

N
). (38)

Discrete filtering algorithm. Let u be an image of size M × N and f be a filter defined by a
continuous function F in the Fourier domain. Following [9], the filtered image f ∗ u is computed by
a component-wise multiplication in the Fourier domain as described in Algorithm 1.

During the steerable pyramid computations (see Algorithm 2 and Algorithm 3) the filters to
be applied are the filters f ∈ {l0, h0, bq, bq ∗ mq, q ∈ {0, . . . , Q − 1}}. The corresponding Fourier
transforms are the continuous functions F = φ ◦ ρ where φ ∈ {H0, L0, Bq, BqMq, q ∈ {0, . . . , Q− 1}}
so that Algorithm 1 can be applied.

2.4 Practical Decomposition and Reconstruction Algorithms

The practical algorithms for the steerable pyramid decomposition and reconstruction of discrete
images are detailed in Algorithm 2 and Algorithm 3. Linear filtering is performed using Algorithm 1.
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Algorithm 1: Application of a linear filter

Input : An image u of size M ×N and a filter f defined by a continuous function F in
Fourier domain

Output: The filtered image f ∗ u
1 Compute FM,N(u) the DFT of u

2 for (m,n) ∈ Ω̂M,N do

3 f̂ ∗ um,n ← FM,N(u)m,n · F
(

2πm
M
, 2πn
N

)

4 Compute f ∗ u = F−1
M,N(f̂ ∗ u) with an iDFT

Image sizes. The zoom-out and zoom-in operators of the theoretical decomposition and recon-
struction (see Section 2.2) are respectively replaced by down-sampling and up-sampling by factor
2. This is also done using DFT computations: this corresponds, for the down-sampling, to DFT
coefficients cropping and, for the up-sampling, to the so-called zero-padding. More details about
image resampling are given in [8].

Because of the down-sampling, the pyramid decomposition is well-defined if and only if the width
M and the height N of the input image u are proportional to 2P+1. This will be assumed throughout
the paper. Otherwise, a preliminary crop should be performed to ensure this condition.

The sizes of the PQ+ 2 sub-bands computed during the decomposition are given in Table 1.

DFT computations. In practice, DFTs and iDFTs are computed using the FFT algorithm [15].
Computations are saved by avoiding the unnecessary DFT and iDFT computations between succes-
sive steps.

Optimizations. In Algorithm 2, the low-frequency band v is first down-sampled and then filtered
by l0 (see Line 6 and Line 7) while, according to (23), v should be first filtered by l and then down-
sampled. The two possibilities are equivalent but here computations are saved as the filtered images
are smaller. The corresponding optimization is also used in Algorithm 3 (see Line 3 and Line 4).

Using the linearity of the real part operator, computations are saved in Algorithm 3. Instead of
applying it to all oriented sub-bands sp,q, it is applied only once in Line 8.

3 The Portilla and Simoncelli Algorithm

The PS algorithm consists of two steps described as follows.

Step 1: Analysis. Compute the complex steerable decomposition of the texture example from
which new texture samples will be generated, see details in Section 2.2. Compute the summary
statistics of the pyramid sub-bands as given in Section 3.1.

Step 2: Synthesis. The output texture is synthesized using the following iterative scheme. Ini-
tialize with a white noise image. At each iteration, compute the complex steerable pyramid of the
current output texture. Then, from the coarsest to the finest scale and for each summary statis-
tic, impose it to the wavelet coefficients as detailed in Section 3.2. When all wavelet coefficients at
one scale have the desired statistics, recompose them together to obtain the upper scale low-pass
sub-band. The reconstruction is performed as presented in Section 2.2 (operator (31)).
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Notation Number of images Size
High-frequency band hband 1 M ×N

Oriented bands sp,q PQ M
2p−1 × N

2p−1 at scale p ∈ {1, . . . , P}
Low-frequency residual lband 1 M

2P
× N

2P

Table 1: Summary of the images computed during the steerable pyramid decomposition with P scales and Q orientations
(see Algorithm 2). A total of PQ + 2 images is computed. The oriented bands are complex-valued images while the
high-frequency band and the low-frequency residual are real-valued images.

Algorithm 2: Complex steerable pyramid decomposition

Input : A number of scales P , a number of orientations Q, a discrete image u of size M ×N
such that M and N are multiples of 2P+1

Output: The steerable pyramid of u: sequence of PQ+ 2 images {hband, (sp,q), lband} (see
Table 1)

1. Compute the high-frequency residual hband = h0 ∗ u and store it in the pyramid
2. Compute the low-frequency band v = l0 ∗ u
3. for scale p = 1 to P do
4. for orientation q = 0 to Q− 1 do
5. Compute the oriented high-frequency band sp,q = (mq ∗ bq) ∗ v and store it in the

pyramid

6. Down-sample v by a factor of 2
7. Update v ← l0 ∗ v
8. Store v in the pyramid as the low-frequency residual lband

Algorithm 3: Complex steerable pyramid reconstruction

Input : A steerable pyramid {hband, (sp,q), lband} having P scales and Q orientations
Output: The reconstructed image u

1 Initialize u as the low-frequency residual lband

2 for scale p = P to 1 do
3 Update u← l0 ∗ u
4 Up-sample u by a factor of 2
5 for orientation q = 0 to Q− 1 do
6 Compute bq ∗ sp,q
7 Update u← u+ bq ∗ sp,q
8 Update u← Re(u)

9 Update u← l0 ∗ u
10 Compute h0 ∗ hband

11 Update u← u+ h0 ∗ hband
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3.1 The Summary Statistics

In order to find the relevant statistical constraints, Portilla and Simoncelli have used an empirical
approach based on a large texture dataset composed of artificial and natural textures covering most
of the features found in textures. By only considering marginal and cross-statistics, they added
different statistical constraints on the sub-bands one by one while testing the algorithm on the
texture dataset. After adding a constraint, the results were subjectively classified according to the
type of missing features. A new statistical constraint was then chosen whether the features were
appropriately synthesized or not. Finally, each constraint was verified to be necessary by exhibiting
synthesis failures. Superfluous constraints were removed. We exemplify in Section 4 how each
statistical constraint impacts the synthesis.

Definitions. Now, we define the statistics of discrete images of size M × N that are required by
the PS algorithm. First, marginal statistics are given in terms of central moments that have the
following definition for an image v and an integer n ≥ 1,

µn(v) =





1

MN

∑

(k,l)∈ΩM,N

vk,l if n = 1,

1

MN

∑

(k,l)∈ΩM,N

(vk,l − µ1(v))n if n > 1.
(39)

Then, the mean µ(v) and variance σ2(v) of u are simply µ(v) = µ1(v) and σ2(v) = µ2(v). Assuming
µ2(v) 6= 0, its skewness η(v) and kurtosis κ(v) are given by

η(v) =
µ3(v)

µ2(v)3/2
and κ(v) =

µ4(v)

µ2(v)2
. (40)

The maximum and minimum of v are given by

max(v) = max
(k,l)∈ΩM,N

vk,l and min(v) = min
(k,l)∈ΩM,N

vk,l. (41)

The auto-correlation of an image v in a neighborhood of the origin N of size |N | = N2
a is given by

∀(i, j) ∈ N , R(v)i,j =
1

MN

∑

(k,l)∈ΩM,N

(vk,l − µ(v))(vk−i,l−j − µ(v)), (42)

where an implicit periodic boundary extension is used. For a collection of L > 0 images of the same
size (v(1), . . . , v(L)), the matrix C of pairwise cross-correlations has coefficients

∀(i, j) ∈ {1, . . . , L}2, Ci,j = µ
((
v(i) − µ(v(i))

)
·
(
v(j) − µ(v(j))

))
, (43)

where the · symbol denotes the element-wise product. For another collection of L′ > 0 images of the
same size (w(1), . . . , w(L′)), the matrix D of cross-correlations has coefficients

∀(i, j) ∈ {1, . . . , L} × {1, . . . , L′}, Di,j = µ
((
v(i) − µ(v(i))

)
·
(
w(j) − µ(w(j))

))
. (44)

In the following the images (w(i))i have the same size as or half the size of the images (v(i))i. If
they have half the size, these images are upsampled to the appropriate size using zero-padding in
the Fourier domain. Specifically, this is done when computing the summary statistics (v) and (vi)
introduced below.
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Summary statistics. Using the empirical approach described above, Portilla and Simoncelli found
the following set of summary statistics to be “necessary and sufficient” to synthesize a wide class of
natural textures:

(i) Marginal statistics:

(a) Skewnesses and kurtoses of the low-frequency bands at each scale,
(b) Variance of the high-frequency band,
(c) Skewness, kurtosis, variance, mean, maximum and minimum of the reconstructed texture,

(ii) Auto-correlations of the low-frequency bands at each scale,
(iii) Auto-correlations of the modulus of each oriented sub-band,
(iv) Pairwise cross-correlations of the modulus of all oriented sub-bands at the same scale (size

Q×Q),
(v) Cross-correlations of the modulus of all oriented sub-bands with all oriented sub-bands at the

coarser scale (size Q×Q),
(vi) Cross-correlations of the real part of each oriented sub-band with both the real and imaginary

part of all phase-doubled oriented sub-bands at the next coarser scale (Q matrices of size 1×2Q,
which are computed and stored in a matrix of size Q× 2Q).

Remarks. In addition, the means of the modulus of each oriented sub-band are computed and
stored. These values are not technically summary statistics but they are required since the auto-
correlation and cross-correlation adjustments are performed on zero-mean images.

The term “low-frequency bands” in (i)a and (ii) actually refers to low-frequency bands filtered
by l0. For instance, for the low-frequency residual, the summary statistics are computed on l0 ∗ lband.

Note that the phases of the oriented sub-bands at the next coarser scale are doubled in (vi).
Indeed, the local phase varies twice slower at the coarser scale. See [41, Section 2.2] for more details.

3.2 Constraints Adjustment

Random texture sampling. Once the summary statistics are established, the goal is to generate
a new texture sample v from a texture example u. The summary statistics of the texture example
are constraints that the new texture sample must match as closely as possible. To achieve this, an
iterative scheme is used and the texture sample is initialized with a white noise image. At each
step, the texture sample is passed to the complex steerable pyramid operator and its sub-bands
are successively modified to satisfy the statistical constraints while inverting the complex steerable
pyramid operator (i.e. reconstructing an input image with the modified sub-bands). One iteration
of the synthesis algorithm is therefore a modified version of the reconstruction algorithm described
in Algorithm 3 where sub-band statistics are adjusted while reconstructing an input image. The
adjustment of the summary statistics is detailed in Algorithm 4. The full texture synthesis is detailed
in Algorithm 5. Extension to color texture synthesis is explained in Appendix B.

Remarks. In Line 10 of Algorithm 4, the cross-correlation adjustment of the magnitudes is per-
formed simultaneously for all the sub-bands while for the cross-correlation adjustment of the real
parts, in Line 17, only one sub-band is modified at a time (only one row of (vi) is used at once).

In Line 19, the Hilbert transform of Re(sp,q) is computed in order to recover an analytic signal.
Although the Fourier transform of the filter mq is discontinuous, Algorithm 1 is still used to compute
mq ∗ Re(sp,q).

As in [41], a convergence accelerator is used in Line 8 of Algorithm 5. This is a simpler version
of the heavy-ball method [39] (or the Nesterov method [37]). The momentum term 0.8(v − vold) is
added to the “ball” to mitigate zigzagging.
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Note that the size of the synthesized texture is not specified in Algorithm 5. Any multiple of 2P+1

can be chosen. By default, it has the same size as the input texture example (possibly cropped).

Imposing sub-bands statistics. In the following paragraph we denote by v a generic image. In
practice, the image v is the optimized image or any function of its sub-bands at a given iteration of the
algorithm. The goal is to adjust the image v so that K ∈ N∗ statistical estimators φ = {φ1, . . . , φK}
have the desired values s = {s1, . . . , sK} ∈ RK . A standard approach consists in minimizing the
squared error

L(v) = ||φ(v)− s||2 def.
=

K∑

k=1

(φk(v)− sk)2. (45)

Instead, the PS algorithm requires to consider the family of constraint sets (Sφ1 , . . . , SφK ) where

∀k ∈ {1, . . . , K}, Sφk = {v |φk(v) = sk}, (46)

such that the constraint is satisfied if and only if v ∈ S = ∩Kk=1Sφk . In order to project v onto S, the
authors use the alternate projections method [34]. Although the hypotheses for convergence are not
verified in general, the proposed algorithm empirically converges (see Section 4).

Projection on a set Sφk is performed by minimizing the squared error Lk(v) = (φk(v)− sk)2. To
achieve the minimization, a gradient descent with a single optimal step is used

v̄ = v + λkφ
′
k(v). (47)

The step is optimal in the sense that λ is chosen such that Lk(v̄) is minimized. If an image must
satisfy K ′ < K constraints, the successive gradient steps lead to a single step that writes

v̄ = v +
K′∑

k=1

λkφ
′
k(v). (48)

This is the case for the auto-correlations (ii) and (iii) and for the cross-correlations (iv), (v) and (vi).
The details of the constraints adjustment are given in Appendix A.

Texture interpolation. Interpolation between two textures is achieved by linearly interpolating
the vectors of summary statistics s1, s2 ∈ Rn1×···×nK of two textures examples u1 and u2. Synthesis
of the interpolation of u1 and u2 with respective weights t and 1− t with t ∈ [0, 1] is achieved using
the same algorithm but with the constraints st = ts1 + (1 − t)s2. Such interpolation have been
used in vision studies in restricted settings (gray level textures, somehow similar textures). We have
extended the algorithm to color texture interpolations. Examples are shown in Section 4.

4 Experiments

As described in the first paragraph of Section 3.1, Portilla and Simoncelli use a large dataset of tex-
tures to determine the relevant statistical constraints. To do so, they create six categories of textures:
two categories gather periodic and aperiodic artificial textures; three categories gather quasi-periodic,
random and structured natural textures and one last category is composed of natural images, which
are not textures. Some examples of textures for each category both with their synthesis are shown in
Figure 6. Those examples were synthesized using the default parameters of our algorithm i.e. P = 4
scales, Q = 4 orientations and central auto-correlation size Na = 7 but with periodic+smooth decom-
position [35]. In the following paragraphs, we check first the empirical convergence of the algorithm.
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Algorithm 4: Adjustment of the summary statistics for grayscale images

Input : A pyramid decomposition {hband, (sp,q), lband} with P scales and Q orientations, and
the target summary statistics

Output: A discrete texture sample v with approximately adjusted statistics
1 Initialize v ← lband − µ(lband)
2 Update v ← l0 ∗ v

// Adjustment of the low-frequency constraints (i)a and (ii)

3 Adjust the auto-correlation of v (see Appendix A.2)
4 Adjust the skewness of v (see Appendix A.1.3)
5 Adjust the kurtosis of v (see Appendix A.1.4)
6 for scale p = P to 1 do
7 Up-sample v by a factor of 2

// Adjustment of the magnitude of sub-bands (iii), (iv) and (v)

8 for orientation q = 0 to Q− 1 do
9 Initialize ap,q ← |sp,q| − µ(|sp,q|) and, if p < P , update ap+1,q ← |sp+1,q| − µ(|sp+1,q|)

10 Adjust the cross-correlation of the magnitudes (ap,q)q, including the cross-correlation with
their parent magnitudes (ap+1,q)q if p < P (see Appendix A.3)

11 for orientation q = 0 to Q− 1 do
12 Adjust the auto-correlation of ap,q (see Appendix A.2)
13 Adjust the mean of ap,q (see Appendix A.1.2) and take the positive part max(0, ap,q)
14 Adjust the modulus of sp,q to ap,q without changing its phase (see Appendix A.4)

// Adjustment of the real part of sub-bands (vi)

15 if p < P then
16 for orientation q = 0 to Q− 1 do
17 Adjust the cross-correlation of the real part Re(sp,q) with its phase-doubled parents’

real and imaginary parts (Re(s2p+1,q/|sp+1,q |), Im(s2p+1,q/|sp+1,q |))q (see Appendix A.3)

// Combine the oriented sub-bands into the low-frequency band

18 for orientation q = 0 to Q− 1 do
19 Compute the Hilbert transform sp,q ← mq ∗ Re(sp,q) to get an analytic signal
20 Update v ← v + bq ∗ sp,q
21 Update v ← Re(v)
22 Update v ← l0 ∗ v

// Adjustment of the low-frequency constraints (i)a and (ii)

23 Adjust the auto-correlation of v (see Appendix A.2)
24 Adjust the skewness of v (see Appendix A.1.3)
25 Adjust the kurtosis of v (see Appendix A.1.4)

// Adjustment of the high-frequency constraints (i)b

26 Adjust the variance of hband (see Appendix A.1.2)
27 Update hband ← h0 ∗ hband

28 Update v ← v + hband

// Adjustment of the image constraints (i)c

29 Adjust the variance of v and set the mean to 0 (see Appendix A.1.2)
30 Adjust the skewness of v (see Appendix A.1.3)
31 Adjust the kurtosis of v (see Appendix A.1.4)
32 Adjust the mean of v (see Appendix A.1.2)
33 Adjust the range of v (see Appendix A.1.1)
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Algorithm 5: Portilla-Simoncelli texture synthesis algorithm for grayscale images

Input : A number of scales P , a number of orientations Q, a number of iteration Nit, a
discrete texture example u of size M ×N such that M and N are multiples of 2P+1

Output: A synthesized discrete texture sample v
// Input analysis

1 Compute the steerable pyramid of u using Algorithm 2
2 Compute from the pyramid and from u the summary statistics listed in Section 3.1

// Output synthesis

3 Initialize v with a Gaussian white noise image with the same mean and variance as u
4 Initialize vold ← v
5 for iteration i = 1 to Nit do
6 Compute the steerable pyramid of v using Algorithm 2
7 Update v by imposing the summary statistics to the pyramid decomposition using

Algorithm 4
// Convergence accelerator

8 Update v ← v + 0.8(v − vold)
9 Update vold ← v

Then, we analyze the influence the constraint sets and of two parameters of the algorithm. Finally,
we show several examples of color texture interpolations. We do not compare the results to other
algorithms because this is already extensively done in the literature (see Section 1 and references
therein).

Running time comparison. In Table 2, a running time comparison shows that our C++ imple-
mentation is much faster than the existing MATLAB3 implementation. The running times correspond
to the syntheses of a single 256× 256 color texture with default parameters. For the MATLAB im-
plementation, all .mex files were pre-compiled. Syntheses were run on a Dell XPS 15 9500 equipped
with Intel Core i7-10750H CPU at 2.60GHz × 12.

MATLAB C++ (ours)
Running time (s) 42.3± 0.02 10.5± 0.08

Table 2: Running time comparison of the MATLAB and C++ implementations for a single 256×256 color texture with
default parameters (estimated from the synthesis of 139 textures). The time after ± corresponds to one standard error of
the mean. For the MATLAB implementation, all .mex files were pre-compiled. Syntheses were run on a Dell XPS 15 9500
equipped with Intel Core i7-10750H CPU at 2.60 GHz × 12.

Empirical convergence. As explained in Section 3.2, the PS algorithm uses an alternate pro-
jection method to minimize the loss L defined by (45). In addition, the constraints are adjusted
while reconstructing the image from its sub-bands. Therefore, the adjustments at a finer scale or
of another constraint could compromise the adjustments at a coarser scale or of other constraints.
In order to empirically verify those possible issues, we computed the evolution of the loss L and of
the partial loss functions (i.e. the sum of Lk for subsets of the constraint set corresponding to con-
straints (i)a, (ii), (iii), (iv), (v) and (vi) at each scale) with the number of iterations. The results for
177 textures are reported in Figure 4 and Figure 5 where we plotted the log-loss functions. The av-
erage global loss is a non-increasing function of the iterations. This is also the case for all partial loss

3http://www.cns.nyu.edu/~lcv/texture/
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functions except for the marginal statistics (i)a of the residual (right of the second row in Figure 4).
We conclude that neither the alternating between constraint adjustments and the reconstruction nor
the alternating between constraint adjustments are preventing the loss from decreasing at all scales
and for all constraint types.
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Figure 4: From top to bottom: logarithm of the loss function (45) and logarithm of the partial loss function for the group of
constraints (i)a, (ii), (iii), (iv). Error bars in red indicate 3 standard error of the mean computed over 177 textures. Results
for individual textures are represented in faint gray. The figure is best seen in color.
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Figure 5: Top and bottom: logarithm of the partial loss function for the group of constraints (v) and (vi). Error bars in red
indicate 3 standard error of the mean computed over 177 textures. Results for individual textures are represented in faint
gray. The figure is best seen in color.

Influence of the constraint type. In order to illustrate the trial and error methodology of
Portilla and Simoncelli, we use four groups of statistical constraints: C1 the group of marginal
statistics (see (i)); C2 the group of auto-correlations (see (ii) and (iii)); C3 the group of magnitude
correlations (see (iv) and (v)) and C4 the group of phase correlations (see (vi)). These groups have
been used in vision studies [1, 38]. Figure 7 displays two textures from each texture category and
their synthesis with all statistical constraints, and all statistical constraints but one of each of the 4
groups. Qualitatively, the absence of marginal statistic constraints (C1) affects the luminance and
color of the textures (rows 3, 4, 5, 9 and 11) while the absence of auto-correlation constraints (C2)
affects their spatial regularity (rows 1, 2, 4 and 5). The lack of magnitude correlations (C3) favours
the high spatial frequency compared to the low spatial frequency (rows 4, 5, 6, 8, 9 and 10). Finally,
the lack of phase correlations (C4), albeit subtle, creates wrong phases compared to the original
texture (opposite shading in row 4, dark oblique lines in row 5).

Influence of central autocorrelation size and edge handling. We did not test the pyramid
parameters i.e. the number of scales and orientations because they have already been tested in [10]
and have a similar effect on the synthesis. Yet, we test two aspects of the synthesis algorithm.
First, the size of the auto-correlation neighborhood Na and second, the effect of the periodic+smooth
decomposition [35]. All other parameters were set to default. Figure 8 displays two textures from
each texture category and their synthesis with varying neighborhood size (columns 2 to 5). The
main effect of increasing the neighborhood size is to better capture the quasi-periodicity/stationarity
of low-frequencies, yet the synthesized texture often gets worse or does not improve above Na = 7
except for few structured textures (rows 9 and 10). By comparing the second and last columns, we
observe that the periodic+smooth decomposition reduces the amount of sharp edges due to boundary
discontinuities (e.g. rows 6 and 12).

Interpolation of two textures. To conclude and as an original contribution of this paper, we
show many examples of interpolation between arbitrarily chosen color textures in Figure 9. All in-
terpolations were synthesized using default parameters but with the periodic+smooth decomposition
to avoid boundary artifacts. The interpolations are perceptually smooth and seem therefore suitable
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to study visual perception [18, 38]. Yet, other approaches using a combination of optimal transport
and CNN also provide examples that are suitable to study visual perception [59].

5 Conclusion

In this work, we reviewed the impact of the Portilla and Simoncelli texture synthesis algorithm
from mathematical imaging to the neurosciences of vision. We provided a precise description of
the mathematical framework both with pseudo-codes and a C++ implementation. Our code is
much faster than the existing MATLAB implementation (see Table 2). Our implementation also
comprises the extension to perform texture interpolation that was used in vision studies [38, 18] and
the possibility to handle non-periodicity using the periodic+smooth decomposition [35]. Additionally,
we illustrated the empirical approach used to design the set of statistical constraints by gathering
textures into 6 categories as proposed in the original article [41]. We analyzed the effect of the central
autocorrelation size and of the periodic+smooth decomposition. Finally, we showed several examples
of interpolation between textures.

Appendix A Details of the Constraints Adjustment

The following sections describe the adjustments, used in Algorithm 4, of each statistic mentioned in
Section 3.1. We denote by u the image with the target statistics and by v the image of size M ×N
to be adjusted. In addition, 1 is the image with all pixels equal to 1.

A.1 Marginal Statistics Adjustment

The marginal statistics listed in Section 3.1 (see (i)) are adjusted as follows.

A.1.1 Range Adjustment

The maximum and minimum of v are imposed by clamping

∀(k, l) ∈ ΩM,N , ṽk,l =





max(u) if vk,l > max(u),

min(u) if vk,l < min(u),

vk,l otherwise.

(49)

A.1.2 Mean and Variance Adjustment

Assume that σ(v) 6= 0. Then, the mean µ(v) and the variance σ2(v) of v are jointly imposed by the
affine transform

ṽ =
σ(u)

σ(v)

(
v − µ(v)1

)
+ µ(u)1. (50)

Particular case. Assume that µ(v) = 0. Then, its mean can be imposed by a simple shift

ṽ = v + µ(u)1. (51)

Similarly, its variance can be imposed by a simple multiplication

ṽ =
σ(u)

σ(v)
v. (52)
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Figure 6: Examples of textures and their synthesis from each category. The figure is best seen in color.
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Original Synthetic w/o C1 w/o C2 w/o C3 w/o C4
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Figure 7: Textures from each category synthesized without statistical constraints defined by C1, C2, C3 and C4 (see text).
The figure is best seen in color.
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Original Na = 3 7 11 15 7, w/o [35]
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Figure 8: Textures from each category synthesized with varying auto-correlation neighborhood sizes (columns 2-5) and
without using periodic+smooth decomposition (last column). The figure is best seen in color.
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Original t = 0 0.1 0.3 0.5 0.7 0.9 1.0 Original

Figure 9: Examples of interpolation between natural textures. The figure is best seen in color.
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A.1.3 Skewness Adjustment

The skewness of v is adjusted to η(u) by a single optimal step in the gradient direction. In the
following, we describe the method proposed in [41]. To simplify, we note µn(v) = µn for n ≥ 2.

Gradient descent. Assume without loss of generality that µ(v) = 0 (otherwise the mean can be
subtracted). Then, the gradient ∇η(v) at location v is proportional to

d = v2 − µ
1
2
2 η(v)v − µ21. (53)

Following (47), the adjusted image ṽ = v + λd must satisfy the equation

η(ṽ) =
µ3(v + λd)

µ2(v + λd)3/2
= η(u). (54)

Computation of λ. Noting that µ(v + λd) = 0 when µ(v) = 0 and substituting (53) into (54),
we obtain ∑3

n=0 pnλ
n

(∑2
n=0 qnλ

n
) 3

2

= η(u), (55)

where

p0 = η(v)µ
3
2
2 ,

p1 = 3 (µ4 − µ2
2(1 + η(v)2)) ,

p2 = 3
(
µ5 − 2µ

1
2η(v)µ4 + µ

5
2
2 η(v)3

)
,

p3 = µ6 − 3µ
1
2
2 η(v)µ5 + 3µ2(η(v)2 − 1)µ4 + µ3

2 (2 + 3η(v)2 − η(v)4) ,
q0 = µ2,
q1 = 0,
q2 = µ4 − (1 + η(v)2)µ2

2.

(56)

Squaring both sides of (55), λ finally solves

6∑

n=0

anλ
n = 0 (57)

where
a0 = p2

0 − η(u)2q3
0,

a1 = 2p0p1,
a2 = p2

1 + 2p0p2 − 3η(u)2q2
0q2,

a3 = 2 (p0p3 + p1p2) ,
a4 = p2

2 + 2p1p3 − 3η(u)2q0q
2
2,

a5 = 2p2p3,
a6 = p2

3 − η(u)2q3
2.

(58)

The algebraic equation in (57) has six complex roots. To avoid too large modifications during the
adjustment, the chosen solution λ for the gradient descent is a real solution in the interval [λmin, λmax]
around λ = 0 where λ 7→ η(v+λd) has positive slope. Assuming d 6= 0, this interval exists because d
is the gradient direction. If there is no such solution, one of the extreme value λmin or λmax is chosen
instead. If there are multiple candidates, the selection is done in two steps:

1. The numerator in (54) must have the same sign as η(u). Indeed, the squaring between (54)
and (55) may introduce undesired symmetrical solutions.

2. The remaining solution with minimal magnitude is chosen.
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Interval with positive slope. We find an interval where f : λ 7→ η(v+λd) has a positive slope by
finding the values λmin and λmax of the negative and positive roots of f ′ with the smallest magnitudes.
From (54) and (55), we can write

f(λ) = η(v + λd) =

∑3
n=0 pnλ

n

(∑6
n=0 bnλ

n
) 1

2

, (59)

where
b0 = q3

0,
b1 = 0,
b2 = 3q2

0q2,
b3 = 0,
b4 = 3q0q

2
2,

b5 = 0,
b6 = q3

2.

(60)

The derivative f ′ is then given by

f ′(λ) =

∑7
n=0 dnλ

n

(∑6
n=0 bnλ

n
) 3

2

, (61)

where
d0 = p1b0,
d1 = −p0b2 + 2p2b0,
d2 = 3p3b0,
d3 = −2p0b4 + p2b2,
d4 = −p1b4 + 2p3b2,
d5 = −3p0b6,
d6 = −2p1b6 + p3b4,
d7 = −p2b6.

(62)

Finally, finding the roots of f ′ is equivalent to solving the algebraic equation

7∑

n=0

dnλ
n = 0. (63)

Algorithm. The adjustment of the skewness is detailed in Algorithm 6. Note that the minimal
and maximal reachable skewness in the interval [λmin, λmax] are ηmin = η(v + λmind) and ηmax =
η(v + λmaxd). Therefore, there is no point in computing the roots of (57) if η(u) does not belong to
]ηmin, ηmax[.

A.1.4 Kurtosis Adjustment

Similarly to the skewness, the kurtosis of v is adjusted to κ(u) by a single optimal step in the
gradient direction. We summarize in the following the method proposed in [41]. To simplify, we note
µn(v) = µn for n ≥ 2.

Gradient descent. Assume that µ(v) = 0. Then, the gradient ∇κ(v) is proportional to

d = v3 − µ4

µ2

v − µ31. (64)
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Algorithm 6: Skewness adjustment

Input : An image v such that µ(v) = 0 and the target skewness η(u)
Output: An image ṽ with adjusted skewness
// Computation of the coefficients

1 Compute the moments (µn)2≤n≤6

2 Compute the input skewness η(v)
3 Compute the coefficients (pn)0≤n≤3, (qn)0≤n≤2, (an)0≤n≤6, (bn)0≤n≤6 and (cn)0≤n≤7

using (56), (58), (60) and (69)
// Computation of the minimal and maximal reachable skewness

4 Compute the roots of (63)
5 Set λmin and λmax as the negative and positive roots with smallest magnitudes
6 Compute ηmin = η(v + λmind) and ηmax = η(v + λmaxd) using (59)

// Computation of λ

7 Initialize λ = 0
8 if η(u) ≤ ηmin then
9 Update λ← λmin

10 else if η(u) ≥ ηmax then
11 Update λ← λmax

12 else
13 Compute the roots of (57)
14 Keep the real roots
15 if there is only one root left then
16 Set λ as the remaining root
17 else if there are multiple roots left then
18 Keep the roots such that the numerator in (54) has the same sign as η(u)
19 Set λ as the remaining root with minimal magnitude

// Gradient descent

20 Compute ṽ = v + λd using (53)

Following (47), the adjusted image ṽ = v + λd must satisfy the equation

κ(ṽ) =
µ4(v + λd)

µ2(v + λd)2
= κ(u). (65)

Computation of λ. Noting that µ(v+ λd) = 0 when µ(v) = 0 and substituting (64) into (65), we
obtain

∑4
n=0 pnλ

n

(
∑2

n=0 qnλ
n)2

= κ(u), (66)
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where

p0 = µ4,
p1 = 4(µ6 − α2µ2 − µ2

3),
p2 = 6(µ8 − 2αµ6 − 2µ3µ5 + α2µ4 + (µ2 + 2α)µ2

3),
p3 = 4(µ10 − 3αµ8 − 3µ3µ7 + 3α2µ6 + 6αµ3µ5 + 3µ2

3µ4 − α3µ4 − 3α2µ2
3 − 3µ4µ

2
3),

p4 = µ12 − 4αµ10 − 4µ3µ9 + 6α2µ8 + 12αµ3µ7 + 6µ2
3µ6 − 4α3µ6 − 12α2µ3µ5 + α4µ4

− 12αµ2
3µ4 + 4α3µ2

3 + 6α2µ2
3 − 3µ4

3,
q0 = µ2,
q1 = 0,
q2 = p1

4
.

(67)

with α = µ4
µ2

. Multiplying (66) by the denominator of its left-hand side, we obtain that λ is a root of

4∑

n=0

anλ
n = 0, (68)

where
a0 = p0 − κ(u)q2

0,
a1 = p1,
a2 = p2 − 2κ(u)q2q0,
a3 = p3,
a4 = p4 − κ(u)q2

2.

(69)

The algebraic equation in (68) has four complex roots. To avoid too large modifications during the
adjustment, the chosen solution λ for the gradient descent is the real solution with minimal absolute
value in the interval [λmin, λmax] around λ = 0 where λ 7→ κ(v + λd) has positive slope. Assuming
d 6= 0, this interval exists because d is the gradient direction. If there is no such solution, one of the
extreme values λmin or λmax is chosen instead.

Interval with positive slope. We find an interval where g : λ 7→ κ(v+λd) has a positive slope by
finding the values λmin and λmax of the negative and positive roots of g′ with the smallest magnitudes.
The derivative of g is

g′(λ) =

∑4
n=0 dnλ

n

(
∑2

n=0 qnλ
n)3

, (70)

where
d0 = p1q0,
d1 = 2p2q0 − 4p0q2,
d2 = −3p1q2 + 3p3q0,
d3 = −2p2q2 + 4p4q0,
d4 = −p3q2.

(71)

Finding the roots of g′ comes down to solving the algebraic equation

4∑

n=0

dnλ
n = 0. (72)

Algorithm. The adjustment of the kurtosis is detailed in Algorithm 7. Note that the minimal
and maximal reachable kurtosis in the interval [λmin, λmax] are κmin = κ(v + λmind) and κmax =
κ(v + λmaxd). Therefore, there is no point in computing the roots of (68) if κ(u) does not belong to
]κmin, κmax[.
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Algorithm 7: Kurtosis adjustment

Input : An image v such that µ(v) = 0 and the target kurtosis κ(u)
Output: An image ṽ with adjusted kurtosis
// Computation of the coefficients

1 Compute the moments (µn)2≤n≤12

2 Compute the input kurtosis κ(v)
3 Compute the coefficients (pn)0≤n≤4, (qn)0≤n≤2, (an)0≤n≤4 and (dn)0≤n≤5 using (67), (69)

and (71)
// Computation of the minimal and maximal reachable kurtosis

4 Compute the roots of (72)
5 Set λmin and λmax as the negative and positive roots with smallest magnitudes
6 Compute κmin = κ(v + λmind) and κmax = κ(v + λmaxd) using the left-hand side of (66)

// Computation of λ

7 Initialize λ = 0
8 if κ(u) ≤ κmin then
9 Update λ← λmin

10 else if κ(u) ≥ κmax then
11 Update λ← λmax

12 else
13 Compute the roots of (68)
14 Keep the real roots
15 Set λ as the remaining root with minimal magnitude

// Gradient descent

16 Compute ṽ = v + λd using (64)

A.2 Auto-correlation Adjustment

The auto-correlation R(v) of an image v (see (42)) is approximately adjusted to the desired auto-
correlation R(u) in a central neighborhood N as follows. Assuming that µ(v) = 0, the partial
derivatives of the auto-correlation write

∀(i, j) ∈ ΩM,N , ∀(m,n) ∈ N , ∂R(v)m,n
∂vi,j

=
1

MN
(vi+m,j+n + vi−m,j−n), (73)

with an implicit periodic boundary extension. Thus, accounting for the symmetries of the partial
derivatives, the successive gradient steps write

∀(i, j) ∈ ΩM,N , ṽi,j = vi,j +
∑

(m,n)∈N ′
λm,n

∂R(v)m,n
∂vi,j

, (74)

where N ′ is the subset of N that accounts for the symmetries of (λm,n)(m,n)∈N . For instance, if the

central neighborhood N is of size Na × Na then N ′ contains the N2
a+1
2

indices so that there is no
redundancy. Note that (74) is the result of adjusting each auto-correlation coefficient successively
by a step in the gradient direction as described in (48).

Because the partial derivatives of R(v) write as in (73), (74) can be written as a circular convo-
lution

ṽ = v ∗ hλ, (75)

where hλ is a symmetric filter with support included in N and verifying in N the constraint

R(u) = R(v) ∗R(hλ). (76)
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There is a priori no unique solution hλ to (76). However, assuming that the coefficients of R(hλ) are
the unknowns and using the fact that R(hλ) is symmetric, then (76) can be seen as a linear system of
|N ′| equations with |N ′| unknowns. Note that this system involves coefficients of R(v) that belong
to the central neighborhood of size (2Na − 1)× (2Na − 1).

Assuming that the solution R(hλ) does have a non-negative DFT, R(hλ) can then be interpreted
as the auto-correlation of a filter hλ satisfying the constraint (76) and given by

hλ = F−1
M,N

(√
FM,N(R(hλ))

)
. (77)

As in general FM,N(R(hλ)) is not non-negative, an absolute value is added in the square root and
we use the following approximate filter

hλ = F−1
M,N

(√
|FM,N(R(hλ))|

)
. (78)

In practice, the circular convolution in (75), which gives the updated image ṽ, is performed in the
Fourier domain using

FM,N(ṽ) = FM,N(hλ) · FM,N(v) =
√
|FM,N(R(hλ))| · FM,N(v). (79)

The proposed auto-correlation adjustment is not exact but, according to [41], it becomes sufficiently
accurate after a few iterations of the synthesis loop.

Algorithm. The adjustment of the auto-correlation is detailed in Algorithm 8.

Algorithm 8: Auto-correlation adjustment

Input : An image v and the target auto-correlation R(u) in a central neighborhood N
Output: An image ṽ with (approximately) adjusted auto-correlation

1 Compute FM,N(v) the DFT of the input
2 Compute the input auto-correlation R(v) = 1

MN
F−1
M,N(|FM,N(v)|2)

3 Solve for R(hλ) in the equation R(u) = R(v) ∗R(hλ)
4 Compute FM,N(R(hλ)) the DFT of R(hλ)

5 Compute the DFT of the updated image FM,N(ṽ) =
√
|FM,N(R(hλ))| · FM,N(v)

6 Compute ṽ = F−1
M,N(FM,N(ṽ))

A.3 Cross-correlation Adjustment

The cross-correlation adjustment is performed as follows. First, this is detailed in the one scale case
and then for the two scales case.

One scale adjustment. The goal is to modify a list of sub-bands (v(1), . . . , v(L)) of size M × N
so that its pairwise cross-correlation matrix C (see (43)) becomes the target matrix C̃.

We assume that for all i ∈ {1, . . . , L}, µ(v(i)) = 0 and we denote by V the matrix with rows
equal to the pixel values of (v(1), . . . , v(L)). The partial derivatives of Ci,j write

∀(i, j, k,m, n) ∈ {1, . . . , L}3 × ΩM,N ,
∂Ci,j

∂v
(k)
m,n

=
1

MN





v
(i)
m,n if k = j, i 6= j,

v
(j)
m,n if k = i, i 6= j,

2v
(i)
m,n if k = i = j,

0 otherwise.

(80)
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Therefore, for all k ∈ {1, . . . , L}, the updated sub-bands ṽ(k) write

ṽ(k) = v(k) +
L∑

l=1

Λ̄k,lv
(l), (81)

where Λ̄ is a real symmetric matrix of size L × L. Similarly to (74), (81) is the result of adjusting
each correlation cross-coefficient successively by a step in the gradient direction. Then, (81) can be
written in a matrix form

Ṽ = ΛV where Λ = I + Λ̄. (82)

To determine the matrix Λ, we use the constraint C̃ = 1
MN

Ṽ Ṽ T, which can be expanded as

C̃ = ΛCΛT. (83)

A solution to (83) can be computed by evaluating the eigenvector decompositions of C and C̃, which
are symmetric matrices assumed to be positive definite. This gives

C = BDBT and C̃ = B̃D̃B̃T, (84)

where D and D̃ are diagonal matrices with positive entries and, B and B̃ are orthogonal matrices.
Injecting (84) into (83) leads to

D̃−1/2B̃TΛBD1/2(D1/2BTΛTB̃D̃−1/2) = I. (85)

In other words, D̃−1/2B̃TΛBD1/2 is an orthogonal matrix. Therefore, a matrix Λ solution to (83)
verifies

Λ = B̃D̃1/2OD−1/2BT, (86)

where O is an orthogonal matrix. As suggested in the original article [41], we use O = B̃TB since
this leads to an exact cross-correlation adjustment. With this choice, the matrix Λ can be written
as

Λ = C̃
1
2C−

1
2 . (87)

Finally, the update is done using (82).

Two scales adjustment with fixed sub-bands. Let (v(1), . . . , v(L)) and (w(1), . . . , w(L′)) be two
lists of sub-bands of size M × N . The goal is to modify (v(1), . . . , v(L)) so that its pairwise cross-
correlation matrix C (see (43)) and its cross-correlation matrix D with (w(1), . . . , w(L′)) (see (44))
become the target matrices C̃ and D̃.

We assume that for all i ∈ {1, . . . , L}, µ(v(i)) = 0 and for all j ∈ {1, . . . , L′}, µ(w(j)) = 0. We
denote by V and W the matrices with rows equal to pixel values of respectively (v(1), . . . , v(L)) and
(w(1), . . . , w(L)). The partial derivatives of Ci,j are given in (80) and the ones of Di,j write

∀(i, k, j,m, n) ∈ {1, . . . , L}2 × {1, . . . , L′} × ΩM,N ,
∂Di,j

∂v
(k)
m,n

=

{
w

(j)
m,n if k = i,

0 otherwise.

Therefore, for all k ∈ {1, . . . , L}, the updated sub-bands ṽ(k) write

ṽ(k) = v(k) +
L∑

l=1

Λ̄k,lv
(l) +

L′∑

n=1

Σk,nw
(n), (88)
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where Λ̄ is a real symmetric matrix of size L× L and Σ is a real matrix of size L× L′. Again, (88)
follows from the successive adjustments of each correlation coefficient by a step in the gradient
direction. Then, (88) can be written in matrix form

Ṽ = ΛV + ΣW where Λ = I + Λ̄. (89)

To determine the matrices Λ and Σ, we use the two constraints C̃ = 1
MN

Ṽ Ṽ T and D̃ = 1
MN

Ṽ WT,
which can be expanded as

C̃ = ΛCΛT + ΛDΣT + ΣDTΛT + ΣEΣT, (90)

D̃ = ΛD + ΣE, (91)

where E = 1
MN

WWT. Assuming that E is invertible, we have

Σ = (D̃ − ΛD)E−1. (92)

Injecting (92) into (90) gives

ΛFΛT = F̃ , (93)

where

F = C −DE−1DT and F̃ = C̃ − D̃E−1D̃T. (94)

A solution Λ to (93) is obtained as previously for the similar problem in (83). Assuming that the
symmetric matrices F and F̃ are positive definite, this is given by

Λ = F̃
1
2F−

1
2 . (95)

Finally, the update is done using (89).

Algorithm. The adjustments of the cross-correlation for the one scale and two scales cases are
detailed respectively in Algorithm 9 and Algorithm 10.

Algorithm 9: Cross-correlation adjustment (one scale)

Input : A list of sub-bands (v(1), . . . , v(L)) and the target cross-correlation matrix C̃
Output: A list of sub-bands (ṽ(1), . . . , ṽ(L)) with adjusted cross-correlation matrix

1 Compute the input pairwise cross-correlation matrix C = 1
MN

V V T where V is the matrix with

rows equal to the pixel values of (v(1), . . . , v(L))

2 Compute Λ = C̃
1
2C−

1
2

3 Compute Ṽ = ΛV where Ṽ is the matrix with rows equal to the pixel values of (ṽ(1), . . . , ṽ(L))

A.4 Modulus Adjustment

The modulus of the complex-valued image v is adjusted without changing its phase by a simple
multiplication

ṽ =
|u|
|v|v. (96)
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Algorithm 10: Cross-correlation adjustment (two scales)

Input : Two lists of sub-bands (v(1), . . . , v(L)) and (w(1), . . . , w(L′)), and the target
cross-correlation matrices C̃ and D̃

Output: A list of sub-bands (ṽ(1), . . . , ṽ(L)) with adjusted cross-correlation matrices
1 Compute the input cross-correlation matrices C = 1

MN
V V T and D = 1

MN
VWT where V and

W are the matrices with rows equal to the pixel values respectively of (v(1), . . . , v(L)) and
(w(1), . . . , w(L′))

2 Compute E = 1
MN

WWT

3 Compute F = C −DE−1DT and F̃ = C̃ − D̃E−1D̃T

4 Compute Λ = F̃
1
2F

1
2

5 Compute Σ = (D̃ − ΛD)E−1

6 Compute Ṽ = ΛV + ΣW where Ṽ is the matrix with rows equal to the pixel values of

(ṽ(1), . . . , ṽ(L))

Appendix B Extension to Color Images

In 2013, Portilla and Simoncelli proposed on their web page4 a MATLAB implementation of the color
version of the algorithm. Following the idea of [24] of using a color-space transformation for decor-
relating the color bands, color is mainly handled thanks to a principal component analysis (PCA).
However, unlike [24], the adjustments of the summary statistics are not entirely performed indepen-
dently on the decorrelated color bands, namely the PCA bands. Additional statistics are added to
the list of summary statistics and some adjustments are done using jointly all color information.

Section B.1 details how to apply the forward and reverse conversions from RGB to PCA col-
orspace. The differences between the color and the grayscale versions are listed in Section B.2.

B.1 Principal Component Analysis (PCA)

In this section we explain how the principal component analysis (PCA) is applied to a color image.
Note that similar computations are performed in [10] for the Heeger-Bergen algorithm.

Let u be a color image of size M ×N . First, the means of the color bands are subtracted and u
is embedded in a matrix U of size 3×MN where each row corresponds to a color band. Then, the
color covariance matrix C of size 3× 3 is given by

C =
1

MN
UUT. (97)

The symmetrical matrix C can be factorized as

C = V DV T (98)

where V is an orthogonal matrix of size 3× 3 containing the eigenvectors of C and D is a diagonal
matrix of size 3× 3 containing the eigenvalues of C.

Direct PCA. To get an image ũ with decorrelated color bands, the direct PCA can be applied.
The image ũ is obtained by computing the matrix Ũ given by

Ũ = D−
1
2V TU. (99)

4https://www.cns.nyu.edu/~lcv/texture/
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Inverse PCA. The direct PCA can be inverted and the original color-space can be recovered.
Indeed, u can be computed from ũ using

U = V D
1
2 Ũ . (100)

Note that the means of the color bands must also be added to recover the original image.

B.2 Differences between the Color and the Grayscale Versions

The differences between the color and the grayscale versions are the following.

Summary statistics. The summary statistics of the grayscale version (see Section 3.1) are com-
puted independently for each PCA band with the following two exceptions.

• Firstly, the marginal statistics in (i)c are computed from the original image and not from the
PCA bands.

• Secondly, the cross-correlations in (iv), (v) and (vi) are jointly built from the three color bands.
If a matrix was of size L×L′ in the grayscale version, then the corresponding matrix is of size
3L× 3L′ in the color version.

In addition, the following statistics are added to the list of summary statistics:

(vii) Color covariance matrix (see (97)) of the input texture,
(viii) Auto-correlations of each PCA band,
(ix) Skewness and kurtosis of each PCA band,
(x) Pairwise cross-correlations of the real part of all oriented sub-bands at the same scale (size

3Q× 3Q),
(xi) Pairwise cross-correlation of the low-frequency residual lband zoomed by a factor 2 and its shifted

versions by 2 pixels along the 4 possible directions (size 15× 15),
(xii) Cross-correlation of the real part of all oriented sub-bands at the coarser scale P with the 5

color images defined in (xi) (size 3Q× 15).

Note that the zoom in (xi) is done in the Fourier domain using zero-padding while the shifts are
done in the spatial domain with a periodic boundary condition.

Texture synthesis algorithm. The texture synthesis algorithm, described in Algorithm 5 for
grayscale images, is modified for color images as follows. All direct or inverse PCAs are done using
the color covariance matrix of the input texture.

• In Line 1 and Line 6, the steerable pyramid decompositions are applied to the PCA bands of
the corresponding images, which requires to previously apply direct PCAs.

• In Line 2, the computations of the summary statistics are made from the pyramid, the PCA
bands and the input texture.

• In Line 3, the color noise is initialized with a zero mean Gaussian white noise having the same
color covariance matrix (vii) as the input texture.

• In Line 7, the pyramid decompositions of the PCA bands are used as input for the constraints
adjustment.

• In Line 8, the convergence accelerator is not used.
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Constraints adjustment. The adjustment of the summary statistics, described in Algorithm 4
for grayscale images, is modified for color images as follows.

• As stated before, the adjustment algorithm takes the pyramid decompositions of the PCA
bands as input.

• Before the filtering in Line 2, the cross-correlation of the low-frequency residual lband (see (xi))
is adjusted. First, lband is zoomed by a factor 2 and its 4 shifted versions are computed.
The pairwise cross-correlation matrix of the 15 components is then adjusted as described in
Appendix A.3. For each color band, the average of the 5 unshifted components is computed.
Finally, lband is updated as the down-sampled version by a factor 2 [8] of the resulting color
image.

• In Line 17, the adjustment of the real part of all the oriented sub-bands is performed simulta-
neously for the Q orientations (instead of one at a time). The target cross-correlation matrices
are the pairwise cross-correlation matrix of (x) and the full cross-correlation matrix of (vi)
(instead of a single row). In addition, an adjustment is made for the coarser scale P . As target
cross-correlation matrices, the pairwise cross-correlation matrix of (x) is still used along with
the cross-correlation matrix of (xii).

• Between Line 28 and Line 29, color handling steps are added. It consists in the following:

1. The auto-correlations of the PCA bands (viii) are adjusted (see Appendix A.2).

2. The mean and the variance of each PCA band are adjusted respectively to 0 and 1 (see
Appendix A.1.2).

3. The skewness and kurtosis of each PCA band (ix) are adjusted (see Appendix A.1.3 and
Appendix A.1.4).

4. The covariance matrix of the PCA bands is adjusted to the identity (using similar com-
putations as in Appendix A.3).

5. The inverse PCA is applied to the PCA bands. Note that, thanks to the previous step,
the color covariance matrix of the resulting image is the one of the input (vii).

Texture interpolation. The extension of texture interpolation to color images is straightforward
except for the choice of the color covariance matrix. We arbitrarily choose to use the average
Ct = tC1 + (1− t)C2 between the covariance matrices C1 and C2 of the two input textures.

Appendix C Algorithm and Implementation Details

In this section we precise details and tweaks that cannot be discussed elsewhere.

C.1 Input Handling and Options

Details concerning the input handling and options of the algorithm are presented below.

Input image crop. In order to compute the steerable pyramid with P scales, the image sizes
must be multiples of 2P+1. When necessary the input images are cropped and the output sizes are
adjusted.
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Number of scales. The sizes of the low-frequency residual lband must be greater than the auto-
correlation neighborhood Na. The number of scales in the pyramid decomposition is adjusted (before
the input image crop) to verify this condition.

Handling constant content. The PS algorithm suffers from instability if the input texture is
close to a constant. For a grayscale image, no computations are made if the input variance is smaller
than 10−2. For a color image, the color input image is replaced by the grayscale average of its color
bands if the color covariance matrix has an eigenvalue smaller than 10−2.

Handling artificial textures. Following the original MATLAB implementation, a small noise
is added to the sample texture before the pyramid decomposition in Line 1 of Algorithm 5. For
artificially generated textures, this is supposed to “avoid instability created by symmetric conditions
at the synthesis stage”. Note that the marginal statistics of (i)c are computed from the noise-free
texture. This trick is not used for color images.

Noise initialization. The synthesized texture is initialized in Line 3 of Algorithm 5. We provide
to the user the possibility to specify the seed of the random number generator or to directly specify
the noise image.

Boundary handling. The steerable pyramid decomposition relies on DFT computations (see Sec-
tion 2.2). To avoid artifacts introduced by the implicit periodic assumption we propose to the user
the possibility to use the periodic+smooth decomposition of [35]. As in [10], this boundary handling
consists in applying the algorithm to the periodic component of the input texture. The user can also
add the smooth component to the output texture. If the input and output sizes differs, the smooth
component is zoomed using bilinear interpolation [22]. The steps for computing the periodic+smooth
decomposition of an image are detailed in [7, Section 3.2].

C.2 Constraints Adjustment

Details concerning the constraints adjustment are presented below.

Adjustment of the low-frequency constraints. In Algorithm 4, the low-frequency constraints (i)a
and (ii) are only adjusted if the variance of the corresponding input low-frequency band is large
enough. Otherwise, only the variance of the low-frequency band is adjusted. More precisely, the
adjustments are made if the ratio between the variance of the input low-frequency band with:

• the variance of the input is greater than 10−4 for grayscale images,

• the eigenvalue of the corresponding color band is greater than 10−3 for color images.

In our implementation the variance of the low-frequency band is multiplied by 16p−1 where p
is the scale in the pyramid. This is done to replicate the normalization convention of the original
MATLAB implementation.

Skewness and kurtosis. Concerning the skewness and kurtosis adjustments (see Appendix A.1.3
and Appendix A.1.4), the following is done.
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• The adjustment is not performed if the initial value vini and the target value vtar are too close.
More precisely, the signal-to-noise ratio, noted SNR, is defined by

SNR = 20 log10

(∣∣∣∣
vtar

vtar − vini

∣∣∣∣
)
. (101)

The adjustment is only performed if SNR ≤ 60.

• For stability purposes, the mean and the variance are adjusted after the adjustment of the
skewness and kurtosis.

• A complex root is considered as a real root if the modulus of the ratio between its imaginary
and real parts is smaller than 10−6.

Cross-correlation adjustment. The cross-correlation adjustment (see Appendix A.3) relies on a
positive definite assumption that does not always hold. In practice, the square root computations of
matrices are done as follows.

For the one scale adjustment, the eigenvector decompositions C = BDBT and C̃ = B̃D̃B̃T are
first computed. To avoid numerical instabilities, the eigenvalues in D smaller than 10−12 are set
to 0 and the positive part of the eigenvalues in D̃ is taken. Finally, the matrices C−

1
2 and C̃

1
2 are

computed using
C−

1
2 = BD−

1
2BT and C̃

1
2 = B̃D̃

1
2 B̃T, (102)

where D−
1
2 denotes the Moore-Penrose inverse of D

1
2 .

For the two scales adjustment with fixed sub-bands, the handling is similar (replacing C and C̃
by F and F̃ ) except that the eigenvalues are allowed to be negative. The eigenvalues in D smaller
than 10−12 in absolute value are set to 0 while D̃ is not modified. The complex-valued square roots
are computed using the principal square root. Finally, the update matrix Ṽ given in (89) may be
complex-valued and its real part must be taken. In practice, the cross-correlation is only adjusted
if the ratio between the imaginary part variance and the real part variance is smaller than 10−6 for
grayscale images and 10−3 for color images.

Variance of the high-pass residual. In Line 26 of Algorithm 4, the variance of the high-pass
residual is only adjusted if the initial variance is greater than the target one.

C.3 Saving Computations

Computations are saved thanks to the following points.

• The spectral samples of the filters and the plans for computing the FFTs and iFFTs are
precomputed. For color images, the eigenvectors and the eigenvalues of the color covariance
matrix are also precomputed.

• During the steerable pyramid decomposition (see Algorithm 2) and the constraints adjustment
(see Algorithm 4), consecutive steps may rely on DFT computations. Unnecessary FFTs or
iFFTs can then be avoided.

• In Line 1 of Algorithm 4, the mean of the low-frequency residual lband is set to 0. In practice, this
is done efficiently in the Fourier domain during the complex steerable pyramid decomposition
(see Algorithm 2).

• During the input analysis, in Line 2 of Algorithm 5, the low-frequency bands of each scale are
required to compute the summary statistics (i)a and (ii). In practice, these images are added
to the pyramid decomposition in Line 1 of Algorithm 5.
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de Mathématique, Université de Strasbourg, 1 (1966), p. 2. http://dx.doi.org/10.1090/

S0002-9904-1952-09555-0.

[46] E. P. Simoncelli and W. T. Freeman, The steerable pyramid: A flexible architecture for
multi-scale derivative computation, in Proceedings., International Conference on Image Process-
ing, vol. 3, IEEE, 1995, pp. 444–447. https://doi.org/10.1109/ICIP.1995.537667.

[47] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable
multiscale transforms, IEEE Transactions on Information Theory, 38 (1992), pp. 587–607.
https://doi.org/10.1109/18.119725.

[48] R. S. Strichartz, A guide to distribution theory and Fourier transforms, World Scientific,
2003. https://doi.org/10.1142/5314.
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[58] G. Xia, S. Ferradans, G. Peyré, and J. Aujol, Synthesizing and mixing stationary
Gaussian texture models, SIAM Journal on Imaging Sciences, 7 (2014), pp. 476–508. https:

//doi.org/10.1137/130918010.

[59] Z. Xue and Z. Wang, Texture Mixing by Interpolating Deep Statistics via Gaussian Models,
IEEE Access, 8 (2020), pp. 60747–60758. https://doi.org/10.1109/ACCESS.2020.2981410.

[60] C. M. Ziemba, J. Freeman, A. J. Movshon, and E. P. Simoncelli, Selectivity and
tolerance for visual texture in macaque V2, Proceedings of the National Academy of Sciences,
113 (2016), pp. E3140–E3149. https://doi.org/10.1073/pnas.1510847113.

[61] C. M. Ziemba, J. Freeman, E. P. Simoncelli, and A. J. Movshon, Contextual modu-
lation of sensitivity to naturalistic image structure in macaque V2, Journal of Neurophysiology,
120 (2018), pp. 409–420. https://doi.org/10.1152/jn.00900.2017.

211

https://arxiv.org/abs/1905.10629
https://arxiv.org/abs/1905.10629
https://arxiv.org/pdf/2006.03698
https://arxiv.org/pdf/2006.03698
https://doi.org/10.1162/neco_a_01142
https://dx.doi.org/10.1167/16.2.4
https://dx.doi.org/10.1167/16.2.4
https://dx.doi.org/10.1167/17.12.5
https://dx.doi.org/10.1167/17.12.5
https://doi.org/10.7554/eLife.42512
https://doi.org/10.1137/130918010
https://doi.org/10.1137/130918010
https://doi.org/10.1109/ACCESS.2020.2981410
https://doi.org/10.1073/pnas.1510847113
https://doi.org/10.1152/jn.00900.2017

	Introduction
	The Steerable Pyramid Decomposition and Reconstruction
	Definitions of the Filters
	Image Decomposition and Reconstruction
	Filtering of Discrete Images
	Practical Decomposition and Reconstruction Algorithms

	The Portilla and Simoncelli Algorithm
	The Summary Statistics
	Constraints Adjustment

	Experiments
	Conclusion
	Details of the Constraints Adjustment
	Marginal Statistics Adjustment
	Range Adjustment
	Mean and Variance Adjustment
	Skewness Adjustment
	Kurtosis Adjustment

	Auto-correlation Adjustment
	Cross-correlation Adjustment
	Modulus Adjustment

	Extension to Color Images
	Principal Component Analysis (PCA)
	Differences between the Color and the Grayscale Versions

	Algorithm and Implementation Details
	Input Handling and Options
	Constraints Adjustment
	Saving Computations


