
Published in Image Processing On Line on 2021–03–02.
Submitted on 2020–02–02, accepted on 2021–02–05.
ISSN 2105–1232 c© 2021 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2021.328

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

The Polar Epipolar Rectification

François Darmon1,2, Pascal Monasse1
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Abstract

Epipolar rectification of a stereo pair is the process of resampling a pair of stereo images so that
the apparent motion of corresponding points is horizontal. This is an important preliminary
step in depth estimation, substituting depth by disparity estimation. Most methods rely on a
perspective transform of both images, which has the advantage to simulate a different attitude
of the pinhole cameras. A limitation is that when an epipole is inside the image domain, it
has to be sent to infinity by the perspective transform, producing a strong distortion. On the
contrary, relying on a polar transform centered at the epipole provides a method applicable
universally to a pair of pinhole camera views. We present in detail the algorithm, filling in the
information important for its implementation and missing in published articles.

Source Code

The ANSI C++ 03 implementation of the code that we provide is the one which has been peer
reviewed and accepted by IPOL. The source code, the code documentation, and the online
demo are accessible at the IPOL web part of this article1. Compilation and usage instructions
are included in the README.txt file of the archive.

Keywords: epipolar geometry; stereopsis; polar transform

1 Introduction

1.1 Position of the Problem

One of the key tasks in computer vision is to recover the depth information that is lost during the
image acquisition due to two-dimensional projection of the 3-D scene. Though depth is impossible to
recover from a single snapshot, a stereo pair with parallax allows in principle to infer that information,
following well-studied geometric principles. Assuming the standard pinhole camera model, if the
camera attitudes satisfy specific conditions, the apparent motion of points is horizontal between the
two images. This has the distinct advantage that the apparent horizontal motion, the disparity, is
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inversely proportional to the depth. The recovery of the depth is then translated into a constrained
(horizontal displacement) optical flow task. Unless a well calibrated stereo rig is used, such conditions
are not fulfilled in practice. Fortunately, it is always possible to change artificially the attitudes and
generate stereo rectified images. A sufficient number of point correspondences (8 in general) is
sufficient to achieve that task.

The relation between corresponding points xL and xR in the stereo pair is all summed up in the
scalar equation

x>LFxR = 0. (1)

Here xL and xR are 3-vectors, obtained by taking homogeneous coordinates of the points (appending
a 1 as last component to the Euclidean coordinates) and the 3×3 fundamental matrix F depends on
the respective camera attitudes and internal parameters. The two views are arbitrarily labelled “left”
and “right” images. Inspired by the influential book by Hartley and Zisserman [5], most publications
change the order and have xL on the right of F . This unfortunate choice just amounts to change F
to its transpose F>. In the rectified case, F takes the simple form

F =

0 0 0
0 0 −1
0 1 0

 , (2)

up to some non-zero scale (replacing F by λF in (1) yields the same equation). Applying adequate
homographies HL and HR (3× 3 invertible matrices) to the images yields

(HLxL)>
(
H−>L FH−1R

)
(HRxR) = 0, (3)

and the resulting correspondences (HLxL, HRxR) will be in rectified situation if

H>L

0 0 0
0 0 −1
0 1 0

HR = F, (4)

which yields 9 scalar equations on the 18 coefficients of HL and HR. While some invariance remains
in those equations, since there are families of pairs (H ′L, H

′
R) such that

H
′>
L

0 0 0
0 0 −1
0 1 0

H ′R =

0 0 0
0 0 −1
0 1 0

 , (5)

and (H ′LHL, H
′
RHR) will also satisfy (4), there still remain degrees of freedom in choosing the pairs

of homographies.

1.2 Previous Work

The best homographies are considered as the ones that distort the least the images. Depending on
how this distortion is measured, several algorithms were proposed to find the optimal pairs. Most rely
foremost on a first transformation sending the epipoles eL and eR to the point at infinity (1, 0, 0).
Epipoles represent image points in homogeneous coordinates and can be computed as non-trivial
vectors in the null space of F> and F

F>eL = FeR = 0. (6)

This defines eL and eR uniquely up to scale since F has rank 2. All epipolar lines in the left (resp.
right) image represented by a vector FxR (resp. F>xL) contain eL (resp. eR). Remember that a
3-vector ` represents the line of equation x>` = 0.
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The method of Hartley [4] achieves the first step by finding homographies that are equal to first
order to a rotation-translation in the neighborhood of a given point (typically the image center).
Loop and Zhang [7] strive for initial homographies as close as possible to affine, measured by the
variance of the third homogeneous coordinate of transformed points of the images. Gluckman and
Nayar [3] try instead to adjust as much as possible the determinant of the Jacobian of the homography
(as a measure of local resampling area) to the value 1 overall the image. Instead of relying on
arbitrary homographies, Fusiello and Irsara [2] assume that the camera intrinsics are known, except
the common focal length, allowing to have a quasi-Euclidean rectification process. Notably, the
method does not require to compute F but uses directly the point correspondences. A limitation
of the method is that both images should come from the same camera with the same settings and
in practice the principal point is assumed to be close to the image center (a reasonable assumption
unless the images have been cropped). An in-depth analysis of the algorithm with peer-reviewed
source code was done by Monasse in [9]. An extension of this method that has less risk of being
trapped in a local minimum in the minimization process was proposed by Monasse et al. [10].

Breaking with the homography-based rectification paradigm, an algorithm of Pollefeys et al. [12]
has the distinct advantage to not break down when one epipole is inside the image, being applicable in
all configurations. It relies on polar transforms around the epipoles. The idea has been reused by Lee
et al. [6], simplifying the angular sampling, and by Palander and Brandt [11], using a logarithmic
sampling along level lines instead of linear (log-polar transform). The present work revisits the
method and gives detailed procedures for its practical implementation.

2 Rectification by Polar Transform

2.1 High-Level Algorithm

The limitation of traditional methods of epipolar rectification is obvious in certain geometric config-
urations, when one of the epipoles is inside the image. Since rectification involves sending the epipole
to infinity, a full straight line in the image is sent to infinity, yielding huge deformations around the
line and the two parts of the image separated by this line being mapped to disconnected regions of
the Euclidean plane. Still, the line-to-line apparent motion of the points remains valid: whereas the
fundamental matrix is generally presented as a point-to-line transform, from P2 \ {e} (e being the
epipole), where the vectors are interpreted as points, to P2, where the vectors are interpreted as line
equations, it is also true that

F (λx+ µeR) = λFx, (7)

with λ, µ ∈ R and x ∈ R3 \ {eR}. This shows that any point on the line through x and eR is mapped
on the line on the left image represented by vector Fx. Therefore, pairs of corresponding epipolar
lines could be extracted independently, put horizontally, and arranged as wished to yield a correct
rectification, meaning that corresponding points move horizontally. This leads to the idea that a
polar transform of the left image around eL and the extraction of corresponding epipolar lines in the
right image to construct the right rectified image is appropriate, and could never fail, even when the
epipole is inside the image. The high level process of rectification is described in Algorithm 1 and
illustrated in Figure 1. While the process looks simple, lots of details must be added.

2.2 Chirality

Taking into account the orientation of lines, the correspondence between epipolar lines can be refined
to a correspondence of epipolar half lines. Indeed, the epipolar constraint (1) is actually a scalar
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IL IReL

JL JR

F

θ

eR

θ′

Figure 1: Overview of the rectification process. Here the left epipole is outside the image IL while the right epipole is
inside IR. Corresponding epipolar lines indexed by θ and θ′ = θ′(F, θ) are sampled and copied into the same row of JL and
JR.

Algorithm 1: High-level polar rectification algorithm.

Input: A stereo pair of images, (IL,IR), and their fundamental matrix F , an angular
sampling step δ.

Output: Rectified images (JL,JR), meaning that any point on JL has an apparent
horizontal motion on JR.

1 Extract epipoles eL and eR from F
2 for θL ∈ [0, 2π] (step δ) do
3 Add as new line to JL the sampling of image IL along the line issued from eL at angle θL
4 Compute angle θR of corresponding epipolar line from F and θL
5 Add as new line to JR the sampling of image IR along the line issued from eR at angle θR

equation derived from (38) in [8]:

eL × xL
+∼ FxR, (8)

meaning proportionality up to a positive factor. Here, eL, xL and xR are vector representations of
points in P2 with a positive third coordinate, typically 1, assuming they are all finite points. The left
hand side can be thought as the half line from eL passing through xL, that is, oriented from eL to xL.
The other half line has for equation its opposite, xL × eL, oriented from xL to eL. This can be used
to fix the orientation of F , meaning taking −F instead of F if the positivity in (8) is not satisfied for
a pair (xL, xR); whereas a single pair could be used for the orientation of F , it should then be valid
for all matching pairs. However, since we will be transferring line back and forth between images,
we also need to ensure the dual equation

eR × xR
+∼ F>xL. (9)

It may not be possible to satisfy both (8) and (9) by tuning a single parameter, the sign of F .
However, we may play with the signs of eL and eR: we keep F as given, but replace eL by −eL if (8)
is not satisfied, and eR by −eR if (9) is not satisfied. In other words, we can have a third coordinate
of −1 in eL or eR instead of 1 to encode the orientation. In such case, the epipolar line equation
F TxL and/or FxR must be negated to get the correct orientation. Taking into account the chirality
explains why we can sample along angles θL in [0, 2π] instead of [0, π]. The actual computation of
oriented vectors eL and eR is described in Algorithm 2. Notice that we must have xL 6= eL and
xR 6= eR (actually not even proportional) to be able to orient eL and eR.
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Algorithm 2: Computation of oriented epipoles from F (line 1 of Algorithm 1).

Input: Fundamental matrix F , pair of corresponding points (xL, xR).
Output: Epipoles eL and eR (3-vectors), such that (8) and (9) are satisfied when xL and xR

are represented by vectors with 1 as third coordinate.
1 Compute eL as cross product of two columns of F . // Algorithm 2 in [8] for details

2 Compute eR as cross product of two rows of F .
3 if (eL × xL)>FxR < 0, i.e., (8) not satisfied then eL ← −eL
4 if (eR × xR)>F>xL < 0, i.e., (9) not satisfied then eR ← −eR

2.3 Transferring Epipolar Lines

Given an epipolar half line at angle θL from eL, the computation of the angle θR of the corresponding
epipolar half line from eR (line 4 of Algorithm 1) is recommended by [12] as the application H`L
of a homography H to the line equation vector `L. Such a homography is specified in Appendix A
for completeness. However, we will not be using that procedure, as we do not start from a line
equation `L, but from an angle θL. It is actually simpler to find a point xL = eL + k(cos θL, sin θL, 0)
with any k > 0 on this line, apply F and extract orientation, a procedure detailed in Algorithm 3.
The line equation is then

`1R x+ `2R y + `3R = 0, (10)

and a direction vector is (`2R,−`1R). Finally, at line 4, we use the standard C function atan2, where
atan2(y, x) computes the angle θ ∈ [−π, π] that satisfies both equations√

x2 + y2 cos θ = x
√
x2 + y2 sin θ = y. (11)

Any real number k > 0 at line 1 selects a point on the epipolar line and is theoretically valid. In
practice, the value should not be neither too small nor too large in order to have a well defined point
on the line and far enough from the epipole. A good choice is k = %, the maximal distance from the
epipole to the image domain, defined in Section 2.4.

Transferring in the other direction, from right to left image, works similarly, but the multiplication
at line 2 is done with F , not F>.

Algorithm 3: Computation of θR, angle of corresponding epipolar half line (in right image)
to the one at angle θL in left image.

Input: Fundamental matrix F , its epipoles eL and eR, angle θL
Output: Corresponding angle θR, performing line 4 of Algorithm 1.

1 p←
(
e1L/e

3
L + k cos θL e2L/e

3
L + k sin θL 1

)T
// any k > 0 will do, super-indexes are

the elements of eL
2 `R ← F Tp
3 if e3R < 0 then `R ← −`R
4 θR ← atan2(−`1R, `2R)

2.4 Limitation of Radius and Angular Span

The bounds of sampling of the angle θL at line 2 of Algorithm 1 are written as [0, 2π], which may
be too much, since if the epipole eL is outside the image, many epipolar half lines will not meet the
image at all, producing useless blank lines in the rectified image. Similarly, at lines 3 and 5, the
sampling along radius goes from 0 to an unspecified bound, which must actually be precised.
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Figure 2: Limits of radius, ρ and %, and limits of θ, ϑ and Θ in different configurations. Left: epipole outside image. Middle:
epipole inside image, ρ = 0 and ϑ = Θ. Right: epipole at infinity (here ρ = 0); in any case either ρ = 0 or ϑ = 0.

The bounds of radius should be the smallest and largest distance from the epipole e to the filled
rectangle of the image, [0, w]× [0, h], with w and h the width and height of the image. The largest
distance %, is reached at one of the four corners of the image. The smallest distance ρ is the distance
from e = (e1, e2) to its projection p on the filled rectangle

p = (C0,w(e1), C0,h(e
2)), (12)

where the clamp function is defined as

Ca,b(x) = max (a,min(b, x)) . (13)

It can be noted that if e is inside the image, 0 ≤ e1 ≤ w and 0 ≤ e2 ≤ h, we get p = e and the lower
bound ρ of the radius is 0, while it is always positive otherwise, see Figure 2.

The minimum ϑ and maximum Θ of angle span obviously a 2π angular interval when e is inside
the image, whereas they are given by the angles from e to two of the four corners when e is outside
the image. Which of these corners depends on the region of e with respect to the image area and
is summarized in Figure 3. Algorithm 4 sums up the computation of the bounds. This is applied
independently to both images of the stereo pair with their respective epipole. Notice that line 6
seems useless, as ρ was already set and can never be improved. The explanation for its presence will
become clearer when we consider the possibility of e at infinity. The relative position of the corner
with respect to the image is encoded by a vector in {0, 1, 2}2, found by applying the function R0,w

and R0,h to the coordinates

Ra,b(x) =


0 if x < a,

2 if x > b,

1 otherwise.

(14)

Then the two extreme corners determining the bounds of θ are looked up in table T of Figure 3.
Notice that for e inside the image, the “extreme” corners are identical, P0, so that ϑ = Θ, which
must be interpreted as the full circle and thus we add 2π to Θ.

Actually, the angular bounds can be restricted by computing the common visible area of the two
images: the extreme half lines in the right image (joining the epipole to the extreme corners) can be
transferred to the left image, defining an angular interval, whose bounds are the mapped extreme
angles, see Figure 4. As shown in Appendix B, the correct interval has length less than π, and the
intersection can be computed according to Algorithm 5. The angles from the epipole to the extreme
corners in the right image are mapped to the left image following Algorithm 3 (but from right to
left). This yields two angles ϑ′L and Θ′L, which are in [−π, π], as the result of function atan2.

61



François Darmon, Pascal Monasse

(0,0) (1,0) (2,0)

(1,1) (2,1)

(2,2)(1,2)(0,2)

(0,1)

e

(0, 0)

(0, h)

(w, 0)

(w, h)

P0 P1

P2
P3

reg2\reg1 0 1 2
0 (1,3) (1,0) (2,0)
1 (0,3) (0,0) (2,1)
2 (0,2) (3,2) (3,1)

Table T . Depending on the region reg containing the

epipole, the indices i of the two extreme corners Pi are given

by T (reg). The indices are ordered such that the angle

between first and second half-lines is less than π (in

clockwise orientation).

Figure 3: Regions of the plane w.r.t. the image domain [0, w] × [0, h]. The look-up table T determines the two extreme
corners depending on the region containing the epipole e. When reg is a pair in {0, 1, 2}2, Treg = (T 1

reg, T 2
reg) is a pair of

indices in {0, 1, 2, 3}2.

Algorithm 4: Computation of the bounds of radius and angle for polar sampling

Input: Epipole e = (e1, e2), image dimensions [0, w]× [0, h].
Output: Bounds of polar sampling: [ρ, %] for radius, [ϑ,Θ] for angle.

1 reg ← (R0,w(e1), R0,h(e
2)) // Position of e w.r.t. image, see (14)

2 p← (C0,w(e1), C0,h(e
2)) // See (13)

3 ρ, %← d(e, p) // d is the Euclidean distance function

4 for i = 0, 1, 2, 3 do
5 (r, θ)← polar transform of vector Pi − e. // Pi is an image corner

6 ρ← min(ρ, r)
7 %← max(%, r)
8 if i = T 1(reg) then ϑ← θ // Table T defined in Figure 3

9 if i = T 2(reg) then Θ← θ
10 if ϑ ≥ Θ then Θ← Θ + 2π

Algorithm 5: Finding the angular span of the common visible region in left image.

Input: ϑL ∈ [−π, π], ΘL ∈ (ϑL, ϑL + 2π], defining the angular span [ϑL,ΘL] in the left image
from the epipole; angles ϑ′L,Θ

′
L ∈ [−π, π], mapped from the extreme angles in the

right image.
Output: Angular span of common region [ϑ′′L,Θ

′′
L] ⊂ [ϑL,ΘL]

1 if Θ′L < ϑ′L then (ϑ′L,Θ
′
L)← (Θ′L, ϑ

′
L)

2 if Θ′L > ϑ′L + π then
3 (ϑ′L,Θ

′
L)← (Θ′L, ϑ

′
L + 2π)

4 if Θ′L < ϑL then (ϑ′L,Θ
′
L)← (ϑ′L + 2π,Θ′L + 2π)

5 if ΘL < ϑ′L then (ϑ′L,Θ
′
L)← (ϑ′L − 2π,Θ′L − 2π)

6 ϑ′′L ← max(ϑL, ϑ
′
L)

7 Θ′′L ← min(ΘL,Θ
′
L)

2.5 Epipole(s) at Infinity

It may happen that an epipole is already at infinity, so that a rotation in the corresponding image is
sufficient to have horizontal epipolar lines. In that case, the polar transform makes no sense, since all
epipolar lines are parallel. The angle θ, used to identify epipolar lines, must be replaced by another
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eL

Θ

ϑ

eR

Figure 4: Mapping the extreme epipolar lines of the right view to the left view allows restricting the span of θ, [ϑ,Θ], to
the common visible region.

value. We propose to use the signed distance from the origin to the line, that is, if the line equation
is
(
`1 `2 `3

)
x = 0, we define

θ =
`3√
`21 + `22

. (15)

The trouble with that definition is that, despite its invariance to the scale of `, its sign depends on
the orientation of `. It is shown in Appendix C that a correct definition is

θ =
`3

b `1 − a `2
, (16)

with epipole e = (a, b, 0), normalized such that a2 + b2 = 1.
In the same manner, the radius ρ of the sampled point must be redefined. We define it as the

signed distance along line θ given by the orthogonal projection of the origin on the line. In other
words, the “polar” transform of a point (x, y) becomes the pair (ρ, θ), which are the coordinates of
the points with respect to the new frame given by the unit line direction vector and its orthogonal.
Therefore the transition matrix is orthogonal.

More precisely, (a, b) is a unit direction vector of epipolar lines, which can be completed by its
direct orthogonal (−b, a) to form a basis. The transition matrix M can be used to transfer between
Cartesian and “polar” coordinates

M =

(
a −b
b a

)
,

(
x y

)>
= M

(
ρ θ

)>
,

(
ρ θ

)>
= M> (x y

)>
. (17)

2.6 Fixing Orientation

As the standard coordinate system for images has the y-coordinate oriented downward (contrary to
trigonometric convention), the natural orientation for angles is clockwise. For an epipole in zone
(2, 0), (2, 1) or (2, 2), the minimum angle would be given by corner P2 = (w, h) in the first two cases
and P3 = (0, h) in the last case. That means that the first sampled epipolar line is toward the bottom
of the image. Also the sampling step progresses from right to left, and the rectification results in
a 180◦ rotated image. It is generally considered better to modify as little as possible the original
image, and thus it is advised to rotate back the rectified image.

The left image is responsible for θ sampling, and it should dictate the orientation. If the left
epipole is in one of the above regions, the rotation must be performed in the left image. The rotation
can be decomposed into an y-mirror and an x-mirror. For the right image, epipolar lines must follow
the movement for the y-mirror. However, the x-mirror can be chosen freely in each image, it does
not change the rectified nature of the output. The natural rule is to preserve the orientation of
the original image. Specifically, we take three points in the rectified image, (w/3, h/3), (2w/3, h/3)
and (w/3, 2h/3). We can map back these points to the original image, call them p1, p2, p3 and
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v12 = p2 − p1, v13 = p3 − p1. Vectors v12 and v13 in that order should be directly orthogonal. If we
observe a change of orientation, that is

v112 v
2
13 − v212 v113 < 0, (18)

it means that an x-mirror must be performed. Each image undergoes the procedure of Algorithm 6.
Notice that the condition at line 5 is automatically satisfied for J = JL, which means that the
y-mirror must be completed by an x-mirror to yield a rotation.

Algorithm 6: Choose the best image orientation

Input: Rectified image J = JL or J = JR
Output: Possibly rotated image J

1 if epipole eL in zone (2, 0), (2, 1), (2, 2) or (1, 2) then
2 Perform y-mirror on J
3 Map back points (w/3, h/3), (2w/3, h/3) and (w/3, 2h/3) to original image I (IL or IR): p1,

p2, p3
4 Compute vectors v12 = p2 − p1, v13 = p3 − p1
5 if condition (18) is satisfied then
6 Perform x-mirror on J

3 Implementation

3.1 Normalization of Epipoles

After Algorithm 2 is applied, the scales of the epipoles are still arbitrary, in the sense that λLeL and
λReR would also fit, provided λL, λR > 0. The most convenient is to have Cartesian coordinates
of the epipoles, that is e3 = 1. However, no positive λ allows that if e3 < 0. The next best thing
is to have e3 = ±1. A convenient feature of this normalization is that the epipole is at position
(e1/e3, e2/e3) = (e1 e3, e2 e3) since 1/e3 = e3. We have replaced a division by a multiplication, which
is more efficient by an order of magnitude for modern computer architectures.

This is valid only for a finite epipole, e3 6= 0. For an infinite epipole, it is convenient to have a
unit vector, so that (e1, e2) is a unit vector in the direction of epipolar lines. Their orientation can
be chosen arbitrarily, but it is best to have e1 ≥ 0, so that the lines are oriented “toward the right”
and the rectified image does not require rotation. In the case where e1 = 0, we put e2 > 0 for the
same reason (orientation toward bottom of image).

A delicate question is when to judge that the epipole is “at infinity”: the test e3 = 0 would never
happen because of noise or numerical imprecision, except on synthetic data. Just ignoring a non-null
but small (absolute) value of e3 is not wise, as the minimum and maximum radii ρ and % may become
huge, and we can be in a situation where r⊕ 1 = r (floating point addition), leading to trouble when
sampling epipolar lines.2 Therefore, it should be better to force e3 = 0 when that happens. A
reasonable threshold must decide when it has a small impact on epipolar lines. The epipolar line
through P0 = (0, 0, 1) has a direction vector v = (e1, e2) whatever e3 (provided e 6= P0), therefore
forcing e3 = 0 has no effect on this line. Assuming that typical dimensions of the image are 103, we
want at worst a shift of 1 pixel when forcing a line through Pi (another corner) to have direction
(e1, e2). Considering similar triangles illustrated in Figure 5, we find that the condition is satisfied
when 103/d < 1/103, that is d > 106. That translates to d2 < 1012, or equivalently e21 + e22 > 1012 e23,
which avoids any division by e3. The normalization process is summarized in Algorithm 7.

2Though it is unlikely to happen in double precision, requiring r > 253 ∼ 1016.
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e

P2P3

P0 P1

d ε∼ 103∼ 103

Figure 5: Deciding when to force epipole to infinity by setting e3 = 0. The error made should satisfy ε ≤ 1. Considering
similar triangles, the distance d of epipole to origin P0 should be at least 106 with typical image dimensions of 103.

Algorithm 7: Normalization of epipole, following Algorithm 2.

Input: Epipole e = (e1, e2, e3) as a 3-vector.
Output: Normalized epipole e.

1 if 1012 e23 < e21 + e22 then // e at infinity

2 e3 ← 0
3 if e1 < 0 or (e1 = 0 and e2 < 0) then e← −e
4 e← e/‖e‖
5 else e← e/|e3|

3.2 Rectified Images Domain

Since following Algorithm 4 the angular span is synchronized between both images, each row of the
generated images has its counterpart in the other image, therefore hJL = hJR . The choice is made
to sample this interval uniformly in the left image. This is in contrast to [12], where the angular
interval between consecutive epipolar lines is variable, inversely proportional to the largest distance
from the epipole to the image domain in left and right images. Such a choice makes tracking the
mapping between input and rectified images complex. We use a sampling step δ between ϑL and ΘL

defined by

δ =

{
1
%L

if e3L 6= 0,

1 if e3L = 0.
(19)

In the case of infinite epipole, θ is just a distance, so a natural step of 1 is chosen. In the case of
a finite epipole, the rectification is a true polar transform and the choice of 1/%L ensures that no
aliasing is introduced (in the left image) since the arc length is upper bounded by 1. Therefore, the
common number of rows of rectified images is

hJL = hJR =

⌈
ΘL − ϑL

δ

⌉
. (20)

The horizontal sampling, along epipolar lines, is always 1 pixel. Therefore, the horizontal dimensions
of the rectified images are

wJL = d%L − ρLe , wJR = d%R − ρRe . (21)

They need not be the same, even if images IL and IR have the same dimension, since they also
depend on the position of epipoles.
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3.3 Line sampling

The most convenient way to sample along an epipolar line is to have the origin o and a unit vector v.
For a finite epipole e, o = e is fixed and the variable unit vector v = (cos θ, sin θ) depends on θ. For
an infinite epipole, the orientation is fixed v = (e1, e2)/‖e‖ and the center o is variable, orthogonal
projection of the point (0, 0) on the line, indexed by θ, see Figure 6. This is summed up in Table 1(a),
where it is assumed that e has been normalized so that ‖e‖ = 1 if the epipole is at infinity.

When transferring the line in the other image of the pair, we do not have explicitly θ, but the
vector ` defining the line equation

`1x+ `2y + `3 = 0. (22)

When e3 = 0, knowing that the line direction is (e1, e2), θ given by (16) is the signed distance from
the origin

θ =
`3

e2 `1 − e1 `2
. (23)

The point o is then given in Cartesian coordinates by

o =
`3

e2 `1 − e1 `2
(−e2, e1). (24)

All cases of computation of o and v from ` are in Table 1(b).

(0, h)

(w, 0)

(w, h)

v = (a, b)(−b, a)
(0, 0)

(0, h)

(w, 0)

(w, h)

o = e

v = v(θ)
θ

o = o(θ)
θ(< 0)

(0, 0)

Figure 6: Identification of epipolar line as a function of θ: for a finite epipole (left), the origin o of sampling is the epipole
and θ the angle of the line with the horizontal; for an infinite epipole e = (a, b, 0) (right), θ (negative in this case) is the
signed distance of the origin and o the orthogonal projection of the origin. In each case, v is a unit direction vector of the
line. The polar transform of a point p is (r, θ), with r the (signed) distance to o and θ the parameter of the line through o
and p.

Only the diagonal coefficients of these tables changing with each epipolar line, the function
transfer theta returns this variable 2-vector instead of the resulting θ in Algorithm 3. If θ is
needed afterward, it can be recovered as

θ =

{
e1 o2 − e2 o1 if e3 = 0,

atan2(v2, v1) if e3 6= 0.
(25)

The function works as follows

1. Compute o and v from Table 1(a);

2. Find a point p on line (p = o if e3 = 0, p = o+ ρv otherwise);
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Epipole o v
e3 = 0 (−θe2, θe1) (e1, e2)
e3 6= 0 (e1/e3, e2/e3) (cos θ, sin θ)

Epipole o v

e3 = 0 `3
e2`1−e1`2 (−e2, e1) (e1, e2)

e3 6= 0 (e1/e3, e2/e3) (`2,−`1)/
√
`21 + `22

(a) Computation of o and v from θ. The case where the

epipole is at infinity (e3 = 0) has a different interpreta-

tion of θ (signed distance to origin) than the usual case

with a finite epipole (angle of line w.r.t. horizontal).

(b) Computation of o and v from line equation vector `. The

formulas for θ from ` are (16) θ = `3
e2`1−e1`2 if e3 = 0 and

θ = atan2(−`1, `2) otherwise.

Table 1: Parameters for line sampling: o is the origin of sampling, v is a unit vector of the direction of the line. It is assumed
that if the epipole e is at infinity (e3 = 0), ‖e‖2 = e21 + e22 + 02 = 1. Values depending on the epipolar line are in red.

3. Compute ` = Fp; (Take the opposite if e3 < 0)

4. Compute and return variable vector from Table 1(b).

It should be noted that at step 1 the epipole is in the source image (where θ is measured) and at
step 3 in the target image. Sometimes, we just need the variable vector from θ but without transfer.
If no fundamental matrix is input to the function, it just stops after step 1.

3.4 Pushforward and Pullback

Since input images IL and IR are output as JL and JR, we need to keep track of the change of
coordinates between IL and JL, as well as IR and JR. The process of changing coordinates from I
to J is called pushforward, while the inverse transformation from J to I is called pullback. Actually,
to generate J itself, we use a pullback map: for each pixel of J , determine from which location
in I to fetch the color. This allows us to separate the rectification from the image sampling and
interpolation, which in our implementation relies on splines [1]. The map is an application

{0, . . . , wJ − 1} × {0, . . . , hJ − 1} → R2. (26)

The domain is discrete (pixels) but the co-domain can include locations outside the image domain
of I. It is more efficient to tabulate the complete discrete function once, instead of computing for
each pixel: all pixels of J on the same row share the same θ. Transforming to Cartesian coordinates
implies the usage of trigonometric functions, which are costly. Doing that once per line of J is more
economical than for each pixel.

We also need the pushforward, transforming from I to J coordinates: this is used to draw in J
the positions of points having a corresponding point in the other image of the stereo pair. This is
essentially the polar transform. There is no advantage in precomputing the map if we call it once
per pixel. An application of the pushforward is to resample the depth map3 in the original image,
once it is computed in the rectified image.

Both pullback and pushforward are more direct when applied to the left image, because it is the
one guiding the regular sampling of θ. In the right image, the transfer of θ must be performed. The
pullback procedure is detailed in Algorithm 8. The sampling step δ for θ is 1 if the epipole eL is at
infinity, 1/% otherwise. The possible mirrors at the end are explained in Subsection 2.6.

The pushforward performs the inverse process, detailed in Algorithm 9.

3It actually does not make much sense to resample the disparity map, because disparity is defined only in the
rectified setup.
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Algorithm 8: Generation of the pullback map of rectified image J

Input: Image J ∈ {JL, JR}, fundamental matrix F if J = JR
Output: Pullback map P−1 giving for each pixel of J its origin in corresponding image I

1 for y = 0, . . . hJ − 1 do
2 θ ← ϑ+ y δ
3 Compute o and v (Table 1) // Function transfer theta, using F iff J = JR
4 for x = 0, . . . wJ − 1 do
5 r ← ρ+ x
6 P−1(x, y)← o+ r v

7 if JL must rotate then
8 Apply y-mirror to P−1

9 if orientation of P−1 incorrect then
10 Apply x-mirror to P−1

Algorithm 9: Pushforward.

Input: (x, y) Cartesian coordinates in image I ∈ {IL, IR}, fundamental matrix F if I = IR
Output: (x′, y′) corresponding point in rectified image J

1 (r, θ)← polar transform in I of point (x, y)
2 if I = IR then

3 `← F
(
x y 1

)>
4 Get new value of θ from ` according to Table 1(b)

// Transform (r, θ) into Cartesian coordinates in J
5 x′ ← r − ρI // ρI smallest radius of image I
6 y′ ← (θ − ϑL)/δ // δ = 1 if eL at infinity, 1/%L otherwise

7 if J must rotate then x′ ← wJ − 1− x′
8 if JL must rotate then y′ ← hJ − 1− y′

3.5 Source Code Exploration

We use one class object Polarizer per image. This structure records the position of the epipole as
a homogeneous 3-vector, computes the bounds of r and θ, and whether the image requires rotation.
The method polar performs the map (x, y) 7→ (r, θ) and restrict angles takes the bounds of θ
of the other image, transfers them to the current image via transfer theta, and computes the
intersection of intervals (inter mod 2pi for angular intervals).

An object of class Polarectifyer is used to manage the rectification process. It controls the
object Polarizer for each image, stores the fundamental matrix, and generates the pullback map,
which can be read by the method pullback map, taking as argument left or right. The inverse
process is provided by pushforward.

4 Experiments

Figure 7 shows the rectification of two photographs with the epipoles outside the image, though not
very far. Traditional rectification methods are able to handle such case, so as the polar rectification.
Notice how the left image is cut at the top and the right image at the bottom: their missing parts
correspond to epipolar lines that fall outside the image when transferred. SIFT point correspondences
being used to compute the fundamental matrix are marked in red in the rectified images. The
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program first computes SIFT point correspondences using the implementation of [13], then computes
the fundamental matrix by a RANSAC procedure with an adaptive threshold estimation [8] before
proceeding to the rectification.

The SIFT algorithm finds keypoints in both images and associates to each one a feature descriptor,
a vector in R128. Points P and Q in left and right images are considered to match if

‖fP − fQ‖ ≤ C min
Q′ 6=Q

‖fP − fQ′‖, (27)

with vectors f the descriptors of the points and the minimum spans all keypointsQ′ of the right image,
except Q. The positive SIFT ratio C is tunable and determines how ambiguous correspondences can
be. A low value of C (typically 0.6) keeps only unambiguous correspondences; a higher value means
the matching is less demanding. When C = 1, each point P matches the closest point in the right
image in terms of descriptor distance. This parameter can be changed by the demo user.

The estimation of the fundamental matrix relies on the set of SIFT correspondences. A subset
of 7 correspondences can give an estimated fundamental matrix, which can be voted on by all
other correspondences according to how they fit this model. After a sufficient number of candidate
fundamental matrices has been drawn, the best one is selected. The algorithm of [8] does not require
a threshold to distinguish inlier from outlier. It can also decide to fail if all matrix candidates are
considered to be due to chance. In that case, the rectification cannot proceed.

Figure 7: Polar rectification of an urban scene, with epipoles slightly outside the image

Figures 8 and 9 show examples with epipoles inside the images. Usual rectification algorithms
working with homography cannot handle such cases correctly, as they need to send the epipoles to
infinity. The four corners of the image can be seen as spikes in the rectified images. The drawback
of this rectification is that the polar transform can distort strongly the images, even locally. This
makes the disparity estimation harder for local algorithms.

Another example of rectification for epipoles inside the image is in Figure 10. In a zone near
the epipoles, it can be noticed that the lower SIFT point seems to have an important vertical shift.
This is due to the fact that near the center of the polar transform errors are amplified, because the
radial sampling is fine enough to accommodate points at large distance of the center. Whereas the
maximum error from a point to its epipolar line was 3 pixels after estimation of the fundamental
matrix, the angular sampling can increase it noticeably.
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Figure 8: Polar rectification with epipoles inside the image. Rectified images are presented rotated for layout purposes, so
that points move vertically.
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Figure 9: Polar rectification with epipoles inside the image. Rectified images are presented rotated for layout purposes, so
that points move vertically.

Figure 10: Polar rectification with epipoles inside the image. Rectified images are presented rotated for layout purposes, so
that points move vertically. Top, detail of a zone near the epipole.
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5 Conclusion

The advantage of the polar transform for rectification is that it is valid for any configuration of
epipoles, including when one or both are inside the image domain. A drawback is that the resulting
images are distorted, in the sense that straight lines in the original image become curved. That does
not facilitate the stereo matching. A better algorithm would mix both modes: when both epipoles
are outside the image, rectify with homographies; otherwise, rectify with the polar transform. When
only one epipole is inside the image, it is possible to apply a polar transform to this image and a
homography to the other. It remains to be seen if such mixed rectification helps a disparity estimation
algorithm to get better results, compared to the rectification with two polar transforms.

Image Credits

Schemas by the authors (license CC-BY-SA-4.0). Photograph sources:

VGG, Univ. of Oxford (https://www.robots.ox.ac.uk/~vgg/data/mview/)

Archives of demo system [8]:

http://demo.ipol.im/demo/147/archive?key=7F40D86EB04DBCC07822A1B2DBB0A7B9

http://demo.ipol.im/demo/147/archive?key=170230E6033D7C91167DB11EDF3C01CD

http://demo.ipol.im/demo/147/archive?key=6BE0B64461CD7A097B49D06035B69B8C

A Homography Mapping Epipolar Lines

We derive the form of the homography H mapping an epipolar line from the left image `L to its
corresponding epipolar line in the right image `R = H`L. Let us note eL and eR the epipoles,
F>eL = FeR = 0.

Proposition 1. A homography H maps left epipolar lines to their corresponding right epipolar lines
if and only if it can be written

H = F>[eL]× + ve>L , (28)

(up to factor) with v ∈ R3 an arbitrary vector such that v>eR 6= 0.

Notice that e>L`L = 0, expressing that the epipole eL is on the epipolar line `L, hence H`L =
F T [eL]×`L, independent on v. For the transfer of epipolar lines, we may choose v = 0, even though
the resulting H is not a homography since it is not invertible.

Proof. We have x := eL × `L 6= 0, and x>`L = 0, showing x is a point on this epipolar line different
from eL. Hence `R = F>x = F>[eL]×`L. For any v, we then have

F>[eL]×`L + ve>L`L = `R + 0, (29)

since e>L`L = 0. This proves that (28) is a sufficient condition. For the sake of completeness, we also
show its necessity.

Let H be a homography mapping left epipolar lines to their corresponding right epipolar lines
and x ∈ R3. If x is not linearly dependent on eL, `L = eL × x is the epipolar line through x, and we
can write

`R = F>x = H(eL × x), (30)
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(up to scale), the latest equality remaining true even if x is a multiple of eL, the terms being null.
Therefore, λF> = H[eL]×. Using the double cross product formula, [a]×[b]× = ba>− (a>b)Id, yields

λF>[eL]× = HeLe
>
L − ‖eL‖2H. (31)

Writing v := − 1
λ
HeL, we get the announced result,

−‖eL‖
2

λ
H = F T [eL]× + ve>L . (32)

The last condition of the theorem is necessary and sufficient to ensure that H defined by (28) is
invertible: choose v1 and v2 two non-colinear vectors of R3 orthogonal to eL. (eL, v1, v2) is a basis of
R3, hence H is invertible if and only if (HeL, Hv1, Hv2) is also a basis. We get Hvi = F>(eL × vi)
(i = 1, 2). We argue that eL × v1 and eL × v2 are two distinct epipolar lines

(eL × v1)× (eL × v2) =
(
e>L(v1 × v2)

)
eL, (33)

which is not the null vector since v1 × v2 is proportional to eL. Vectors v1 and v2 can represent
epipolar lines since e>Lvi = 0, and we deduce that Hv1 and Hv2 are the corresponding epipolar lines,
which are also distinct. Now HeL = ‖eL‖2v is not in the span of Hv1 and Hv2 if and only if

v>(Hv1 ×Hv2) 6= 0, (34)

and Hv1 × Hv2 is proportional to eR, as the intersection of two epipolar lines in the right image,
hence the condition becomes v>eR 6= 0.

B Angular Intervals

Given θ ∈ R, let us define its class modulo 2π

θ̄ = {θ + 2kπ : k ∈ N} . (35)

We define an angular interval [θ̄, ϑ̄] as

[θ̄, ϑ̄] = {t̄ : θ ≤ t ≤ ϑ+ 2kπ < θ + 2π, k ∈ N} . (36)

It is easy to check that this definition is independent of the representants θ ∈ θ̄ and ϑ ∈ ϑ̄. Notice
that an angular interval is never empty. The index k involved in the definition is uniquely defined
by

k =

⌊
θ − ϑ

2π

⌋
. (37)

Finally, this leads to the definition of the length of an interval∣∣[θ̄, ϑ̄]
∣∣ = ϑ+ 2kπ − θ ∈ [0, 2π). (38)

Given θ̄ 6= ϑ̄, we can define the two intervals [θ̄, ϑ̄] and [ϑ̄, θ̄], and we have∣∣[θ̄, ϑ̄]
∣∣+
∣∣[ϑ̄, θ̄]∣∣ = 2π, (39)

so that if one has length smaller than π, the other length is larger than π. We will also use a simple
result whose proof is left as an exercise.
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Lemma 1. Let α be an angular interval. The length |α| < π if and only if there is some θ such that
θ̄ 6∈ α and θ + π 6∈ α.

The following result allows finding the correct angular span bounded by θ̄ and ϑ̄ given by the
mapping of epipolar half lines.

Proposition 2. Let F be the fundamental matrix of a stereo pair. Assume that eR is outside the
right image and that neither eL nor eR is at infinity (e3L 6= 0 6= e3R). The mapping (in the left image)
of the right epipolar half lines spans an angular interval of length less than π.

Proof. The domain of the image being convex, thanks to the Hahn-Banach theorem we can find a line
` through eR such that ` does not meet the image. Applying the adequate rotation and translation
in the right image and without loss of generality, we can assume that

eR =
(
0 0 1

)>
, ` =

(
1 0 0

)>
. (40)

Given θ ∈ [0, 2π), let us define with a slight abuse of notation

F (θ) = F
(
cos θ sin θ 0

)>
, (41)

that is, the mapping of the epipolar half line in the right image at angle θ, which is an epipolar
half line in the left image. Since the line ` does not meet the image, all points P of the right image
domain define from eR an angular span [θ̄, ϑ̄] of length smaller than π, and 0̄ 6∈ [θ̄, ϑ̄], π̄ 6∈ [θ̄, ϑ̄].
Using the fact that θ ∈ [0, 2π) 7→ F (θ) is bijective (expressing the fact that the mapping between
epipolar half lines is one-to-one), it is monotonous, so that the image of the angular span [θ̄, ϑ̄] is
whether [F (θ̄), F (ϑ̄)] or [F (ϑ̄), F (θ̄)] depending on whether F is increasing or decreasing.4 Moreover,
neither F (0) nor F (π) = F (0) + π (epipolar half line complementary of F (0)) is in this interval,
implying that its length is less than π.

C Signed Distance from Origin of Epipolar Line for Epipole

at Infinity

We show that (16) is the signed distance of the epipolar line ` from the origin when the epipole is
at infinity (a, b, 0), normalized such that a2 + b2 = 1. Since ` is an epipolar line, we have (`1, `2) =
λ(−b, a), the latter being directly orthogonal to (a, b), a unit vector directing the epipolar lines. The
factor λ can be recovered by

λ =

(
−b
a

)>(
`1
`2

)
. (42)

The intersection of ` and its orthogonal line through the origin can be written in homogeneous
coordinates

p =

ab
0

× ` = p3

xy
1

 , (43)

with (x, y) the Cartesian coordinates of the point represented by p. The signed distance is therefore

θ =

(
−b
a

)>(
x
y

)
. (44)

4We have done an abuse of notation here, because F (θ) is not an angle, but has to be understood as the direction
angle of the half line defined by F (θ).
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It is easy to check that p3 = λ (using the normalization of the epipole), and then we find

λ θ =

−ba
0

> ab
0

× `
 = `>

−ba
0

×
ab

0

 = `>

 0
0
−1

 = −`3. (45)

Combined with (42), we deduce (16).

References

[1] T. Briand and P. Monasse, Theory and practice of image B-spline interpolation, Image
Processing On Line, 8 (2018), pp. 99–141. https://doi.org/10.5201/ipol.2018.221.

[2] A. Fusiello and L. Irsara, Quasi-Euclidean uncalibrated epipolar rectification, in Interna-
tional Conference on Pattern Recognition (ICPR), IEEE, 2008, pp. 1–4. https://doi.org/10.
1109/ICPR.2008.4761561.

[3] J. Gluckman and S.K. Nayar, Rectifying transformations that minimize resampling effects,
in Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,
IEEE, 2001, pp. I–I. https://doi.org/10.1109/CVPR.2001.990463.

[4] R.I. Hartley, Theory and practice of projective rectification, International Journal of Com-
puter Vision, 35 (1999), pp. 115–127. https://doi.org/10.1023/A:1008115206617.

[5] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge
University Press, 2nd ed., 2004. ISBN 978-0521540513.

[6] Y. Lee, K-A. Toh, and S. Lee, Stereo image rectification based on polar transformation,
Optical Engineering, 47 (2008), p. 087205. https://doi.org/10.1117/1.2969124.

[7] C. Loop and Z. Zhang, Computing rectifying homographies for stereo vision, in Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, IEEE, 1999,
pp. 125–131. https://doi.org/10.1109/CVPR.1999.786928.

[8] L. Moisan, P. Moulon, and P. Monasse, Fundamental matrix of a stereo pair, with a
contrario elimination of outliers, Image Processing On Line, 6 (2016), pp. 89–113. https:

//doi.org/10.5201/ipol.2016.147.

[9] P. Monasse, Quasi-Euclidean epipolar rectification, Image Processing On Line, 1 (2011),
pp. 187–199. https://doi.org/10.5201/ipol.2011.m_qer.

[10] P. Monasse, J-M. Morel, and Z. Tang, Three-step image rectification, in British Machine
Vision Conference, BMVA Press, 2010, pp. 89.1–89.10. http://dx.doi.org/10.5244/C.24.89.

[11] K. Palander and S.S. Brandt, Epipolar geometry and log-polar transform in wide baseline
stereo matching, in International Conference on Pattern Recognition (ICPR), IEEE, 2008, pp. 1–
4. https://doi.org/10.1109/ICPR.2008.4761515.

[12] M. Pollefeys, R. Koch, and L. Van Gool, A simple and efficient rectification method for
general motion, in International Conference on Computer Vision (ICCV), vol. 1, IEEE, 1999,
pp. 496–501. https://doi.org/10.1109/ICCV.1999.791262.

[13] I. Rey Otero and M. Delbracio, Anatomy of the SIFT method, Image Processing On Line,
4 (2014), pp. 370–396. https://doi.org/10.5201/ipol.2014.82.

75

https://doi.org/10.5201/ipol.2018.221
https://doi.org/10.1109/ICPR.2008.4761561
https://doi.org/10.1109/ICPR.2008.4761561
https://doi.org/10.1109/CVPR.2001.990463
https://doi.org/10.1023/A:1008115206617
https://doi.org/10.1117/1.2969124
https://doi.org/10.1109/CVPR.1999.786928
https://doi.org/10.5201/ipol.2016.147
https://doi.org/10.5201/ipol.2016.147
https://doi.org/10.5201/ipol.2011.m_qer
http://dx.doi.org/10.5244/C.24.89
https://doi.org/10.1109/ICPR.2008.4761515
https://doi.org/10.1109/ICCV.1999.791262
https://doi.org/10.5201/ipol.2014.82

	Introduction
	Position of the Problem
	Previous Work

	Rectification by Polar Transform
	High-Level Algorithm
	Chirality
	Transferring Epipolar Lines
	Limitation of Radius and Angular Span
	Epipole(s) at Infinity
	Fixing Orientation

	Implementation
	Normalization of Epipoles
	Rectified Images Domain
	Line sampling
	Pushforward and Pullback
	Source Code Exploration

	Experiments
	Conclusion
	Homography Mapping Epipolar Lines
	Angular Intervals
	Signed Distance from Origin of Epipolar Line for Epipole at Infinity

