
Published in Image Processing On Line on 2021–07–27.
Submitted on 2021–05–13, accepted on 2021–07–01.
ISSN 2105–1232 c© 2021 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2021.358

2
0
1
5
/
0
6
/
1
6

v
0
.5
.1

IP
O
L

a
rt
ic
le

c
la
ss

A Mathematical Analysis and Implementation of Residual

Interpolation Demosaicking Algorithms

Qiyu Jin1, Yu Guo1, Jean-Michel Morel2, Gabriele Facciolo2

1 Inner Mongolia University ({qyjin2015, yuguomath}@aliyun.com)
2 Centre Borelli, ENS Paris-Saclay, CNRS ({jean-michel.morel, gabriele.facciolo}@ens-paris-saclay.fr)

Abstract

Demosaicking is the process of reconstructing the full color image from its mosaic version on a
Bayer pattern. It is an integral part of the image processing pipeline for single sensor digital
color cameras. Demosaicking algorithms based on residual interpolation are interesting because
they produce competitive results with a low computational complexity. In this article, we
provide an analysis and careful implementation of the most relevant residual based demosaicking
algorithms. Our contribution is twofold. First, we present an analysis of the mathematical
principles of demosaicking algorithms from the Hamilton-Adams interpolation to the recent
“adaptive residual interpolation”. Our analysis untangles the relations of these algorithms and
how each is improving on the preceding ones. Lastly, we provide a comparison between most
recent state of the art methods on several image data sets and discuss their performances.

Keywords: demosaicking; residual interpolation; Bayer color filter array; guided filter

1 Introduction

Color images require at least three color components per pixel, so acquiring a color digital camera
would require at least three different sensors for every pixel, each of them capturing information
about a particular light wavelength. A first technical solution is to place three spectral sensor
arrays on a plane. Then the light entering the camera is split and projected on each spectral sensor
array. Unfortunately, this solution is very expensive. Furthermore it requires an accurate registration
between the different acquired spectral images. Most digital cameras use a simpler color filter array
(CFA) to capture the color information of a scene. At each pixel in the array, only one color
component (R, G or B) is measured. The most common type of CFA is the Bayer array [5], shown
in Figure 1, in which two out of four pixels measure the green component, one measures red and one
blue.

Since only one color value is measured at each pixel, the resulting image is a scalar mosaic. The
process of completing the missing red, green and blue values at each pixel is called demosaicking.
The simplest demosaicking method consists in performing a bilinear interpolation of the known
neighboring pixels, however this results in serious zipper effects. In order to smooth the edges of

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo, A Mathematical Analysis and Implementation of Residual Interpolation
Demosaicking Algorithms, Image Processing On Line, 11 (2021), pp. 234–283. https://doi.org/10.5201/ipol.2021.358

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2021.358

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Figure 1: The RGB Bayer color filter array, CFA, which is used by most cameras.

the interpolated image, Laroche and Prescott [24] introduced a gradient based interpolation. The
gradient values of horizontal and vertical directions are compared with each other in order to select
one of the directions as the preferred orientation for the interpolation of the green image and then the
green image is interpolated. After that, the interpolation of the red and blue images is guided by the
interpolated green image. Hence, the most important step is to estimate the missing green values.
Hamilton and Adams (HA) [15, 1] improved the gradient based interpolation of the green channel
by taking into account the second order derivatives estimated from the red and blue channels, thus,
taking advantage of the inter-channel correlation. At each pixel, color interpolation is carried out
in an adaptive direction given by the estimated gradient. Direction adaptive filtering is the most
popular approach to color demosaicking for producing competitive results. Other direction adaptive
filterings [8, 31] have been proposed by more complicated gradient-based demosaicking schemes.
However, the gradient estimate is not robust for images whose sampling rate is below the Nyquist
frequency. This is the main cause of color artifacts in demosaicked images.

In order to overcome the limit of Nyquist frequency, the correlation between the color channels
is exploited. The three color channels of a natural image are highly correlated, which amounts
to assuming that the difference between the R, G and B channels is smooth. Then Zhang and
Wu [41] proposed to estimate the missing green samples in both horizontal and vertical directions
by a directional linear minimum mean square-error estimation (DLMMSE) technique. This method
combines horizontal and vertical color differences to the final difference and then adds them to
the available (red/blue) target pixel to get an estimated green value. Following the idea of [41],
Pekkucuksen and Altunbasak [30] decoupled the north-south and east-west directions from each
other and then computed four directional color differences, i.e. for the north, south, east and west
directions. Then the final difference to estimate the missing green value is obtained by combining the
four directional color differences. Kiku at al. [20] then proposed to use a guided filter upsampling [16]
and residual interpolation technique in the framework of [30] in order to smooth the edges. Their
method is called residual interpolation (RI). Iterative versions of this algorithm were proposed in [38,
39]. In 2014, Kiku at al. [21] proposed minimized-Laplacian residual interpolation (MLRI), which
estimated the tentative pixel values by minimizing the cost function on the Laplacian of the image
using a guided filter. The weighted minimized-Laplacian residual interpolation (MLRI+wei) [22]
introduces a weighted average of linear coefficients of the guided filter. Jaiswal et al. [18] and Wu et
al. [36, 37] proposed to use an RI-based algorithm to improve the demosaicking performance. Finally
the Adaptive Residual Interpolation (ARI) [28, 27] adaptively combines RI and MLRI, and selects
a suitable iteration number at each pixel. All the above mentioned algorithms interpolate the green
image first, and then estimate the red and blue images by using information of the interpolated green

235

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

image.
Besides the local interpolation based algorithms mentioned above, many more sophisticated

techniques have been introduced: the “non-local” algorithms based on the grouping of similar
patches [26, 6, 7, 42, 10, 11], wavelet-based algorithms [25, 2, 40], dictionary learning based al-
gorithms [17, 4, 26]. Finally the recent deep learning methods [14, 34, 32, 33, 23] work very well for
natural images.

In this paper, we shall first analyze in depth a seed method, the Hamilton-Adams interpolation
(HA) [15, 1], then its generalizations, namely the gradient based threshold free method (GBTF) [30],
RI [20], MLRI [21], MLRI+wei [22] and ARI [28, 27]. Our goal is to establish their relation and
underlying mathematical models. The first key contribution of our research is to display the mathe-
matical principles of these algorithms and to analyze the successive improvements from HA to ARI.
Our second contribution is the comparison of these algorithms with the most recent and sophisticated
state of the art demosaicking algorithms, to put in evidence their strengths and weaknesses.

This paper is organized as follows. Section 2 is dedicated to notation. Section 3 analyzes the
Hamilton-Adams (HA) interpolation method. Section 4 investigates GBTF, the Gradient based
threshold free interpolation method. Residual based algorithms (RI, MLRI and MLRI+wei) are
studied together and different guided filters are introduced in Section 5. Section 6 is dedicated to
the most advanced residual interpolation algorithm, ARI. In Section 7 we perform a comprehensive
comparison of the performance of all algorithms for both visual and quantitative criteria.

2 Mosaicking and Notation

Definition 1. (Arithmetic Operators) Given two scalar matrices A(i, j) and B(i, j) with the same
dimensions, the operation symbol .∗ denotes their element-wise multiplication. Thus setting C =
A.∗B, then for each element C(i, j) of matrix C, C(i, j) = A(i, j)B(i, j). It is natural to note A.∗A
by A2. Similarly the operation symbol ./ denotes the element-wise right division, i.e. if C = A./B,
then for each element C(i, j) of matrix C, C(i, j) = A(i, j)/B(i, j). We also write C = |A| for
C(i, j) = |A(i, j)|.

In a single-sensor camera equipped with a color filter array (CFA) [5], only one pixel value among
the three RGB values is recorded at each pixel. Consider a CFA block as shown in Figure 1, the
CFA model can be obtained by masking the RGB image MR. ∗R(i, j)

(MGR +MGB). ∗G(i, j)
MB. ∗B(i, j)

 ,
where (R,G,B)(i, j), (i, j) ∈ Ω = [1, 2, · · · , N1]× [1, 2, · · · , N2] is a complete RGB color image, R, G,
B representing the red, green, and blue channel respectively and MR,MGR,MGB,MB are the CFA
masks.

In detail, the mask matrices are written as

MR(i, j) =

{
1, if (i, j) ∈ ΩR;
0, if (i, j) /∈ ΩR,

MGR(i, j) =

{
1, if (i, j) ∈ ΩGR;
0, if (i, j) /∈ ΩGR,

MGB(i, j) =

{
1, if (i, j) ∈ ΩGB;
0, if (i, j) /∈ ΩGB,

236

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

MB(i, j) =

{
1, if (i, j) ∈ ΩB;
0, if (i, j) /∈ ΩB,

where ΩR,ΩGR,ΩGB,ΩB ⊆ Ω are disjoint sets of pixels which record red, green, and blue values
respectively (see Figure 1) and satisfy ΩR ∪ ΩGR ∪ ΩGB ∪ ΩB = Ω. The green set of pixels ΩG is
combined with ΩGR and ΩGB as shown in Figure 1, i.e. ΩGR ∪ ΩGB = ΩG and ΩGR ∩ ΩGB = ∅. For
convenience, we introduce a green mask, and a non-green mask as follows

MG = MGR +MGB, and MIG = MR +MB.

Hence, putting all mosaicked color values in one matrix leads to the complete mosaicked image

Q = MR. ∗R +MGR. ∗G+MGB. ∗G+MB. ∗B, (1)

which is equivalent to

Q(i, j) =

R(i, j), if (i, j) ∈ ΩR,
G(i, j), if (i, j) ∈ ΩG,
B(i, j), if (i, j) ∈ ΩB.

2.1 Tensor Notation, Filters

Given an R,G,B image, we now set as a convenient notation,

Φ =

Φ[1]
Φ[2]
Φ[3]
Φ[4]

 =

MR. ∗R
MGR. ∗G
MGB. ∗G
MB. ∗B

 ,
i.e. Φ[1] = MR. ∗ R, Φ[2] = MGR. ∗ G, Φ[3] = MGB. ∗ G and Φ[4] = MB. ∗ B. Notice that for each
pixel (i, j) at least three of these values are zero. Every element Φ[k, i, j] in the tensor Φ is given by

Φ[k, i, j] = Φ[k](i, j), k ∈ {1, 2, 3, 4} and (i, j) ∈ Ω.

Two special permutation transformations TH and TV of the tensor Φ are defined by

TH(Φ) = TH

Φ[1]
Φ[2]
Φ[3]
Φ[4]

 =

Φ[2]
Φ[1]
Φ[4]
Φ[3]

 , (2)

and

TV(Φ) = TV

Φ[1]
Φ[2]
Φ[3]
Φ[4]

 =

Φ[3]
Φ[4]
Φ[1]
Φ[2]

 . (3)

We also define the mask

M =

M[1]
M[2]
M[3]
M[4]

 =

MR

MGR

MGB

MB

 .
i.e. M[1] = MR, M[2] = MGR, M[3] = MGB and M[4] = MB.

237

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

A square window of size d× d centered at (i, j) ∈ Ω will be denoted by

N d
i,j = {(s, t) : ||(i, j)− (s, t)||∞ ≤ ds},

where ds = d−1
2

is a positive integer. For each (i, j) ∈ Ω, the matrix

Q(N d
i,j) = (Q(s, t))(s,t)∈N d

i,j
,

formed by the values Q(s, t) of the image at pixels (s, t) ∈ N d
i,j, will be called data patch or similarity

patch centered at (i, j). For example,

Q(N 3
i,j) =

 Q(i− 1, j − 1) Q(i, j − 1) Q(i+ 1, j − 1)
Q(i− 1, j) Q(i, j) Q(i+ 1, j)

Q(i− 1, j + 1) Q(i, j + 1) Q(i+ 1, j + 1)

 .
The horizontal set of pixels of size d × 1 centered at (i, j) ∈ Ω and the vertical set of pixels of size
1× d centered at (i, j) ∈ Ω are denoted by

Hd
i,j = {(s, j) : |s− i| ≤ ds} and Vdi,j = {(i, t) : |t− j| ≤ ds},

respectively, and the vectors

Q(Hd
i,j) = (Q(s, t))(s,t)∈Hd

i,j
and Q(Vdi,j) = (Q(s, t))(s,t)∈Vd

i,j
, (4)

will be called horizontal data vector and vertical data vector. For instance

Q(H5
i,j) =

[
Q(i− 2, j) Q(i− 1, j) Q(i, j) Q(i+ 1, j) Q(i+ 2, j)

]
,

and
Q(V5

i,j) =
[
Q(i, j − 2) Q(i, j − 1) Q(i, j) Q(i, j + 1) Q(i, j + 2)

]T
.

Here we introduce notation for two local mean functions: the box mean

I = fm(I, ds), (5)

which is defined by

I(i, j) =
1

(2ds + 1)2

∑
(s,t)∈N d

i,j

I(s, t),

and the weighted mean
I = fwm(I, w, ds), (6)

which is defined by

I(i, j) =

∑
(s,t)∈N d

i,j
w(s, t)I(s, t)∑

(s,t)∈N d
i,j
w(s, t)

.

The scalar products of vectors or matrices A and B is denoted by < A,B >, for example,〈[
a1,1 a2,1

a1,2 a2,2

]
,

[
b1,1 b2,1

b1,2 b2,2

]〉
= a1,1b1,1 + a1,2b1,2 + a2,1b2,1 + a2,2b2,2. (7)

The cross-correlation (or just correlation) between a (2n1 + 1)× (2n2 + 1) kernel A and an N1 ×N2

image B is defined by

A⊗B(i, j) =

n1∑
s=−n1

n2∑
t=−n2

A(s, t)B(ς(i, s), τ(j, t)),

238

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

where

ς(i, s) =

i+ s, if 1 ≤ i+ s ≤ N1;
1− (i+ s), if i+ s < 1;
2N1 − (i+ s), if i+ s > N1,

and

τ(j, t) =

j + t, if 1 ≤ j + t ≤ N2;
1− (j + t), if j + t < 1;
2N2 − (j + t), if j + t > N2.

According to this definition, this correlation operation extends the image B by replication (by the
value of the closest pixel) at the boundary. For convenience, we also define the correlation operation
between a matrix and a tensor

A⊗ Φ = A⊗

Φ[1]
Φ[2]
Φ[3]
Φ[4]

 =

A⊗ Φ[1]
A⊗ Φ[2]
A⊗ Φ[3]
A⊗ Φ[4]

 .

3 The Hamilton-Adams Interpolation

Directional filtering is the most popular approach to color demosaicking. The best known directional
interpolation scheme is perhaps the Laplacian filter proposed by Hamilton and Adams (HA) [15, 1].
Their key assumption is that in the “red” lines of the CFA, the second horizontal derivatives of R
and G are nearly equal, and the same assumption for the “blue” lines links the horizontal derivatives
of G and B. Similarly, the second vertical derivatives of R and G are nearly equal on the “red”
columns of the CFA, and the analogue assumption for G and B on “blue” columns. This amounts
to write for example

∂2G(i, j)

∂i2
' ∂2R(i, j)

∂i2
,

∂2G(i, j)

∂j2
' ∂2R(i, j)

∂j2
.

To understand how such assumptions are used, let us state and explain the main formulas of the HA
algorithm. Applying a second order Taylor formula to the green pixels yields

G(i− 1, j) = G(i, j)− ∂G

∂i
(i, j) +

1

2

∂2G

∂i2
(i, j) + o(1),

and

G(i+ 1, j) = G(i, j) +
∂G

∂i
(i, j) +

1

2

∂2G

∂i2
(i, j) + o(1).

(Here “1” is assumed small, which makes sense if we consider that this is a pixel unit.) Summing
the last two relations yields

G(i− 1, j) +G(i+ 1, j)

2
' G(i, j) +

1

2

∂2G

∂i2
(i, j).

Hence,

G(i, j) ' G(i− 1, j) +G(i+ 1, j)

2
− 1

2

∂2G

∂i2
(i, j). (8)

The HA method then takes the assumption that ∂2G
∂i2

(i, j) = ∂2R
∂i2

(i, j) and it approximates the red
derivative by the difference,

∂2R

∂i2
(i, j) ' R(i− 2, j)− 2R(i, j) +R(i+ 2, j)

4
. (9)

239

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

It therefore follows from (8) and (9) that

G(i, j) ' G(i− 1, j) +G(i+ 1, j)

2
− R(i− 2, j)− 2R(i, j) +R(i+ 2, j)

4
.

To summarize, all of the HA formulas will be based on applying a second order discrete Taylor
formula to all channels R, G, B and transferring known discrete second derivatives from R and B to
G and conversely from G to R and B.

3.1 HA Green Channel Interpolation

Through the above analysis, the green HA horizontal interpolation at the red pixels (i, j) ∈ ΩR can
be expressed as

G̃H(i, j) =
G(i− 1, j) +G(i+ 1, j)

2
− R(i− 2, j)− 2R(i, j) +R(i+ 2, j)

4

=
1

2
< G(H3

i,j), KH > −1

4
< R(H5

i,j), ∆̃H >, (i, j) ∈ ΩR. (10)

where G(H3
i,j) is defined by (4) with G instead of Q, the scalar product < ·, · > is defined by (7), the

vector KH is the horizontal interpolation kernel

KH =
[

1 0 1
]
, (11)

and ∆̃H corresponds to the discrete horizontal Laplacian operator,

∆̃H =
[
−1 0 2 0 −1

]
. (12)

By replacing the operator < ·, · > with cross-correlation operations ⊗ we obtain the equivalent
formulation

MR. ∗ G̃H =
1

2
(MGR. ∗G)⊗KH −

1

4
(MR. ∗R)⊗ ∆̃H . (13)

Similarly the vertical interpolations at the red pixels (i, j) ∈ ΩR are given by

G̃V (i, j) =
1

2
< G(V3

i,j), KV > −
1

4
< R(V5

i,j), ∆̃V >, (i, j) ∈ ΩR, (14)

where G(V3
i,j) is defined by (4) with G instant of Q, and

KV = KT
H , and ∆̃V = ∆̃T

H . (15)

The correlation-based version of the formula (14) is

MR. ∗ G̃V =
1

2
(MGB. ∗G)⊗KV −

1

4
(MR. ∗R)⊗ ∆̃V .

In the same way, the interpolation of blue pixels set is given as

MB. ∗ G̃H =
1

2
(MGB. ∗G)⊗KH −

1

4
(MB. ∗B)⊗ ∆̃H , (16)

and

MB. ∗ G̃V =
1

2
(MGR. ∗G)⊗KV −

1

4
(MB. ∗B)⊗ ∆̃V .

240

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

We deduce the green interpolation at pixels set ΩR ∪ ΩB as follows

MIG. ∗ G̃H = MR. ∗ G̃H +MB. ∗ G̃H

=
1

2
(MGR. ∗G)⊗KH −

1

4
(MR. ∗R)⊗ ∆̃H

+
1

2
(MGB. ∗G)⊗KH −

1

4
(MB. ∗B)⊗ ∆̃H

=
1

2
(MG. ∗G)⊗KH −

1

4
(MR. ∗R +MB. ∗B)⊗ ∆̃H

=
1

2
(MG. ∗Q)⊗KH −

1

4
[(MR +MB). ∗Q]⊗ ∆̃H

=
1

2
(MG. ∗Q)⊗KH −

1

4
(MIG. ∗Q)⊗ ∆̃H

= MIG. ∗ (
1

2
Q⊗KH −

1

4
Q⊗ ∆̃H).

The definition ofMIG leads to the first equation. The second equation means that the green horizontal
interpolation interpolates the green pixels values, uses the red pixels values by formula (13) and the
blue pixels values by formula (16). We get the fourth equation by using the definition of Q given
by (1): it is easy to get MG. ∗Q = MG. ∗G and (MR + MB). ∗Q = MR. ∗ R + MB. ∗ B. The sixth
equation is valid because [1

2
(MG. ∗ Q) ⊗KH](i, j) = 0 for all (i, j) ∈ ΩG. This yields the horizontal

green interpolation

MIG. ∗ G̃H = MIG. ∗ (
1

2
Q⊗KH −

1

4
Q⊗ ∆̃H). (17)

In the same way, we obtain the vertical green interpolation at pixels set ΩR ∪ ΩB,

MIG. ∗ G̃V = MIG. ∗ (
1

2
Q⊗KV −

1

4
Q⊗ ∆̃V). (18)

The sums of the absolute value of the first order partial derivatives and the absolute value of the
second order partial derivatives ∣∣∣∣∂G(i, j)

∂i

∣∣∣∣+

∣∣∣∣∂2G(i, j)

∂i2

∣∣∣∣ ,
and ∣∣∣∣∂G(i, j)

∂j

∣∣∣∣+

∣∣∣∣∂2G(i, j)

∂j2

∣∣∣∣ ,
are used to estimate how flat G is in the i direction (horizontal direction) and j direction (vertical
direction). For that the following classifiers are defined

CLH(i, j) =

{
| < G(H3

i,j), DH > |+ | < R(H5
i,j), ∆̃H > |, if (i, j) ∈ ΩR,

| < G(H3
i,j), DH > |+ | < B(H5

i,j), ∆̃H > |, if (i, j) ∈ ΩB,
(19)

CLV (i, j) =

{
| < G(V3

i,j), DV > |+ | < R(V5
i,j), ∆̃V > |, if (i, j) ∈ ΩR,

| < G(V3
i,j), DV > |+ | < B(V5

i,j), ∆̃V > |, if (i, j) ∈ ΩB.
(20)

with

DH =
[
−1 0 1

]
and DV = DT

H =
[
−1 0 1

]T
. (21)

241

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Expressing Equation (19) using cross-correlations we obtain

MIG. ∗ CLH = MR. ∗ (|MG. ∗G⊗DH |+ |MR. ∗R⊗ ∆̃H |)
+MB. ∗ (|MG. ∗G⊗DH |+ |MB. ∗B ⊗ ∆̃H |)

= MR. ∗ (|MG. ∗Q⊗DH |+ |MR. ∗Q⊗ ∆̃H |)
+MB. ∗ (|MG. ∗Q⊗DH |+ |MB. ∗Q⊗ ∆̃H |)

= (MR +MB). ∗ (|MG. ∗Q⊗DH |+ |(MR +MB). ∗Q⊗ ∆̃H |)
= (MR +MB). ∗ (|Q⊗DH |+ |Q⊗ ∆̃H |).

In the above derivation the first step combines the red and blue classifiers, then the definition of Q
is applied. Lastly, the mask MR +MB and definition of DH and ∆̃H imply that we can remove MG

from |MG. ∗Q⊗DH | and MR +MB from |(MR +MB). ∗Q⊗ ∆̃H | yielding the result.
A similar derivation yields the expression for the vertical classifiers from (20)

MIG. ∗ CLV = MIG. ∗ (|Q⊗DV |+ |Q⊗ ∆̃V |).

The magnitudes CLH and CLV measure how flat the image is in the horizontal or vertical
direction. These classifiers are composed of Laplacian second-order terms for the red/blue data and
gradients for the green data. When CLH(i, j) < CLV (i, j) it means that the horizontal direction

is more flat than the vertical direction, hence the horizontal interpolation G̃H is better than the
vertical interpolation G̃V at pixel (i, j). Otherwise, the vertical interpolation G̃V is better than the

horizontal interpolation G̃H at the pixel (i, j). When CLH(i, j) = CLV (i, j) the horizontal direction

is as flat as the vertical direction, in which case the mean of G̃H and G̃V at pixel (i, j) is taken. In
summary the HA green image interpolation is obtained by

Ĝ(i, j) =

G̃H(i, j), if (i, j) ∈ ΩR ∪ ΩB andCLH(i, j) < CLV (i, j),

G̃V (i, j), if (i, j) ∈ ΩR ∪ ΩB andCLH(i, j) > CLV (i, j),
G̃H(i,j)+G̃V (i,j)

2
, if (i, j) ∈ ΩR ∪ ΩB andCLH(i, j) = CLV (i, j),

G(i, j), if (i, j) ∈ ΩG.

The pseudo-code describing the green interpolation can be found in Algorithm 1.

3.2 HA Red and Blue Channel Interpolation

Once the green samples have been filled, the red and blue samples are interpolated in a similar way
using the 1−D Laplacian of the green channel as reference. The pseudo-code describing the red
interpolation is given in Algorithm 2. The HA red interpolation for pixels (i, j) ∈ ΩGR uses the
horizontal interpolation

MGR. ∗ R̃H(i, j) = MGR. ∗ (
1

2
(MR. ∗R)⊗KH −

1

4
Ĝ⊗∆H),

and for pixels (i, j) ∈ ΩGB the analogous vertical interpolation is used,

MGB. ∗ R̃V (i, j) = MGB. ∗ (
1

2
(MR. ∗R)⊗KV −

1

4
Ĝ⊗∆V),

where the horizontal and vertical discrete Laplacian vectors are defined by

∆H =
[

1 −2 1
]

and ∆V = ∆T
H =

[
1 −2 1

]T
. (22)

242

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 1 Pseudo-code for HA Green Interpolation

Input: Mosaicked image Φ = [MR. ∗R,MGR. ∗G,MGB. ∗G,MB. ∗B]T ,
Mask M = [MR,MGR,MGB,MB]T

Output: interpolated green Ĝ
1: function HA G(Φ,M)
2: KH ← [1, 0, 1], KV ← KT

H

3: ∆̃H ← [1, 0,−2, 0, 1], ∆̃V ← ∆̃T
H

4: DH ← [−1, 0, 1], DV ← DT
H

5: Q←MR. ∗R +MGR. ∗G+MGB. ∗G+MB. ∗B
6: for I ∈ {H,V } do

7: G̃I ← Q⊗ (1
2
KI − 1

4
∆̃I)

8: CLI ← |Q⊗DI |+ |Q⊗ ∆̃I |
9: end for

10: Ĝ← G̃H when CLV > CLH ;
G̃V when CLV < CLH ;
(G̃H + G̃V)/2 otherwise

11: Ĝ← (MR +MB). ∗ Ĝ+MGR. ∗G+MGB. ∗G
12: end function

The red value at blue pixels (i, j) ∈ ΩB is interpolated similarly to the green interpolation by
substituting the diagonal and anti-diagonal directions to the horizontal and vertical directions that
where used for the green interpolation. The diagonal direction interpolation is defined by

R̃P (i, j) =
R(i− 1, j − 1) +R(i+ 1, j + 1)

2
− Ĝ(i− 1, j − 1)− 2Ĝ(i, j) + Ĝ(i+ 1, j + 1)

4

=
1

2
< R(N 3

i,j), KP > +
1

4
< Ĝ(N 3

i,j),∆P >, (23)

where KP and ∆P are defined by

KP =

 1 0 0
0 0 0
0 0 1

 and ∆P =

 1 0 0
0 −2 0
0 0 1

 . (24)

The correlation expression corresponding to Formula (23) is

MB. ∗ R̃P =
1

2
(MR. ∗R)⊗KP −

1

4
Ĝ⊗∆P

= MB. ∗ (
1

2
R⊗KP −

1

4
Ĝ⊗∆P).

In the same way, the anti-diagonal direction interpolation is given by

MB. ∗ R̃N = MB. ∗ (
1

2
R⊗KN −

1

4
Ĝ⊗∆N),

where

KN =

 0 0 1
0 0 0
1 0 0

 and ∆N =

 0 0 1
0 −2 0
1 0 0

 . (25)

243

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

The classifiers for the positive and negative directions are obtained in the same way as the classifiers
for green interpolation

MB. ∗ CLP = MB. ∗ (|R⊗DP |+ |Ĝ⊗∆P |),

and
MB. ∗ CLN = MB. ∗ (|R⊗DN |+ |Ĝ⊗∆N |),

where

DP =

 −1 0 0
0 0 0
0 0 1

 , DN =

 0 0 −1
0 0 0
1 0 0

 . (26)

With the same arguments as for the green interpolation, the red interpolation at blue pixels R̂ gets
R̃P when CLN > CLP , R̃N when CLN < CLP , and (G̃P + G̃N)/2 otherwise. The red estimate is
given by

R̂ = MB. ∗ R̂B +MGR. ∗ R̃H +MGB. ∗ R̃V +MR. ∗R.

The blue interpolation is obtained in the same way as the red interpolation.

Algorithm 2 Pseudo-code for HA Red Interpolation

Input: Mosaicked image Φ = [MR. ∗R,MGR. ∗G,MGB. ∗G,MB. ∗B]T ,
Mask M = [MR,MGR,MGB,MB]T ,

green interpolation Ĝ
Output: Interpolated red R̂

1: function HA RB(Φ,M, Ĝ)
2: KH ← [1, 0, 1], KV ← KT

H

3: KN and KP ← given by Equations (24) and (25)
4: ∆N and ∆P ← given by Equations (24) and (25)
5: ∆H and ∆V ← given by Equation (22)
6: DN and DP ← given by Equation (26)
7: for I ∈ {H,V,N, P} do

8: R̃I ← 1
2
R⊗KI − 1

4
Ĝ⊗∆I // HA interpolation for four directions //

9: if I ∈ {N,P} then

10: CLI ← |R⊗DI |+ |Ĝ⊗∆I | // classifiers of positive and negative directions //

11: end if
12: end for

// determines the red value for the blue pixel //

13: MB. ∗ R̂← R̃N when CLP > CLN ;
R̃P when CLP < CLN ;
(R̃N + R̃P)/2 otherwise

14: R̂←MB. ∗ R̂ +MGR. ∗ R̃H +MGB. ∗ R̃V +MR. ∗R
15: end function

4 Gradient Based Threshold Free Interpolation

The HA method just uses the horizontal or vertical direction interpolations, but for a given direction,
the conditions might be different for pixels falling to the opposite sides of the target pixel especially
near edges or in textured regions as illustrated in Figure 2. In order to improve the results in

244

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

(a) (b)

Figure 2: Illustration of the adaptive GBTF interpolation: (a) for the central pixel to be interpolated neither the horizontal
nor the vertical interpolations are good. GBTF gives a larger weight value to the west direction, and smaller weights to all
other directions. (b): the central pixel cannot be interpolated reliably in the horizontal or vertical direction. GBTF gives
larger weights to the west and north interpolations.

these cases Pekkucuksen and Altunbasak [30] proposed to decouple the interpolation in north-south
and east-west directions, to consider them separately, and then to combine the estimations from
every direction. This eliminates the need for thresholds. Instead of making a hard decision on the
direction of the edge they proposed a Gradient Based Threshold Free (GBTF) algorithm, which
again assumes that the difference between two colors has a negligible Laplacian in either horizontal
or vertical direction. Figure 2 (a) illustrates the advantage of this approach: the central pixel to be
interpolated is located near an edge in such a way that neither horizontal nor vertical interpolations
are good. One sees that the west direction interpolation is much better than other directions. The
GBTF method gives a larger weight value to this direction and smaller weights to the other directions.
In the case proposed by Figure 2 (b), we cannot interpolate reliably the central pixel in the horizontal
or vertical direction. It is clear that the west and north interpolations are better than the east and
south, so the method gives larger weights to the west and north interpolations. The method also
first interpolates the G pixel values, then the R and B pixel values are interpolated by using the
color difference interpolation.

4.1 GBTF Green Channel Interpolation

The GBTF [30] interpolation process of the G pixel values consists of four steps that are outlined in
Figure 3 (see Algorithm 3).

Step (i) The Hamilton-Adams (HA) interpolation [15] is applied in the horizontal and vertical
directions to estimate the G values at the R and B pixels and the R and B values at the G pixels. As
a result, the horizontally and vertically interpolated R, G, and B pixel values are generated. From
Section 3.1, we get MIG. ∗ G̃H and MIG. ∗ G̃V (see Equations (17) and (18)). According to the
derivation process of Equation (17), we have

MGR. ∗ R̃H = MGR. ∗ [Q⊗ (
1

2
KH −

1

4
∆̃H)],

MGB. ∗ B̃H = MGB. ∗ [Q⊗ (
1

2
KH −

1

4
∆̃H)],

245

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Figure 3: Outline of the proposed G pixel value interpolation at the R pixels which is common to four methods: GBTF,
RI, MLRI and MLRI+wei. The type of interpolation used at Step (i) of the pipelines determines the kind of algorithm:
HA interpolation 7→ GBTF, GF interpolation 7→ RI, MLGF interpolation 7→ MLRI, and Weighted-MLGF interpolation 7→
MLRI+wei.

MGB. ∗ R̃V = MGR. ∗ [Q⊗ (
1

2
KV −

1

4
∆̃V)],

and

MGR. ∗ B̃V = MGR. ∗ [Q⊗ (
1

2
KV −

1

4
∆̃V)].

Setting

Q̃H =
1

2
Q⊗KH −

1

4
Q⊗ ∆̃H ,

Q̃V =
1

2
Q⊗KV −

1

4
Q⊗ ∆̃V ,

then we have

MIG. ∗ G̃H = MIG. ∗ Q̃H , MGR. ∗ R̃H = MGR. ∗ Q̃H , and MGB. ∗ B̃H = MGB. ∗ Q̃H ,

MIG. ∗ G̃V = MIG. ∗ Q̃V , MGB. ∗ R̃V = MGB. ∗ Q̃V , and MGR. ∗ B̃V = MGR. ∗ Q̃V .
(27)

Step (ii) The horizontal difference (G−R) is computed for each pixel as

Rg,r
H (i, j) =

G̃H(i, j)−R(i, j), if (i, j) ∈ ΩR,

G(i, j)− R̃H(i, j), if (i, j) ∈ ΩGR,
0, if (i, j) ∈ ΩGB ∪ ΩB,

which is equivalent to
Rg,r
H = MR. ∗ (G̃H −R) +MGR. ∗ (G− R̃H), (28)

while the horizontal difference (G−B) is

Rg,b
H = MB. ∗ (G̃H −B) +MGB. ∗ (G− B̃H). (29)

246

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Combining (28), (29) and (27), we get

RH = Rg,r
H + Rg,b

H

= MR. ∗ (G̃H −R) +MGR. ∗ (G− R̃H)

+MB. ∗ (G̃H −B) +MGB. ∗ (G− B̃H)

= (MR +MB). ∗ G̃H + (MGR +MGB). ∗G
−(MR. ∗R +MGR. ∗ R̃H +MB. ∗B +MGB. ∗ B̃H)

= MIG. ∗ G̃H +MG. ∗G
−(MR. ∗R +MGR. ∗ R̃H +MB. ∗B +MGB. ∗ B̃H)

= MIG. ∗ Q̃H +MG. ∗Q
−(MR. ∗R +MGR. ∗ Q̃H +MB. ∗B +MGB. ∗ Q̃H)

= MIG. ∗ Q̃H +MG. ∗Q− (MG. ∗ Q̃H +MIG. ∗Q)

= (MIG −MG). ∗ Q̃H + (MG −MIG). ∗Q,

i.e.
RH = (MIG −MG). ∗ (Q̃H −Q).

In the same way for the vertical directions, we get

RV = (MIG −MG). ∗ (Q̃V −Q).

Step (iii) The horizontal and vertical color differences are smoothed and then combined into
the final color difference estimate. The final difference estimate for the target pixel (i, j) ∈ ΩGR is
computed as

R(i, j) = {WN < fN ,RV (V9
i,j) > +

WS < fS,RV (V9
i,j) > +

WE < RH(H9
i,j), fE > + (30)

WW < RH(H9
i,j), fW >

}
/WT ,

where
WT = WN +WS +WE +WW ,

fE =
[

0 0 0 0 26 24 21 17 12
]
/100,

fW =
[

12 17 21 24 26 0 0 0 0
]
/100, (31)

fS =
[

0 0 0 0 26 24 21 17 12
]T
/100,

fN =
[

12 17 21 24 26 0 0 0 0
]T
/100,

and < ·, · > denotes scalar products of vectors defined by (7). The weight for each direction
(WN ,WS,WE,WW) is computed using color difference gradients in horizontal and vertical directions
as

WE = 1/max{
(
< K5

G,R
D
H(N 5

i+1,j) >
)2
, 1},

WW = 1/max{
(
< K5

G,R
D
H(N 5

i−1,j) >
)2
, 1},

WN = 1/max{
(
< K5

G,R
D
V (N 5

i,j−1) >
)2
, 1},

247

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

and
WS = 1/max{

(
< K5

G,R
D
V (N 5

i,j+1) >
)2
, 1},

where K5
G is a 5× 5 Gaussian kernel matrix, i.e.

K5
G =

0.0232 0.0338 0.0383 0.0338 0.0232
0.0338 0.0492 0.0558 0.0492 0.0338
0.0383 0.0558 0.0632 0.0558 0.0383
0.0338 0.0492 0.0558 0.0492 0.0338
0.0232 0.0338 0.0383 0.0338 0.0232

 . (32)

The directional gradients are computed as

RD
H(i, j) = | < RH(H3

i,j), DH > | (33)

and

RD
V (i, j) = | < RV (V3

i,j), DV > |, (34)

where the kernels for the horizontal and vertical derivatives, DH and DV , are defined by (21). Here
there is a difference between the algorithm in paper [30] and the reference code provided by the
authors. In the code, (33) and (34) are replaced by

RD
H(i, j) = | < RH(H3

i,j−1), DH > |+ | < RH(H3
i,j), DH > |+ | < RH(H3

i,j+1), DH > |, (35)

and

RD
V (i, j) = | < RV (V3

i−1,j), DV > |+ | < RV (V3
i,j), DV > |+ | < RV (V3

i+1,j), DV > |, (36)

to calculate RD
H(i, j) and RD

V (i, j).
Step (iv) The G pixel values at the R and B pixels are interpolated by adding the observed R

or B pixel values to the final color difference estimates

Ĝ(i, j) =

R(i, j) + R(i, j), if (i, j) ∈ ΩR,
G(i, j), if (i, j) ∈ ΩG,
B(i, j) + R(i, j), if (i, j) ∈ ΩB.

i.e.
Ĝ = MR. ∗ (R +R) +MG. ∗G+MB. ∗ (R +B).

4.2 GBTF Red and Blue Channel Interpolation

Red pixel values at blue locations are interpolated using the following filter

R̂0(i, j) =

 Ĝ(i, j)− < R(N 7
i,j), Krb >, if (i, j) ∈ ΩB,

R(i, j), if (i, j) ∈ ΩR,
0, if (i, j) ∈ ΩG,

(37)

where the second-order polynomial interpolation filter Krb (see Appendix of Paliy et al. [29]) was
used, namely

Krb =

0 0 −1 0 −1 0 0
0 0 0 0 0 0 0
−1 0 10 0 10 0 −1
0 0 0 0 0 0 0
−1 0 10 0 10 0 −1
0 0 0 0 0 0 0
0 0 −1 0 −1 0 0

× 1

32
, (38)

248

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 3 Pseudo-code for GBTF Green Interpolation

Input: Mosaicked image Φ = [MR. ∗R,MGR. ∗G,MGB. ∗G,MB. ∗B]T ,
Mask M = [MR,MGR,MGR,MB]T

Output: interpolated green Ĝ,R
1: function GBTF G(Φ,M)

// Initialization //

2: KH ← [1, 0, 1], KV ← KT
H

3: AH ← [1, 1, 1], AV ← ATH
4: ∆̃H ← [1, 0− 2, 0, 1], ∆̃V ← ∆̃T

H

5: DH ← [−1, 0, 1], DV ← DT
H

6: F ← K5
G defined by (32)

7: KE ← [0, 0, 1], KW ← [1, 0, 0], KS ← [0, 0, 1]T , KN ← [1, 0, 0]T ,
8: fE, fW , fS, fN ← defined by (31)
9: Q←MR. ∗R +MGR. ∗G+MGB. ∗G+MB. ∗B

// Main loop: H means horizontal interpolation and V vertical interpolation //

10: for I ∈ {H,V } do
// first step: compute HA interpolation//

11: Q̃I ← Q⊗ (1
2
KI − 1

4
∆̃I)

// Second step: compute the color difference//

12: RI ← (MR +MB −MGR −MGB)(Q̃I −Q)
// Third step: weighted combination of horizontal and vertical color difference//

13: RD
I ← |DI ⊗RI | ⊗ ATI

14: R
D

I ← F ⊗RI

15: end for
16: WE ← 1(

KE⊗R
D
H

)2
+ε

, WW ← 1(
KW⊗R

D
H

)2
+ε

, WS ← 1(
KS⊗R

D
V

)2
+ε

, WN ← 1(
KN⊗R

D
V

)2
+ε

17: W ← WE +WW +WS +WN

18: R← (WN . ∗ (fN ⊗RV) +WS. ∗ (fS ⊗RV) +WW . ∗ (fW ⊗RH) +WE. ∗ (fE ⊗RH))./W
// Fourth step: final result//

19: Ĝ←MR. ∗ (R +R) + (MGR +MGB). ∗G+MB. ∗ (R +B)
20: end function

and < ·, · > denotes scalar products of matrices. For red pixels at green locations, we use bilinear
interpolation of the closest four neighbors. The immediate vertical neighbors of a green pixel are red
or blue pixels. The red values at a green pixels are interpolated as follows: for (i, j) ∈ ΩG

R̂(i, j) =

{
G(i, j)− < [Ĝ− R̂0](N 3

i,j), KA >, if (i, j) ∈ ΩG,

R̂0(i, j), if (i, j) ∈ ΩR ∪ ΩB,
(39)

where

KA =

 0 1/4 0
1/4 0 1/4
0 1/4 0

 . (40)

The outline of the GBTF red interpolation and pseudo code is given in Figure 4 (a) and Algorithm 4

respectively. The blue interpolated image B̂ is computed in the same manner.

249

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Figure 4: The interpolation of the red pixel values (a) by using GBTF, and (b) by using RI-based interpolation: RI, MLRI
and MLRI+wei. The only two differences between RI, MLRI and MLRI+wei are the first and second steps: RI (RI green
interpolation and GF upsampling), MLRI (MLRI green interpolation and MLGF upsampling), MLRI+wei (MLRI+wei green
interpolation and weighted-MLGF upsampling).

Algorithm 4 Pseudo-code for GBTF Red Interpolation

Input: Mosaicked image Φ = [MR. ∗R,MGR. ∗G,MGB. ∗G,MB. ∗B]T ,
Mask M = [MR,MGR,MGR,MB]T ,

green interpolation Ĝ,
color difference R

Output: Interpolated red R̂ and blue B̂
1: function GBTF RB(Φ,M, Ĝ,R)
2: Krb ← defined by Equation (38)
3: KA ← defined by Equation (40)

4: R̂0 ←MB. ∗ (Ĝ−R⊗Krb) +MR. ∗R (Equation (37))

5: R̂← (MR +MB). ∗ R̂0 + (MGR +MGB). ∗ (G− [Ĝ− R̂0]⊗KA) (Equation (39))
6: end function

5 Residual Interpolation

Residual interpolation (RI) was introduced by Kiku et al. [20]. Similarly to GBTF, RI first inter-
polates G, then R and B. For the green interpolation, RI computes the horizontal and vertical
interpolations of R, G and B images by a Guided Filter (GF) [16], and then obtains the tentative
estimates by improving the interpolation results with a residual technique instead of the HA inter-
polation. Once the tentative estimates are computed, it obtains the final green image estimate as
a weighted average of the tentative estimates in four directions using the same method as GBTF
(see Section 4.1). The extended RI versions such as the minimized-Laplacian residual interpolation
(MLRI) [21] and the weighted minimized-Laplacian residual interpolation (MLRI+wei) [22] involve
a modification of the guided filter algorithm which minimizes the Laplacian energy. The modified

250

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

version of GF is called Minimized-Laplacian Guided Filter (MLGF).
The guided filter is the key to RI algorithms, and it is combined with a residual technique to

improve the tentative estimates for the interpolation. The GF and its modified version MLGF will
be described in Appendix A.

5.1 RI Green Channel Interpolation

In order to improve the green image interpolation, Kiku et al. proposed in [20] a residual interpolation
using GF in the first step of GBTF, but without changing the other steps of the method. Hence the
outline of the green interpolation of GBTF and RI is the same except for the first step. Therefore,
in this section we will only discuss the first step of the green channel interpolation which is divided
into five parts (see Figure 3).

1. Firstly, in order to have a guide image for GF, the horizontal and vertical interpolations of the
mosaicked image Φ are computed as

ΦH =
1

2
KH ⊗ Φ =

1
2
KH ⊗ Φ[1]

1
2
KH ⊗ Φ[2]

1
2
KH ⊗ Φ[2]

1
2
KH ⊗ Φ[4]

 ,
and

ΦV =
1

2
KV ⊗ Φ =

1
2
KV ⊗ Φ[1]

1
2
KV ⊗ Φ[2]

1
2
KV ⊗ Φ[2]

1
2
KV ⊗ Φ[4]

 ,
with Φ[1] = MR. ∗R, Φ[2] = MGR. ∗G, Φ[3] = MGB. ∗G and Φ[4] = MB. ∗B.

2. Next, taking ΦH and ΦV as guide images for the GF algorithm (see Algorithm 11), the hori-
zontal and vertical tentative estimates ΦH and ΦV are computed, i.e.

ΦH = GF(TH(ΦH),ΦH ,M, ∆̃H , SH , J,Weight, ε),

and
ΦV = GF(TV(ΦV),ΦV ,M, ∆̃V , SV , J,Weight, ε).

Here, setting J = MLGF corresponds to using MLGF, otherwise it is GF; and when Weight =
True the weighted GF/MLGF algorithm is used.

3. The residual values between the original value and tentative estimate on the mask M are then
computed i.e.

RΦH = M. ∗ (Φ− ΦH) =

M[1]. ∗ (Φ[1]− ΦH [1])
M[2]. ∗ (Φ[2]− ΦH [2])
M[3]. ∗ (Φ[3]− ΦH [3])
M[4]. ∗ (Φ[4]− ΦH [4])

 ,
and

RΦV = M. ∗ (Φ− ΦV) =

M[1]. ∗ (Φ[1]− ΦV [1])
M[2]. ∗ (Φ[2]− ΦV [2])
M[3]. ∗ (Φ[3]− ΦV [3])
M[4]. ∗ (Φ[4]− ΦV [4])

 ,
with M[1] = MR, M[2] = MGR, M[3] = MGB and M[4] = MB.

251

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

4. After that, the residuals are interpolated, yielding

RΦH =
1

2
KH ⊗RΦH =

1
2
KH ⊗RΦH [1]

1
2
KH ⊗RΦH [2]

1
2
KH ⊗RΦH [3]

1
2
KH ⊗RΦH [4]

 ,
and

RΦV =
1

2
KV ⊗RΦV =

1
2
KV ⊗RΦV [1]

1
2
KV ⊗RΦV [2]

1
2
KV ⊗RΦV [3]

1
2
KV ⊗RΦV [4]

 .
5. Finally, the interpolated residual image is added to the tentative estimate to obtain the inter-

polated image

Φ̃H = TH(M). ∗ (ΦH + RΦH) =

M[2]. ∗ (ΦH + RΦH)[1]
M[1]. ∗ (ΦH + RΦH)[2]
M[4]. ∗ (ΦH + RΦH)[3]
M[3]. ∗ (ΦH + RΦH)[4]

 ,
and

Φ̃V = TV(M). ∗ (ΦV + RΦV) =

M[3]. ∗ (ΦV + RΦV)[1]
M[4]. ∗ (ΦV + RΦV)[2]
M[1]. ∗ (ΦV + RΦV)[3]
M[2]. ∗ (ΦV + RΦV)[4]

 .
The fact that the residual GF tentative estimate is more precise than the HA interpolate is the

main contribution of the methods based on residual interpolation. After modifying the first step,
Steps (ii)–(iv) are the same as for the GBTF green interpolation. The pseudo-code for all the variants
of the RI algorithm is given in Algorithm 5. The only difference between the four types of residual
interpolation resides in their use of the guided filter. Hence, setting the parameters for the guided
filter determines the different kinds of residual interpolation. These parameter settings are:

• RI: J = RI, Weight = False;

• RI+wei: J = RI, Weight = True;

• MLRI: J = MLRI, Weight = False;

• MLRI+wei: J = MLRI, Weight = True.

5.2 RI Red and Blue Channel Interpolation

After the G image is interpolated, the GBTF algorithm uses the color difference interpolation for
estimating the R and B pixel values as described in Section 4.2. Here, the color difference interpo-
lation is replaced by the residual interpolation as illustrated in Figure 4 (b). We just discuss the red
interpolation as the blue interpolation is analogous. The pseudo code is given in Algorithm 6.

The tentative estimate images R are obtained by the GF using the green image Ĝ as guide, i.e.

R = GF(Ĝ,MR. ∗R,MR, ∆̃, S, J,Weight, ε),

252

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 5 Pseudo-code for RI/MLRI green interpolation

Input: Mosaicked image Φ = [MR. ∗R,MGR. ∗G,MGB. ∗G,MB. ∗B]T ,
Mask M = [MR,MGR,MGR,MB]T ,
case J : case for algorithm choices J ∈ {RI,MLRI} ,
case Weight: case for weights Weight ∈ {True, False},
regularization ε,
directional weight smoothing σ (default 1)

Output: interpolated green Ĝ
1: function RI(Φ,M, J,Weight, σ)

// Initialization //

2: KH ← [1, 0, 1], KV ← KT
H

3: ∆̃H ← [1, 0− 2, 0, 1], ∆̃V ← ∆̃T
H

4: DH ← [−1, 0, 1], DV ← DT
H

5: F ← K9
G(σ) // 9× 9 Gaussian kernel of standard deviation σ similar to definition (32) //

6: SH = SV ← [3, 3] if J 6= RI; otherwise SH ← [5, 0], SV ← [0, 5]
7: KE ← [0, 0, 1], KW ← [1, 0, 0], KS ← [0, 0, 1]T , KN ← [1, 0, 0]T // 5-tap with RI i.e. KE←[0, 0, 0, 0, 1]//

// Main loop: H means horizontal interpolation and V vertical interpolation //

8: for I ∈ {H,V } do
// first step: compute the residual GF tentative estimate with five parts//

9: ΦI ← 1
2
KI ⊗ Φ + Φ // Part 1: horizontal and vertical interpolations //

//Notes for GF algorithm: If J = MLGF , it is MLGF, else GF. If Weight = True, it is weighed GF/MLGF, else GF/MLGF//

10: ΦI ← GF(TI(ΦI),ΦI ,MI , ∆̃I , SI , J,Weight, ε) //Part 2: generate GF estimate of all channels //

11: RΦI ←M. ∗ (Φ− ΦI) //Part 3: compute the residual values under mask M //

12: RΦI ← 1
2
KI ⊗RΦI //Part 4: interpolate the residual values //

13: Φ̃I ← TI(M). ∗ (ΦI + RΦI) //Part 5: add the residual value to GF estimate //

// Second step: compute the color difference//

14: RΦ̃I ←M. ∗ (Φ− TI(Φ̃I))

15: RI ← −RΦ̃I [1] + RΦ̃I [2] + RΦ̃I [3]−RΦ̃I [4]
// Third step: weighted combine horizontal and vertical color difference//

16: RD
I ← |DI ⊗RI |

17: R
D

I ← F ⊗RI

18: end for
19: WE ← 1(

KE⊗R
D
H

)2
+ε

, WW ← 1(
KW⊗R

D
H

)2
+ε

, WS ← 1(
KS⊗R

D
V

)2
+ε

, WN ← 1(
KN⊗R

D
V

)2
+ε

20: W ← WE +WW +WS +WN

21: R← (WN . ∗ (fN ⊗RV) +WS. ∗ (fS ⊗RV) +WW . ∗ (fW ⊗RH) +WE. ∗ (fE ⊗RH))./W
// Fourth step: final result//

22: Ĝ←M[1]. ∗ (R + Φ[1]) + Φ[2] + Φ[3] + M[4]. ∗ (R + Φ[4])
23: end function

253

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

where ∆̃ is the sparse Laplacian operator given by

∆̃ =

0 0 1 0 0
0 0 0 0 0
1 0 −4 0 1
0 0 0 0 0
0 0 1 0 0

 , (41)

then the residual images are computed and interpolated with

RR = KH ⊗ [MR. ∗ (R−R)],

where

KH =

 1/4 1/2 1/4
1/2 1 1/2
1/4 1/2 1/4

 . (42)

Finally, the red interpolated image is obtained by the formula

R̂ = R + RR.

As before, the only difference between the four kinds of red residual interpolation resides in the
use of different kinds of guided filter; the parameters are selected in the same way as for the green
residual interpolation.

A note about Line 8 of Algorithm 6: for (i, j) ∈ ΩR

R̂(i, j) = R(i, j)+ < [MR. ∗ (R−R)](N 3
i,j), KH >

= R(i, j)+ < [MR. ∗R](N 3
i,j), KH > − < [MR. ∗R](N 3

i,j), KH >

= R(i, j) +R(i, j)−R(i, j)

= R(i, j).

The reason of the fourth step in the derivation is that

[MR. ∗R](N 3
i,j) =

 0 0 0
0 R(i, j) 0
0 0 0

 , (i, j) ∈ ΩR

and 〈 0 0 0
0 R(i, j) 0
0 0 0

 ,
 1/4 1/2 1/4

1/2 1 1/2
1/4 1/2 1/4

〉 = R(i, j).

6 Adaptive Residual Interpolation

Adaptive residual interpolation (ARI) [28, 27] improves existing RI-based algorithms by iterating
the interpolation step, selecting a suitable iteration number at each pixel and combining RI and
MLRI. The algorithm [28] first interpolates the green image and then uses the interpolated green
image to interpolate the red and blue images. The algorithm described here applies the improved
ARI processing to the red and blue bands, not only the green band as in [28].

254

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 6 Pseudo-code for RI/MLRI Red Interpolation

Input: Mosaicked image MR. ∗R, Mask MR, green interpolation Ĝ, case J , case Weight
Output: Interpolated red R̂ and blue B̂

1: function RI RB(Φ,M, Ĝ, J,Weight)
2: KH ← defined by Equation (42)

3: ∆̃← defined by Equation (41)
4: S ← [5, 5]

//Here if J = MLGF, it is MLGF, else it is GF //

5: R← GF(Ĝ,MR. ∗R,MR, ∆̃, S, J,Weight, ε) //generate GF estimate of red and blue channels //

6: RR←MR. ∗ (R−R)
7: RR← KH ⊗RR
8: R̂← R + RR
9: end function

6.1 ARI Green Channel Interpolation

The ARI green interpolation algorithm consists of three steps.

1. Four types of green channel interpolation are performed by RI and MLRI in the horizontal and
vertical directions respectively.

2. For each interpolation, a suitable iteration number is selected at each pixel according to the
smoothness of the pixel.

3. All four interpolated results are combined by a weighted average at each pixel to produce the
final G interpolation.

The sequence of the above steps is called ARI green interpolation and its pseudo-code is given in
Algorithm 7. It adaptively combines RI and MLRI and selects the number of iterations for each
pixel. The overall flow of the horizontal green interpolation at R lines is illustrated in Figure 5. The
details of the three steps are shown below.

Figure 5: ARI green interpolation at red pixels. The adaptive selection of iteration number is defined by (46).

255

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

6.1.1 Step 1: Iterative RI and MLRI Estimates

In the first step, RI and MLRI are applied for iterative directional interpolation. We illustrate the
flow of the horizontal green interpolation at the R pixels (See Figure 6).

Figure 6: Flow of the iterative horizontal green interpolation at the R pixels by RI or MLRI. A5 means Algorithm 5 and the
parameter J determines RI or MLRI algorithm.

First, the mosaicked images are interpolated horizontally and vertically to obtain initial interpo-
lation images and masks as

ΦI =
1

2
KI ⊗ Φ + Φ =

1
2
KI ⊗ Φ[1] + Φ[1]

1
2
KI ⊗ Φ[2] + Φ[2]

1
2
KI ⊗ Φ[2] + Φ[3]

1
2
KI ⊗ Φ[4] + Φ[4]

 ,

MI,J =
1

2
KI ⊗M + M =

1
2
KI ⊗M[1] + M[1]

1
2
KI ⊗M[2] + M[2]

1
2
KI ⊗M[2] + M[3]

1
2
KI ⊗M[4] + M[4]

 ,
where I ∈ {H,V } and KI is given by (11) with I = H and (15) with I = V . We initialize the

estimate Φ0
I,J , Ĝ0

I,J , W 0
I,J as

Φ0
I,J = ΦI ,

Ĝ0
I,J = Φ[2]I,J + Φ[3]I,J ,

and

W 0
I,J(i, j) = 1032,

where I ∈ {H, V } and J ∈ {RI,MLRI}.
Next, the RI and MLRI tentative estimates are computed by GF (Algorithm 11)

Φ
k

I,J = GF(TI(Φ̆
k−1
I,J), Φ̆k−1

I,J ,MI,J , ∆̃I , S
k−1
I,J , J,Weight, ε),

where I ∈ {H,V } and J ∈ {RI,MLRI}, TI is defined by (2) with I = H or (3) with I = V ,

MI,J = 1
2
KI ⊗M, ∆̃I is defined by (12) with I = H or (15) with I = V , SI,J is the window

256

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

parameters of GF, Weight ∈ {0, 1} and ε is a constant. For example, if I = H and J = RI, then

Φ
k

I,J = Φ
k

H,RI = GF(TH(Φ̆k−1
H,RI), Φ̆

k−1
H,RI ,MH,RI , ∆̃H , S

k−1
H,RI , RI,Weight, ε)

= GF

Φ̆k−1
H,RI [2]

Φ̆k−1
H,RI [1]

Φ̆k−1
H,RI [4]

Φ̆k−1
H,RI [3]

 ,

Φ̆k−1
H,RI [1]

Φ̆k−1
H,RI [2]

Φ̆k−1
H,RI [3]

Φ̆k−1
H,RI [4]

 ,

MH,RI [1]
MH,RI [2]
MH,RI [3]
MH,RI [4]

 , ∆̃H , S
k−1
H,RI , RI,Weight, ε

 .

Φ
k

H,RI means the kth iteration horizontal RI tentative estimate.
After that, the residuals are computed as

M. ∗RΦ
k

I,J = M. ∗ (Φ− Φ
k

I,J) =

M[1]. ∗ (Φ[1]− Φ

k

I,J [1])

M[2]. ∗ (Φ[2]− Φ
k

I,J [2])

M[3]. ∗ (Φ[3]− Φ
k

I,J [3])

M[4]. ∗ (Φ[4]− Φ
k

I,J [4])

 ,
and then interpolated as

RΦ
k

I,J =
1

2
KI ⊗ (M. ∗RΦ

k

I,J) =

1
2
KI ⊗RΦ

k

I,J [1]
1
2
KI ⊗RΦ

k

I,J [2]
1
2
KI ⊗RΦ

k

I,J [3]
1
2
KI ⊗RΦ

k

I,J [4]

 .
Here, for convenience, we do not change the mathematical notation for residuals and interpolated

residuals. In a word, RΦ
k

I,J = 1
2
KI ⊗ [M. ∗ (Φ− Φ

k

I,J)].
Finally, to obtain the k-th horizontally interpolated results, the interpolated residuals are added

to the tentative estimates, i.e.

Φ̆k
I,J = Φ

k

I,J + RΦ
k

I,J =

Φ
k

I,J [1] + RΦ
k

I,J [1]

Φ
k

I,J [2] + RΦ
k

I,J [2]

Φ
k

I,J [3] + RΦ
k

I,J [3]

Φ
k

I,J [4] + RΦ
k

I,J [4]

 .

In the end, the value of the mask M pixels of Φ̆k
I,J is replaced by original one, i.e.

Φ̆k
I,J = M. ∗ Φ + TI(M). ∗ Φ̆k

I,J ,

then the G interpolation is given as

Gk
I,J = Φ̆k

I,J [2] + Φ̆k
I,J [3].

6.1.2 Step 2: Adaptive Selection of Iteration Number

In this step, for each channel interpolation, a suitable iteration number is adaptively selected at
each pixel by a criterion. The criterion is defined in a pixel-by-pixel manner based on the following
residuals.

RΦk
I,J = M. ∗ (Φ̆k−1

I,J − Φ
k

I,J), (43)

257

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

where RΦk
I,J represents the difference between the k-th tentative estimates and the previous inter-

polation results. These differences assess how effectively the tentative estimates converge at the k-th
iteration. First the directional gradients are computed as

RDΦk
I,J = M. ∗ (|D ⊗RΦk

I,J |), (44)

then the criterion value for a pixel (i, j) at the k-th iteration is defined based on the magnitude and
the smoothness of RΦk

I,J as

W k
I,J = (< Rk

I,J(N d
i,j), K

5
G >)2.∗ < RD,k

I,J , K
5
G >, (45)

where
Rk
I,J = RΦk

I,J [1] + RΦk
I,J [2] + RΦk

I,J [3] + RΦk
I,J [4],

RD,k
I,J = RDΦk

I,J [1] + RDΦk
I,J [2] + RDΦk

I,J [3] + RDΦk
I,J [4].

and K5
G represents a spatial Gaussian kernel given by (32). The above criterion value becomes small

if the residuals are small and smooth. Equations (43)–(45) are combined in an algorithm which is
called Residual Interpolation Weights (RIW) (see Algorithm 8).

Based on criterion values corresponding to each pixel, the suitable iteration number KI,J(i, j) is
adaptively selected at each pixel (i, j),

KI,J(i, j) = arg min
k
W k
I,J(i, j). (46)

The parameter for the maximum iteration number is empirically set to itMax = 11. But note that
the value of KI,J(i, j) is not needed; the important thing is to find the green image estimate at the
KI,J(i, j)-th iteration, so one can proceed as follows

Ĝk
I,J(i, j) =

{
Gk
I,J(i, j), if W k

I,J(i, j) < Ŵ k−1
I,J (i, j);

Ĝk−1
I,J (i, j), if W k

I,J(i, j) ≥ Ŵ k−1
I,J (i, j),

and

Ŵ k
I,J(i, j) =

{
W k
I,J(i, j), if W k

I,J(i, j) < Ŵ k−1
I,J (i, j);

Ŵ k−1
I,J (i, j), if W k

I,J(i, j) ≥ Ŵ k−1
I,J (i, j).

This means that if the criterion of the kth iteration W k
I,J(i, j) is smaller than the one of the k −

1th iteration Ŵ k−1
I,J (i, j), one updates the tentative estimate ĜI,J(i, j) and the criterion ŴI,J(i, j),

otherwise they are kept unchanged. In this way, the minimum criterion ŴI,J(i, j) and the estimate

ĜI,J(i, j) at the iteration of minimum criterion ŴI,J(i, j) are maintained at each pixel (i, j) and for
each kind of interpolation.

6.1.3 Step 3: Weighted Combination of Four Interpolated Results

In this step, two directional interpolation results of RI and MLRI are combined by the weighted
averaging as

Ĝ(i, j) =

∑
J∈{RI,MLRI}

∑
I∈{H,V }

ĜitMax
I,J (i, j)/W itMax

I,J (i, j)∑
J∈{RI,MLRI}

∑
I∈{P,N}

1./W itMax
I,J (i, j)

,

where ĜitMax
I,J and W itMax

I,J (i, j) J ∈ {RI,MLRI} and I ∈ {H,V } represent the horizontal or the
vertical direction interpolation and criterion of RI or MLRI respectively.

258

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 7 Pseudo-code for ARI green interpolation

Input: Mosaicked image Φ, Mask M, itMax, regularization ε
Output: interpolated green Ĝ

1: function ARIG(Φ,M, ε)
2: KH ← [1, 0, 1], KV ← KT

H

3: ∆̃H ← [−1, 0, 2, 0,−1], ∆̃V ← ∆̃T
H

4: DH ← [−1, 0, 1], DV ← DT
H

5: {SH,R, SV,R, SH,L, SV,L} ← {[2, 1], [1, 2], [4, 0], [0, 4]}// GF initial support sizes//

// prepare interpolation images //

6: for I ∈ {H,V } do
7: for J ∈ {RI,MLRI} do
8: ΦI,J ← 1

2
KI ⊗ Φ + Φ

9: MI,J ← 1
2
KI ⊗M + M

10: ĜI,J ← Φ[2]I,J + Φ[3]I,J
11: WI,J ← WI,J(i, j) = 1032

12: end for
13: end for

// main iteration //

14: for k from 1 to itMax do
15: for I ∈ {H,V } do
16: for J ∈ {RI,MLRI} do

17: Φ
k

I,J ← GF(TI(Φ̆
k−1
I,J), Φ̆k−1

I,J ,MI,J , ∆̃I , SI,J , J,Weight, ε) // GF interp. of all channels //

18: RΦ
k

I,J ←M. ∗ (Φ− Φ
k

I,J) // residual value at mask M pixels //

19: RΦ
k

I,J ← 1
2
KI ⊗RΦ

k

I,J // interpolate masked pixels //

20: Φ̆k
I,J ← Φ

k

I,J + RΦ
k

I,J // residual interpolation estimate //

21: W k
I,J ← RIW(MI,J , Φ̆

k−1
I,J ,Φ

k

I,J , DI) // compute the weights by Algorithm 9 //

// updating //

22: Φ̆k
I,J ←M. ∗ Φ + TI(M). ∗ Φ̆k

I,J // keep “ original ” pixels of Φ //

23: Gk
I,J ← Φ̆k[2]I,J + Φ̆k[3]I,J

24: Ĝk
I,J ← Ĝk−1

I,J when W k
I,J(i, j) ≥ Ŵ k−1

I,J (i, j),

Gk
I,J otherwise

25: Ŵ k
I,J ← Ŵ k−1

I,J when W k
I,J(i, j) ≥ Ŵ k−1

I,J (i, j),

W k
I,J otherwise

26: SkI,J ← Sk−1
I,J + [1, 1] // increase GF interpolation support size //

27: end for
28: end for
29: end for
30: Ĝ←

(∑
J∈{RI,MLRI}

∑
I∈{H,V }

ĜitMax
I,J ./Ŵ itMax

I,J

)
./

(∑
J∈{RI,MLRI}

∑
I∈{H,V }

1./Ŵ itMax
I,J

)
//weighted mean of all estimates //

31: Ĝ← Φ[2] + Φ[3] + (M[1] + M[4]). ∗ Ĝ // keep “ original ” value at green pixels//

32: end function

259

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Algorithm 8 Pseudo-code for Residual Interpolation Weights

Input: M,Φ,Φ, D
Output: W

1: function RIW(M,Φ,Φ, D)
2: K5

G ← defined by (32)
3: K ← the number of matrices in the tensor Φ
4: RΦ←M. ∗ (Φ− Φ) // residual value at mask M pixels //

5: RDΦ←M. ∗ (|D ⊗RΦ|) //absolute Differential of residual value at mask M pixels //

6: R←
∑K

k=1 |RΦ[k]| // sum of K channels of absolute residual value //

7: RD ←
∑K

k=1 R
DΦ[k] // sum of K channels of absolute Differential residual value //

8: R← K5
G ⊗R // Gaussian smooth of absolute residual value//

9: RD ← K5
G ⊗RD

// Gaussian smooth of absolute residual value//

10: W =
[
R. ∗R

]
. ∗RD

11: end function

6.2 ARI Red and Blue Channel Interpolation

The ARI red and blue channel interpolation is divided into two steps:

1. The R values at the B pixels are interpolated using ARI along the diagonal directions. The B
values at the R pixels are handled in the same manner.

2. The R values at the G pixels are interpolated using ARI along the horizontal and vertical
directions.

The interpolated Ĝ image is fixed throughout the process and is used as the guide image in the GF
algorithm. The flow of ARI red interpolation is illustrated in Figure 7 and blue interpolation is done
in the same manner. In the experiments, the maximum iteration number is set to 2. The Steps 1
and 2 of the red channel interpolation are given by Algorithms 9 and 10, respectively. The two steps
are almost the same as for the green interpolation. Therefore, in the next subsection, we just give
the details of Step 1.

Figure 7: Flow of the ARI red interpolation. A window of GF for the diagonal direction is shown on the left.

6.2.1 Step 1: Diagonal Directions Interpolations

The initial value is computed as

R0
I,J =

1

2
KI ⊗ (MR. ∗R) +MR. ∗R,

260

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 9 Pseudo-code for ARI red interpolations 1

Input: mosaicked image Φ, Mask M, green estimate Ĝ, itMax, regularization ε
Output: Interpolated red R̃

1: function ARI RB1(Φ, Ĝ,M, ε)
2: KP and KN ← defined by (24) and (25) respectively

3: ∆̃P and ∆̃N ← defined by (24) and (25) respectively
4: MIG ←MR +MB

5: {S1,R, S2,R, S1,L, S2,L} ← {[2, 2], [2, 2], [2, 0], [0, 2]}
6: for I ∈ {P,N} do
7: for J ∈ {R,L} do
8: RI,J ← 1

2
KI ⊗ (MR. ∗R) +MR. ∗R

9: ŴI,J ← WI,J(i, j) = 1032

10: end for
11: end for
12: while k from 1 to itMax do
13: for I ∈ {P,N} do
14: for J ∈ {R,L} do

15: R
k

I,J ← GF(Ĝ, R̆k−1
I,J ,MIG, ∆̃I , S

k−1
I,J , J,Weight, ε).

16: RR
k

I,J ←MR. ∗ (MR. ∗ (R−Rk

I,J))

17: RR
k

I,J ← 1
2
KI ⊗RR

k

I,J

18: R̂k
I,J ←MB. ∗ (R

k

I,J + RR
k

I,J)

19: W k
I,J ← RIW(MIG, R̆

k−1
I,J , R

k

I,J , DI) // compute the weights by Algorithm 9 //

// updating //

20: R̂k
I,J ←MR. ∗R +MB. ∗ R̂k

I,J // keep “original” pixels of MR. ∗R //

21: R̆k
I,J(i, j)← R̆k−1

I,J (i, j) when W k
I,J(i, j) ≥ Ŵ k−1

I,J (i, j),

R̂k
I,J(i, j) otherwise

22: Ŵ k
I,J(i, j)← Ŵ k−1

I,J (i, j) when W k
I,J(i, j) ≥ Ŵ k−1

I,J (i, j),

W k
I,J(i, j) otherwise

23: SkI,J ← Sk−1
I,J + [1, 1] // increase GF interpolation support size //

24: end for
25: end for
26: end while

27: R̆←

(∑
J∈{RI,MLRI}

∑
I∈{P,N}

R̆itMax
I,J /Ŵ itMax

I,J

)
/

(∑
J∈{RI,MLRI}

∑
I∈{P,N}

1/Ŵ itMax
I,J

)
28: R̃←MR. ∗R +MB. ∗ R̆
29: end function

261

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Algorithm 10 Pseudo-code for ARI Red interpolations 2

Input: Mask M, Interpolated images Ĝ, R̃, itMax, regularization ε
Output: Interpolated red R̂

1: function ARI RB2(Φ, Ĝ,M, ε)
2: KH ← [1, 0, 1], KV ← KT

H

3: ∆̃H ← [−1, 02, 0,−1], ∆̃V ← ∆̃T
H

4: {SH,R, SV,R, SH,L, SV,L} ← {[2, 2], [2, 2], [2, 0], [0, 2]}
5: MIG ←M [1] +M [4]
6: for I ∈ {H,V } do
7: for J ∈ {R,L} do

8: R̃I,J ← 1
2
KI ⊗ R̃ + R̃

9: ŴI,J = {ŴI,J [1], ŴI,J [2]} ← ŴI,J [k, i, j] = 1032

10: end for
11: end for
12: while k from 1 to itMax do
13: for I ∈ {H,V } do
14: for J ∈ {R,L} do

15: R
k

I,J ← GF(Ĝ, R̆k−1
I,J ,MIG, ∆̃I , S

k−1
I,J , J,Weight, ε)

16: RR
k

I,J ←MIG. ∗ (R̃−Rk

I,J)

17: RR
k

I,J ← 1
2
KI ⊗RR

k

I,J

18: R̂k
I,J ←MIG. ∗ (R

k

I,J + RR
k

I,J)

19: W k
I,J ← RIW(MIG, R̆

k−1
I,J , R

k

I,J , DI) // Computed residual wights //

// updating //

20: R̂k
I,J ←MIG. ∗ R̃ +MG. ∗ R̂k

I,J // keep “original” pixels of R̃ //

21: R̆k
I,J ← R̆k−1

I,J when W k
I,J(i, j) ≥ Ŵ k

I,J(i, j),

R̂k
I,J otherwise

22: Ŵ k
I,J ← Ŵ k−1

I,J when W k
I,J(i, j) ≥ Ŵ k−1

I,J (i, j),

W k
I,J otherwise

23: SkI,J ← Sk−1
I,J + [1, 1] // increase GF interpolation support size //

24: end for
25: end for
26: end while

27: R̆←

(∑
J∈{RI,MLRI}

∑
I∈{H,V }

R̆itMax
I,J /Ŵ itMax

I,J

)
/

(∑
J∈{RI,MLRI}

∑
I∈{H,V }

1/Ŵ itMax
I,J

)
28: R̂←MIG. ∗ R̃ +MG. ∗ R̆
29: end function

262

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

and the initial weights as
W 0
I,J(i, j) = 1032,

where I ∈ {P,N} and J ∈ {RI,MLRI}, KP and KN are defined by (24) and (25) respectively,
k ∈ {1, 2}, (i, j) ∈ Ω.

In the iteration, the RI and MLRI tentative estimates are computed by GF (Algorithm 11) with

Ĝ as guide image, i.e.

R
k

I,J = GF(Ĝ, R̆k−1
I,J ,MIG, ∆̃I , S

k−1
I,J , J,Weight, ε).

Next, the residuals are computed and interpolated

RR
k

I,J =
1

2
KI ⊗ (MR. ∗ (R−Rk

I,J)).

Lastly, the interpolated residuals are added to the tentative estimates

R̂k
I,J = MB. ∗ (R

k

I,J + RR
k

I,J).

The criterion W k
I,J is computed as RIW(MIG, R̆

k−1
I,J , R

k

I,J , DI). The results are then updated as

R̂k
I,J = MR. ∗R +MB. ∗ R̂k

I,J ,

where

R̆k
I,J(i, j) =

{
R̂k
I,J(i, j), if W k

I,J(i, j) < Ŵ k−1
I,J (i, j);

R̆k−1
I,J (i, j), if W k

I,J(i, j) ≥ Ŵ k−1
I,J (i, j),

and

Ŵ k
I,J(i, j) =

{
W k
I,J(i, j), if W k

I,J(i, j) < Ŵ k−1
I,J (i, j);

Ŵ k−1
I,J (i, j), if W k

I,J(i, j) ≥ Ŵ k−1
I,J (i, j),

At the end of the iterations, the two directional interpolation results of RI and MLRI are combined
by the weighted average

R̆(i, j) =

∑
J∈{RI,MLRI}

∑
I∈{H,V }

R̆itMax
I,J (i, j)/Ŵ itMax

I,J (i, j)∑
J∈{RI,MLRI}

∑
I∈{H,V }

1./Ŵ itMax
I,J (i, j)

,

where R̆itMax
I,J and Ŵ itMax

I,J (i, j), J ∈ {RI,MLRI} and I ∈ {P,N} represent the horizontal or the
vertical direction interpolation and criterion of RI or MLRI respectively. The interpolated results
are given by

R̃ = MR. ∗R +MB. ∗ R̆.

7 Experimental Results

7.1 Image Datasets and Peak Signal-to-noise Ratio

To evaluate the demosaicking algorithms which we analyzed in the paper, we implemented these
algorithms using python and used four full color image datasets: the Kodak image dataset1, the

1Kodak lossless true color image suite, http://r0k.us/graphics/kodak/

263

http://r0k.us/graphics/kodak/

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

McMaster image dataset [41], the Microsoft Demosaicing Canon Dataset [19] and the Microsoft
Demosaicing Panasonic Dataset [19]. The Kodak dataset consists of 24 full-color noiseless images
and each image is either 768 × 512 or 512 × 768 in size. It was downsampled from 3072 × 2048
or 2048 × 3072 high-resolution images. The McMaster image dataset consists of 18 images all of
size 500× 500, cropped from original high-resolution images (size: 2310× 1814). The Kodak image
dataset and the McMaster image dataset are widely used as standard datasets for demosaicking and
many other color image processing fields. The Microsoft Demosaicing Dataset Canon contains 57
images and Microsoft Demosaicing Dataset Panasonic includes 500 images and all images have size
210×318. The raw images were taken by two different cameras: a Canon EOS 550D and a Panasonic
Lumix DMC-LX3.

The peak signal-to-noise ratio (PSNR) or color peak signal-to-noise ratio (CPSNR) [3] is preferred
as a logarithmic measure of the algorithmic performance. The CPSNR is defined as

CPSNR = 10 log10

2552∑
X=R,G,B MSE(X)/3

,

with

MSE(X) =
1

|Ω|
∑

(i,j)∈Ω

(X̂(i, j)−X(i, j))2,

where X is the ground truth image and X̂ the estimated image. The larger the CPSNR value between
the original images and their respective estimated versions, the better the algorithm.

7.2 Comparison

To better analyze the six algorithms described in this paper, we compared them with the state-of-the-
art algorithms LSSC [26], RCNN [34] and JCNN [14], which are all learning-based methods. All four
image datasets were treated with the nine demosaicking algorithms. Six interpolation-based algo-
rithms which are analyzed in this paper HA [15, 1], GBTF [30], RI [20], MLRI [21], MLRI+wei [22],
ARI [28, 27], and three learning-based algorithms LSSC [26], RCNN [34], JCNN [14]. The experi-
ments with LSSC were done using the binaries provided by the authors2, while the experiments with
RCNN and JCNN were reproduced using the implementations in the IPOL publication [12]. In order
to test the robustness of these algorithms, we also added white Gaussian noise with several levels to
the mosaicked images. The standard deviation σ measuring the noise level was fixed to 1, 3, and 10.

Tables 1–3 show the average PSNR values on the image datasets of various algorithms for the
green band, the red band (the blue being similar), and the CPSNR of the full color images. The best
values of all methods are marked in bold font and the best values of all interpolation-based methods
are marked in red. They demonstrate similar behaviour for the distribution of PSNRs of R, G, B
and for the CPSNR.

We can see that among interpolation-based methods, ARI is always the best. For demosaicking
without noise, ARI is slightly better than LSSC, but not as good as deep learning methods like RCNN
and JCNN. We can also observe that the interpolation-based algorithms are robust to noise. The
higher the noise level, the smaller the gap between deep learning and interpolation based methods.
With larger noise, ARI obtains the best average PSNR for the four image datasets for the methods
without denoising function. The tables also show that GBTF, RI, MLRI and MLRI+wei all improve
over the HA interpolation, and that the difference between them is actually very small. Their average
difference in CPSNR for the four image datasets is less than 0.25db. In the case of noisy mosaicked
images, we found that the joint denoising and demosaicking method (JCNN) is not superior to the

2https://lear.inrialpes.fr/people/mairal/resources/demosaicking_ICCV09.tar.gz

264

https://lear.inrialpes.fr/people/mairal/resources/demosaicking_ICCV09.tar.gz

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Table 1: Comparison of the demosaicking performance of nine algorithms, measured in average PSNR(db) for the standard
Kodak, IMAX, MSR canon and MSR panasonic: Green band.

Algorithm HA GBTF RI MLRI MLRI ARI LSSC RCNN JCNN
+wei

Kodak (σ = 0) 38.28 41.19 40.95 40.81 41.35 42.36 44.30 44.75 45.03
Kodak (σ = 1) 37.76 40.44 40.18 40.06 40.53 41.38 42.92 43.26 42.05
Kodak (σ = 3) 35.34 37.22 36.98 36.93 37.20 37.59 38.12 38.31 39.27
Kodak (σ = 10) 28.16 29.15 29.09 29.07 29.17 29.22 28.92 28.60 33.74

Imax (σ = 0) 38.05 37.84 39.95 39.98 40.16 40.63 38.80 42.04 42.12
Imax (σ = 1) 37.56 37.45 39.33 39.36 39.53 39.93 38.27 41.06 40.03
Imax (σ = 3) 35.25 35.41 36.54 36.58 36.70 36.88 35.72 37.27 38.41
Imax (σ = 10) 28.34 28.88 29.20 29.21 29.28 29.34 28.34 28.68 33.99

Canon (σ = 0) 40.18 43.36 42.79 42.77 43.00 44.80 44.77 46.73 46.73
Canon (σ = 1) 39.20 41.94 41.40 41.41 41.60 42.82 43.17 44.44 43.70
Canon (σ = 3) 36.02 37.83 37.50 37.53 37.66 38.16 38.15 38.70 40.88
Canon (σ = 10) 28.88 29.82 29.81 29.84 29.92 30.02 29.40 29.19 35.58

Panasonic (σ = 0) 37.71 40.64 40.16 40.13 40.39 41.95 42.25 44.21 44.25
Panasonic (σ = 1) 37.11 39.78 39.32 39.31 39.54 40.77 41.22 42.69 41.90
Panasonic (σ = 3) 34.76 36.69 36.34 36.35 36.52 37.09 37.24 37.94 39.40
Panasonic (σ = 10) 28.20 29.23 29.14 29.15 29.24 29.33 28.87 28.72 34.18

Average (σ = 0) 38.55 40.76 40.96 40.92 41.23 42.44 42.53 44.43 44.53
Average (σ = 1) 37.91 39.90 40.06 40.04 40.30 41.23 41.40 42.86 41.92
Average (σ = 3) 35.34 36.79 36.84 36.85 37.02 37.43 37.31 38.05 39.49
Average (σ = 10) 28.39 29.27 29.31 29.32 29.40 29.48 28.88 28.80 34.37

demosaicking methods when the noise level σ ≤ 1, while for σ = 3, and 10, the advantage of JCNN
is obvious.

265

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Table 2: Comparison of the demosaicking performance of nine algorithms, measured in average PSNR(db) for the standard
Kodak, IMAX, MSR canon and MSR panasonic: Red band.

Algorithm HA GBTF RI MLRI MLRI ARI LSSC RCNN JCNN
+wei

Kodak (σ = 0) 33.86 38.98 37.91 38.30 38.72 39.23 40.52 41.31 41.38
Kodak (σ = 1) 33.69 38.44 37.48 37.82 38.19 38.68 39.90 40.53 39.49
Kodak (σ = 3) 32.59 35.80 35.27 35.38 35.58 36.06 36.70 37.05 37.65
Kodak (σ = 10) 27.54 28.22 28.43 28.01 27.99 28.83 28.51 28.32 33.00

Imax (σ = 0) 34.51 34.58 36.08 36.56 36.60 37.42 36.01 39.09 39.34
Imax (σ = 1) 34.32 34.36 35.75 36.23 36.25 37.00 35.73 38.55 37.53
Imax (σ = 3) 33.12 33.04 34.03 34.35 34.36 34.97 34.04 35.89 36.50
Imax (σ = 10) 27.89 27.57 28.18 27.93 27.87 28.75 28.21 28.23 32.92

Canon (σ = 0) 35.49 40.31 40.13 40.09 40.29 41.37 40.47 42.51 42.66
Canon (σ = 1) 35.16 39.39 39.17 39.14 39.30 40.16 39.91 41.39 40.51
Canon (σ = 3) 33.58 36.18 36.02 35.90 35.99 36.64 36.67 37.33 38.70
Canon (σ = 10) 28.31 28.84 29.11 28.55 28.50 29.67 29.63 28.85 34.35

Panasonic (σ = 0) 32.75 37.31 37.12 37.12 37.33 38.38 37.89 39.93 39.97
Panasonic (σ = 1) 32.54 36.75 36.58 36.58 36.75 37.68 37.49 39.20 38.28
Panasonic (σ = 3) 31.51 34.52 34.41 34.36 34.49 35.13 35.10 36.11 36.82
Panasonic (σ = 10) 27.29 28.12 28.30 27.94 27.93 28.72 28.64 28.28 32.84

Average (σ = 0) 34.15 37.79 37.81 38.02 38.23 39.10 38.72 40.71 40.84
Average (σ = 1) 33.93 37.23 37.24 37.44 37.62 38.38 38.26 39.92 38.95
Average (σ = 3) 32.70 34.88 34.93 35.00 35.10 35.70 35.63 36.60 37.42
Average (σ = 10) 27.76 28.19 28.50 28.11 28.07 28.99 28.75 28.42 33.28

266

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Table 3: Comparison of the demosaicking performance of nine algorithms, measured in average CPSNR(db) for the standard
Kodak, IMAX, MSR canon and MSR panasonic for the three color bands.

Algorithm HA GBTF RI MLRI MLRI ARI LSSC RCNN JCNN
+wei

Kodak (σ = 0) 34.84 39.58 38.58 38.91 39.32 39.90 41.44 41.97 42.10
Kodak (σ = 1) 34.61 38.99 38.11 38.38 38.75 39.30 40.69 41.09 40.00
Kodak (σ = 3) 33.27 36.20 35.75 35.80 36.02 36.49 37.15 37.37 38.02
Kodak (σ = 10) 27.71 28.5056 28.68 28.35 28.37 29.00 28.74 28.47 33.26

Imax (σ = 0) 34.76 34.80 36.48 36.74 36.82 37.57 36.15 38.94 39.13
Imax (σ = 1) 34.54 34.58 36.16 36.41 36.49 37.17 35.86 38.44 37.65
Imax (σ = 3) 33.28 33.27 34.47 34.59 34.65 35.20 34.18 35.91 36.60
Imax (σ = 10) 27.99 27.91 28.56 28.33 28.31 28.97 28.26 28.44 33.07

Canon (σ = 0) 36.45 40.99 40.84 40.80 41.02 42.27 41.51 43.55 43.61
Canon (σ = 1) 36.01 39.97 39.78 39.75 39.93 40.93 40.72 42.19 41.34
Canon (σ = 3) 34.14 36.59 36.47 36.37 36.47 37.14 37.07 37.78 39.36
Canon (σ = 10) 28.48 29.16 29.36 28.96 28.94 29.81 29.61 29.09 34.83

Panasonic (σ = 0) 34.07 38.37 38.18 38.17 38.39 39.55 39.25 41.25 41.28
Panasonic (σ = 1) 33.79 37.74 37.57 37.56 37.74 38.75 38.71 40.35 39.48
Panasonic (σ = 3) 32.50 35.26 35.16 35.11 35.25 35.90 35.90 36.83 37.79
Panasonic (σ = 10) 27.63 28.51 28.65 28.38 28.40 29.01 28.83 28.58 33.48

Average (σ = 0) 35.03 38.44 38.52 38.65 38.89 39.82 39.59 41.43 41.53
Average (σ = 1) 34.74 37.82 37.90 38.02 38.23 39.04 39.00 40.52 39.61
Average (σ = 3) 33.30 35.33 35.46 35.47 35.60 36.18 36.08 36.97 37.94
Average (σ = 10) 27.95 28.52 28.81 28.50 28.50 29.20 28.86 28.64 33.66

267

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Beside the average PSNR, we also considered the variance of the PSNR for the image dataset.
This variance somehow evaluates the robustness of each algorithm. In Figures 8–10, one can observe
that the variance of ARI is smaller for Kodak without noise and that there is no significant difference
between all these algorithms for the McMaster, Canon and Panasonic image datasets. The variance
of RCNN always is smallest for all image datasets with σ = 3 and 10. Among all interpolation-based
methods, ARI always has a small variance, but GBTF, RI, MLRI and MLRI+wei show almost iden-
tical performance. JCNN is a method for denoising and demosaicking and performs best when σ ≥ 3.

(a) Kodak (b) McMaster

(c) Canon (d) Panasonic

Figure 8: CPSNR performance for the standard Kodak, McMaster, Canon and Panasonic datasets without noise.

268

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

(a) Kodak (b) McMaster

(c) Canon (d) Panasonic

Figure 9: CPSNR performance for the standard Kodak, McMaster, Canon and Panasonic datasets with noise (σ = 3).

269

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

(a) Kodak (b) McMaster

(c) Canon (d) Panasonic

Figure 10: PSNR performance for the standard Kodak, McMaster, Canon and Panasonic datasets with noise (σ = 10).

270

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Figures 11–14 visually compare the demosaicked results of the nine algorithms. The figures show
the restored images and the error images (the difference between restored and ground truth image).
From Figure 11, one can see that HA, GBTF, LSSC have strong zipper artifacts and RI, MLRI
and MLRI+wei have slight zipper artifacts. The most perceptually pleasing results are from the
ARI, RCNN and JCNN results. Figure 12 shows the image 17 from the McMaster dataset with
noise σ = 5, there we see that a lot of noise still remains in the demosaicked results of HA, GBTF,
RI, MLRI, MLRI+wei and LSSC, while ARI, RCNN and JCNN effectively remove noise during the
demosaicking process. No significant color distortions are observed in this image for any algorithm.
However, on image 01 of the Kodak dataset the interpolation-based algorithms introduce strong color
distortions in the demosaicked results (see Figures 13 and 14 (b), (c),(d),(e),(f),(g)). Minor color
distortions can be found in the output of LSSC (see Figure 13 and 14 (h)). Perceptually good results
can be seen in the results of RCNN and JCNN. The interpolation-based algorithms do not work well
on detailed structures.

(a) Ground truth (b) HA (c) GBTF (d) RI (e) MLRI

(f) MLRI+wei (g) ARI (h) LSSC (i) RCNN (j) JCNN

Figure 11: Visual comparison of demosaicked images of different algorithms for McMaster 17 without noise (σ = 0).

271

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

(a) Ground truth (b) HA (c) GBTF (d) RI (e) MLRI

(f) MLRI+wei (g) ARI (h) LSSC (i) RCNN (j) JCNN

Figure 12: Visual comparison of demosaicked images of different algorithms for McMaster 17 with noise (σ = 5).

272

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

(a) Ground truth (b) HA (c) GBTF (d) RI (e) MLRI

(f) MLRI+wei (g) ARI (h) LSSC (i) RCNN (j) JCNN

Figure 13: Visual comparison of demosaicked images of different algorithms for Kodak 01 without noise.

273

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

(a) Ground truth (b) HA (c) GBTF (d) RI (e) MLRI

(f) MLRI+wei (g) ARI (h) LSSC (i) RCNN (j) JCNN

Figure 14: Visual comparison of demosaicked images of different algorithms for Kodak 01 with noise (σ = 5).

274

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

The running times of all algorithms for a 500× 500 image are compared in Table 4. HA, GBTF,
RI, MLRI, MLRI+wei are very fast with running times of less than one second. Because of the
iterations, ARI is much slower than the other interpolation-based algorithms. The running time of
the deep learning-based methods RCNN and JCNN is halfway between non-iterative interpolation
methods and iterative interpolation methods. LSSC is the slowest amongst the nine methods as it
takes 734 seconds to process a single 500× 500 image!

Table 4: Running time of all algorithms for a 500× 500 image using a Core(TM) i7-6820HQ CPU 2.70 GHz PC.

Algorithm HA GBTF RI MLRI MLRI ARI LSSC RCNN JCNN
+wei

Time (s) 0.3015 0.3402 0.4410 0.6100 0.8578 17.1670 734.3666 5.2174 2.9735

For each algorithm, we observed the following:

• The HA algorithm, which was developed in 1997, is very simple but works well and is fast.

• GBTF is a more elaborated version of HA, and runs as fast as HA. The PSNR of the demo-
saicked image of the GBTF algorithm is significantly higher than that of HA. For the images
with much texture such as image Kodak 01, the visual quality has significantly improved, but
at the edge of small objects, zipper artifacts are stronger than with HA.

• RI, MLRI and MLRI+wei have almost the same PSNR values and variances for all test image
datasets. The computational complexity of RI, MLRI, MLRI+wei are respectively 0.4410,
0.6100 and 0.8578 seconds to process a 500 × 500 image, so they are quite fast. Their PSNR
values are almost the same as for GBTF, but their visual quality is better than GBTF because
they reduce the zipper artifacts.

• ARI performs the best amongst the interpolation-based algorithms in terms of both PSNR value
and visual quality, and is robust to noise in images. For mosaicked images with noise σ = 10
and above, it performs even better than deep learning based algorithms. Its disadvantage is its
computational complexity. It is much slower than the other interpolation-based methods. It
takes more than 17 seconds for processing a 500 × 500 image while other interpolation-based
algorithms just used less than 1 second.

• LSSC is a dictionary learning algorithm. It learns parameters for every image and then it
involves a huge computational burden. For example, it takes 734 seconds to process a 500×500
image. The PSNR value of LSSC is almost the same as the one of ARI. In terms of visual
quality, LSSC performs better in textured areas but ARI succeeds on the edges of small objects.

• RCNN is a deep learning based method. It wins for both PSNR and visual quality, except
when the mosaicked images have noise exceeding σ = 10.

• JCNN is a deep learning based method for joint denoising and demosaicking, but the authors
provide two networks, one trained to deal with noisy mosaicked images and the other for noise
free mosaicked images. When noise level σ ≥ 3, this algorithm outperforms the rest.

275

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

8 Conclusion

In this paper, we analyzed arguably the best important interpolation-based handcrafted demosaick-
ing algorithms. From HA to ARI, we investigated their mathematics principles and clarified the
conceptual progress that leads from each method to the next more sophisticated one. We man-
aged a huge simplification of the description of these methods, and delivered compact but complete
pseudo-code for each of them. We also discussed these algorithms in terms of PSNR, output visual
quality, and computational complexity, and compared them with learning-based algorithms. The
interpolation-based algorithms which are simple and run very fast, might provide useful ideas to
improve and accelerate deep learning-based demosaicking algorithm.

The demo applies all the methods presented here to a same input image. It allows to select the
Bayer pattern and the noise level. (The default value 1 for the smoothing parameter σ is good most
of the time, however a larger value can perform better on images with saturated color such as those
from the Kodak dataset).

Appendix A The Guided Filter

The Guided Filter (GF) [16] is a powerful edge-preserving filter that can be used as an alternative to
the well-known bilateral filter [35]. Because of its effectiveness, GF is widely used in computer vision
and image processing and it was recently included in the official MATLAB and OpenCV libraries.

GF involves a guidance image I, an input image p to be filtered, and an output image q. Perhaps
the most important aspect of the guided filter is the local linear relation that is established between
the guidance image I and the output image q in a window N d

s,t. We use the notation qraws,t (which
depends on the window N d

s,t, therefore when (s, t) changes the value of qraws,t will be different) to
denote the first step of the guided filter. At this step, and in each window, the output of the guided
filter is a linear transformation of the guide. For each window N d

s,t, we have

qraws,t (i, j) = a(s, t)I(i, j) + b(s, t), ∀(i, j) ∈ N d
s,t, (47)

where (a(s, t), b(s, t)) are some linear coefficients assumed to be constant in N d
s,t. This local linear

model ensures that qraws,t has an edge only if I has one, because

∇qraws,t (i, j) = a(s, t)∇I(i, j), ∀(i, j) ∈ N d
s,t.

In N d
s,t, (s, t) ∈ Ω, the raw guided filter is the result of fitting the linear model (47) to the input

image p by minimizing the cost function

E(a(s, t), b(s, t)) =
∑

(i,j)∈N d
s,t

(
(a(s, t)I(i, j) + b(s, t)− p(i, j))2 + εa2(s, t)

)
, (48)

where ε is a regularization parameter penalizing large values of a(s, t). The underlying model is
a decomposition p(i, j) = qraws,t (i, j) + n(i, j) where n(i, j) is a component such as noise or texture
that we want to separate from the base qraws,t (i, j). The minimization of the energy (48) amounts to
minimizing the difference between p and the base qraws,t (i, j). Moreover, the parameter ε penalizes
large values of the coefficient a, and thus helps removing the small variations in p. Model (48) is
the linear ridge regression model [9, 13]. The linear coefficient b(s, t) is obtained by minimizing the
energy (48),

∂E(a(s, t), b(s, t))

∂b(s, t)
=

∑
(i,j)∈N d

s,t

(2(a(s, t)I(i, j) + b(s, t)− p(i, j))) = 0,

276

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

i.e.
b(s, t)

∑
(i,j)∈N d

s,t

1 =
∑

(i,j)∈N d
s,t

p(i, j)− a(s, t)
∑

(i,j)∈N d
s,t

I(i, j).

The equation above implies
b(s, t) = p(s, t)− a(s, t)I(s, t), (49)

where I(s, t) is the mean of I in N d
s,t, i.e.

I(s, t) =
1

(2ds + 1)2

∑
(i,j)∈N d

s,t

I(i, j), (50)

and p(s, t) is the mean of p in N d
s,t given by

p(s, t) =
1

(2ds + 1)2

∑
(i,j)∈N d

s,t

p(i, j). (51)

By the same argument, we have

∂E(a(s, t), b(s, t))

∂a(s, t)
=

∑
(i,j)∈N d

s,t

(2I(i, j)(a(s, t)I(i, j) + b(s, t)− p(i, j)) + 2εa(s, t)) = 0. (52)

Substituting (49) into (52) leads to

a(s, t) =

1
(2ds+1)2

∑
(i,j)∈N d

s,t
I(i, j)p(i, j)− I(s, t)p(s, t)

σ2(s, t) + ε
. (53)

Here, σ2(s, t) is the variance of I in N d
s,t, i.e.

σ2(s, t) =
1

(2ds + 1)2

∑
(i,j)∈N d

s,t

(I(i, j)− µ(s, t))2.

Once the linear coefficients (a(s, t), b(s, t)) have been obtained, the output qraws,t (i, j) can be com-
puted by (47). Interestingly, the numerator in Equation (53) is the empirical covariance between the
input image p and the guide I and σ2 is the empirical variance of I. Thus a(s, t) and b(s, t) can be
expressed as

a(s, t) =
Cov{I, p}(s, t)
Var{I}(s, t) + ε

,

and
b(s, t) = Mean{p}(s, t)− a(s, t)Mean{I}(s, t),

where Mean denotes the mean in the window N d
s,t.

However, a pixel (i, j) is involved in all the overlapping windows N d
s,t containing it. Thus the

value of qraws,t (i, j) in (47) varies when computed in different windows N d
s,t. A simple strategy is to

average all the possible values of qraws,t (i, j) with (i, j) ∈ N d
s,t. Since the window N d

s,t contains (i, j) if
only if (s, t) ∈ N d

i,j, the guided filter is given by

q(i, j) =
1

(2ds + 1)2

∑
(s,t)∈N d

i,j

qraws,t (i, j), ∀(i, j) ∈ Ω. (54)

277

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

Thus, after computing (a(s, t), b(s, t)) for all windows N d
s,t in the image, the filter (54) becomes

q(i, j) =
1

(2ds + 1)2

∑
(s,t)∈N d

i,j

(a(s, t)I(i, j) + b(s, t)) , ∀(i, j) ∈ Ω. (55)

Due to the symmetry of the box window, the linear coefficients can be averaged instead, the definition
of the guided filter (55) is rewritten as

q(i, j) = a(i, j)I(i, j) + b(i, j), ∀(i, j) ∈ Ω, (56)

with

a(i, j) =
1

(2ds + 1)2

∑
(s,t)∈N d

i,j

a(s, t), (57)

b(i, j) =
1

(2ds + 1)2

∑
(s,t)∈N d

i,j

b(s, t), (58)

where (57) and (58) are the average coefficients of all windows overlapping (i, j).
Considering the modification introduced by (56), q(i, j) is no longer a scaling of I(i, j) in N d

i,j,

because the linear coefficients (a(i, j), b(i, j)) vary spatially. But as (a(i, j), b(i, j)) are the output of
a mean filter, their gradients can be expected to be much smaller than the gradient of I near strong
edges. Thus, we still expect that ∇q(i, j) ' a(i, j)∇I(i, j), meaning that abrupt intensity changes
in I are mostly preserved in q. The pseudo-code of GF is given in Algorithm 11.

A.1 The Minimized-Laplacian Guided Filter

Kiku et al. introduced in [22] MLGF for demosaicking. Instead of obtaining the linear coefficients
(a(s, t), b(s, t)) by minimizing the cost function (48), the linear coefficient a(s, t) is computed by
minimizing the following cost function on the Laplacian of the image

E(a(s, t)) =
∑

(i,j)∈N d
s,t

(
(∆(a(s, t)I(i, j) + b(s, t)− p(i, j)))2 + εa2(s, t)

)
=

∑
(i,j)∈N d

s,t

(
(a(s, t)∆I(i, j)−∆p(i, j))2 + εa2(s, t)

)
, (59)

where ∆ denotes the discrete Laplacian operator and M is a mask. Minimizing (59) leads to

dE(a(s, t))

da(s, t)
=

∑
(i,j)∈N d

s,t

(2∆I(i, j)(a(s, t)∆I(i, j)−∆p(i, j) + 2εa(s, t))) = 0.

Then we obtain

a(s, t) =
∆p∆I(s, t)

∆I2(s, t) + ε
, (60)

where

∆p∆I(s, t) =

∑
(i,j)∈N d

s,t
(∆I(i, j)∆p(i, j))∑

(i,j)∈N d
s,t
M(i, j)

and

∆I2(s, t) =

∑
(i,j)∈N d

s,t
M(i, j)∆I2(i, j)∑

(i,j)∈N d
s,t
M(i, j)

.

278

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

Algorithm 11 Pseudo-code for Guided Filter

Input: guidance image I, filtering input image p, Mask matrix M , Laplacian map ∆, radius S,
case J : case for algorithm choices J ∈ {RI,MLRI},
xcase Weight: case for weights Weight ∈ {True, False},
regularization ε

Output: Estimate q
1: function GF(I, p,M,∆, S, J,Weight, ε)

// Initialization //

2: I ← fwm(I. ∗M,M, ds) // I is defined by Equation (50) and fwm denotes the weighted box mean (6)//

3: p← fwm(p. ∗M,M, ds) // p is defined by Equation (51) //

// Compute the parameters a and b//

4: if J = MLGF then //If J = MLGF , it is MLGF, else GF//

5: ∆p∆I ← fwm(∆I. ∗∆p. ∗M,M, ds)
6: ∆I2 ← fwm(∆I. ∗∆I. ∗M,M, ds)
7: a← ∆p∆I./(∆I2 + ε) // The parameter a of MLGF is defined by Equation (60) //

8: else
9: pI ← fwm(I. ∗ p. ∗M,M, ds)

10: Cov(IP)← pI − I. ∗ p
11: V ar(I)← I2 − I. ∗ I
12: a← Cov(IP)./(V ar(I) + ε) // The parameter a of GF is defined by Equation (53) //

13: end if
14: b← p− a. ∗ I

// Compute the average or weighted average of a and b//

15: if Weight = True then//If Weight = True, it is weighed GF/MLGF, else GF/MLGF//

16: W ← 1./ (fwm (M. ∗ (p. ∗M − a. ∗ I. ∗M − b)2,M, ds)) // The weights defined by Equation (61) //

17: a← fwm(a,W, ds) // Weighted average a defined by Equation (62) //

18: b← fwm(b,W, ds) // Weighted average b defined by Equation (62) //

19: else// The case is the guide filter //

20: a← fm(a, ds) // Box average a defined by Equation (57) //

21: b← fm(b, ds) // Box average b defined by Equation (58) //

22: end if
// Compute the final GF estimate //

23: q ← a. ∗ I + b // The final GF estimate defined by Equation (56) //

24: return result
25: end function

Note that the parameter b(s, t) has disappeared in (59) as it is constant with respect to (i, j). After
computing a(s, t), we obtain the linear coefficient b(s, t) by (49). If a(i, j) is given by (60), the formula
becomes the MLGF estimate. The difference between GF and MLGF is just the different definition
of the parameter a(i, j). It therefore is easy to implement both algorithms in a single algorithm (see
Algorithm 11). If a(i, j) is computed by Algorithm 11 lines 5-7, then we have MLGF, otherwise we
have GF.

A.2 The Weighed Guided Filter

Kiku et al. [22] consider that for a pixel (i, j), the smaller the square error (a(s, t)I(i, j) + b(s, t) −
p(i, j))2, the larger the weight value. This is reasonable, because when the error is small, the estimate

279

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

qraws,t (i, j) is good. Therefore the authors introduced the weight

W (s, t) =

(∑
(i,j)∈N d

s,t
(M(i, j)(a(s, t)I(i, j) + b(s, t)− p(i, j))2)∑

(i,j)∈N d
s,t
M(i, j)

)−1

. (61)

Hence in [22] Kiku et al. proposed their Weighted Guided Filter by using the parameters a(i, j) and
b(i, j) of (56) which are given by

a(i, j) =

∑
(s,t)∈N d

i,j
W (s, t)a(s, t)∑

(s,t)∈N d
i,j
W (s, t)

and b(i, j) =

∑
(s,t)∈N d

i,j
W (s, t)b(s, t)∑

(s,t)∈N d
i,j
W (s, t)

. (62)

We incorporate the weights in the GF code (see Algorithm 11 lines 15-18). The difference between
the four types of guided filters is small, so we have decided to present the four guided filter variants
in a single Algorithm 11. Different parameters determine different types of guided filter. The
corresponding parameters of Algorithm 11 are selected as follows:

• Guided filter: J = RI, Weight = False;

• Weighted guided filter: J = RI, Weight = True;

• Minimizing-Laplacian guided filter: J = MLRI, Weight = False;

• Weighted minimizing-Laplacian guided filter: J = MLRI, Weight = True.

Acknowledgments

Jin has been supported by the National Natural Science Foundation of China (Grants No. 61661039,
No.61661040, No. 61661038), and Jin was also supported by the China Scholarship Council for a
one year visiting at École Normale Supérieure Paris-Saclay (No. 201806810001).

Image Credits

R. Franzen, Kodak lossless true color image suite3

L. Zhang and X. Wu, McMaster image dataset4

References

[1] J. E. Adams, Design of practical color filter array interpolation algorithms for digital cameras
.2, in Proceedings of the IEEE International Conference on Image Processing, vol. 1, 1998,
pp. 488–492. http://dx.doi.org/10.1109/ICIP.1998.723540.

[2] J. Aelterman, B. Goossens, J. De Vylder, A. Pižurica, and W. Philips, Compu-
tationally efficient locally adaptive demosaicing of color filter array images using the dual-tree
complex wavelet packet transform, PloS one, 8 (2013), p. e61846. http://dx.doi.org/10.1371/
journal.pone.0061846.

3http://r0k.us/graphics/kodak/
4http://r0k.us/graphics/kodak

280

http://dx.doi.org/10.1109/ICIP.1998.723540
http://dx.doi.org/10.1371/journal.pone.0061846
http://dx.doi.org/10.1371/journal.pone.0061846
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

[3] D. Alleysson, S. Susstrunk, and J. Hérault, Linear demosaicing inspired by the human
visual system, IEEE Transactions on Image Processing, 14 (2005), pp. 439–449. http://dx.

doi.org/10.1109/TIP.2004.841200.

[4] C. Bai, J. Li, and Z. Lin, Demosaicking based on channel-correlation adaptive dictionary
learning, Journal of Electronic Imaging, 27 (2018), pp. 043–047. http://dx.doi.org/10.1117/
1.JEI.27.4.043047.

[5] B. E. Bayer, Color imaging array, July 20 1976. US Patent 3,971,065.

[6] A. Buades, B. Coll, J. M. Morel, and C. Sbert, Self-similarity driven color demosaick-
ing, IEEE Transactions on Image Processing, 18 (2009), pp. 1192–1202. http://dx.doi.org/

10.1109/TIP.2009.2017171.

[7] , Self-similarity driven demosaicking, Image Processing On Line, 1 (2011), pp. 51–56. http:
//dx.doi.org/info:doi/10.5201/ipol.2011.bcms-ssdd.

[8] E. Chang, S. Cheung, and D. Y. Pan, Color filter array recovery using a threshold-based
variable number of gradients, in Proceedings SPIE 3650, Sensors, Cameras, and Applications
for Digital Photography, 1999. https://doi.org/10.1117/12.342861.

[9] N. R. Draper and H. Smith, An introduction to nonlinear estimation, Applied Regression
Analysis, (1998), pp. 505–565. https://doi.org/10.1002/9781118625590.ch24.

[10] J. Duran and A. Buades, Self-similarity and spectral correlation adaptive algorithm for
color demosaicking, IEEE Transactions on Image Processing, 23 (2014), pp. 4031–4040. http:

//dx.doi.org/10.1109/TIP.2014.2341928.

[11] , A demosaicking algorithm with adaptive inter-channel correlation, Image Processing On
Line, 5 (2015), pp. 311–327. http://dx.doi.org/info:doi/10.5201/ipol.2015.145.

[12] T. Ehret and G. Facciolo, A Study of Two CNN Demosaicking Algorithms, Image Pro-
cessing On Line, 9 (2019), pp. 220–230. https://doi.org/10.5201/ipol.2019.274.

[13] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, vol. 1,
Springer Series in Statistics New York, 2001.

[14] M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, Deep joint demosaicking and de-
noising, ACM Transactions on Graphics, 35 (2016), pp. 191:1–12. http://dx.doi.org/10.

1145/2980179.2982399.

[15] J. F. Hamilton and J. E. Adams, Adaptive color plan interpolation in single sensor color
electronic camera, May 13 1997. US Patent 5,629,734.

[16] K. He, J. Sun, and X. Tang, Guided image filtering, IEEE Transactions on Pattern Analysis
& Machine Intelligence, (2013), pp. 1397–1409. http://dx.doi.org/10.1109/TPAMI.2012.

213.

[17] K. Hua, S. C. Hidayati, F. He, C. Wei, and Y. F. Wang, Context-aware joint dic-
tionary learning for color image demosaicking, Journal of Visual Communication and Image
Representation, 38 (2016), pp. 230–245. https://doi.org/10.1016/j.jvcir.2016.03.004.

281

http://dx.doi.org/10.1109/TIP.2004.841200
http://dx.doi.org/10.1109/TIP.2004.841200
http://dx.doi.org/10.1117/1.JEI.27.4.043047
http://dx.doi.org/10.1117/1.JEI.27.4.043047
http://dx.doi.org/10.1109/TIP.2009.2017171
http://dx.doi.org/10.1109/TIP.2009.2017171
http://dx.doi.org/info:doi/10.5201/ipol.2011.bcms-ssdd
http://dx.doi.org/info:doi/10.5201/ipol.2011.bcms-ssdd
https://doi.org/10.1117/12.342861
https://doi.org/10.1002/9781118625590.ch24
http://dx.doi.org/10.1109/TIP.2014.2341928
http://dx.doi.org/10.1109/TIP.2014.2341928
http://dx.doi.org/info:doi/10.5201/ipol.2015.145
https://doi.org/10.5201/ipol.2019.274
http://dx.doi.org/10.1145/2980179.2982399
http://dx.doi.org/10.1145/2980179.2982399
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1109/TPAMI.2012.213
https://doi.org/10.1016/j.jvcir.2016.03.004

Qiyu Jin, Yu Guo, Jean-Michel Morel, Gabriele Facciolo

[18] S. P. Jaiswal, O. C. Au, V. Jakhetiya, Y. Yuan, and H. Yang, Exploitation of inter-
color correlation for color image demosaicking, in Proceedings of the International Conference
on Image Processing, 2014, pp. 1812–1816. http://dx.doi.org/10.1109/ICIP.2014.7025363.

[19] D. Khashabi, S. Nowozin, J. Jancsary, and A. W. Fitzgibbon, Joint demosaicing and
denoising via learned nonparametric random fields, IEEE Transactions on Image Processing, 23
(2014), pp. 4968–4981. https://doi.org/10.1109/TIP.2014.2359774.

[20] D. Kiku, Y. Monno, M. Tanaka, and M. Okutomi, Residual interpolation for color
image demosaicking, in Proceedings of the International Conference on Image Processing, 2013,
pp. 2304–2308. http://dx.doi.org/10.1109/ICIP.2013.6738475.

[21] , Minimized-Laplacian residual interpolation for color image demosaicking, in Proceedings
of the Digital Photography X, vol. 9023, 2014, p. 90230L. http://www.ok.sc.e.titech.ac.

jp/res/DM/MLRI.pdf.

[22] , Beyond color difference: Residual interpolation for color image demosaicking, IEEE Trans-
actions on Image Processing, 25 (2016), pp. 1288–1300. https://doi.org/10.1109/TIP.2016.
2518082.

[23] F. Kokkinos and S. Lefkimmiatis, Iterative joint image demosaicking and denoising using a
residual denoising network, IEEE Transactions on Image Processing, 28 (2019), pp. 4177–4188.
http://dx.doi.org/10.1109/TIP.2019.2905991.

[24] C. A. Laroche and M. A. Prescott, Apparatus and method for adaptively interpolating a
full color image utilizing chrominance gradients, Dec. 13 1994. US Patent 5,373,322.

[25] Y. M. Lu, M. Karzand, and M. Vetterli, Demosaicking by alternating projections: theory
and fast one-step implementation, IEEE Transactions on Image Processing, 19 (2010), pp. 2085–
2098. http://dx.doi.org/10.1109/TIP.2010.2045710.

[26] J. Mairal, F. R. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Non-local sparse models
for image restoration, in Proceedings of the IEEE International Conference on Computer Vision,
2009, pp. 2272–2279. http://dx.doi.org/10.1109/ICCV.2009.5459452.

[27] Y. Monno, D. Kiku, M. Tanaka, and M. Okutomi, Adaptive residual interpolation for
color image demosaicking, in Proceedings of the IEEE International Conference on Image Pro-
cessing, 2015, pp. 3861–3865. http://dx.doi.org/10.1109/ICIP.2015.7351528.

[28] , Adaptive residual interpolation for color and multispectral image demosaicking, Sensors,
17 (2017), p. 2787. http://dx.doi.org/10.3390/s17122787.

[29] D. Paliy, V. Katkovnik, R. Bilcu, S. Alenius, and K. Egiazarian, Spatially adaptive
color filter array interpolation for noiseless and noisy data, International Journal of Imaging
Systems and Technology, 17 (2007), pp. 105–122. https://doi.org/10.1002/ima.20109.

[30] I. Pekkucuksen and Y. Altunbasak, Gradient based threshold free color filter array in-
terpolation, in Proceedings of the IEEE International Conference on Image Processing, 2010,
pp. 137–140. http://dx.doi.org/10.1109/ICIP.2010.5654327.

[31] R. Ramanath and W. E. Snyder, Adaptive demosaicking, Journal of Electronic Imaging,
12 (2003), pp. 633–642. https://doi.org/10.1117/1.1606459.

282

http://dx.doi.org/10.1109/ICIP.2014.7025363
https://doi.org/10.1109/TIP.2014.2359774
http://dx.doi.org/10.1109/ICIP.2013.6738475
http://www.ok.sc.e.titech.ac.jp/res/DM/MLRI.pdf
http://www.ok.sc.e.titech.ac.jp/res/DM/MLRI.pdf
https://doi.org/10.1109/TIP.2016.2518082
https://doi.org/10.1109/TIP.2016.2518082
http://dx.doi.org/10.1109/TIP.2019.2905991
http://dx.doi.org/10.1109/TIP.2010.2045710
http://dx.doi.org/10.1109/ICCV.2009.5459452
http://dx.doi.org/10.1109/ICIP.2015.7351528
http://dx.doi.org/10.3390/s17122787
https://doi.org/10.1002/ima.20109
http://dx.doi.org/10.1109/ICIP.2010.5654327
https://doi.org/10.1117/1.1606459

A Mathematical Analysis and Implementation of Residual Interpolation Demosaicking Algorithms

[32] K. Satya and T. Jayachandra, Deep learning approach for image denoising and image
demosaicing, International Journal of Computer Applications, 168 (2017), pp. 18–26. http:

//dx.doi.org/10.5120/ijca2017914500.

[33] D. S. Tan, W. Chen, and K. Hua, Deep demosaicking: Adaptive image demosaicking via
multiple deep fully convolutional networks, IEEE Transactions on Image Processing, 27 (2018),
pp. 2408–2419. http://dx.doi.org/10.1109/TIP.2018.2803341.

[34] R. Tan, K. Zhang, W. Zuo, and L. Zhang, Color image demosaicking via deep residual
learning, in Proceedings of the IEEE International Conference on Multimedia and Expo, 2017,
pp. 793–798. http://www4.comp.polyu.edu.hk/~cslzhang/paper/CNNCDM_ICME2017.pdf.

[35] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, in Proceedings of
the IEEE International Conference on Computer Vision, 1998, pp. 839–846. http://dx.doi.

org/10.1109/ICCV.1998.710815.

[36] J. Wu, R. Timofte, and L. Van Gool, Efficient regression priors for post-processing demo-
saiced images, in Proceedings of the IEEE International Conference on Image Processing, 2015,
pp. 3495–3499. http://dx.doi.org/10.1109/ICIP.2015.7351454.

[37] , Demosaicing based on directional difference regression and efficient regression priors, IEEE
Transactions on Image Processing, 25 (2016), pp. 3862–3874. http://dx.doi.org/10.1109/

TIP.2016.2574984.

[38] W. Ye and K. Ma, Image demosaicing by using iterative residual interpolation, in Proceedings
of the IEEE International Conference on Image Processing, 2014, pp. 1862–1866. http://dx.

doi.org/10.1109/ICIP.2014.7025373.

[39] , Color image demosaicing using iterative residual interpolation, IEEE Transactions on
Image Processing, 24 (2015), pp. 5879–5891. http://dx.doi.org/10.1109/TIP.2015.2482899.

[40] J. Zhang, A. Sheng, and K. Hirakawa, A wavelet-GSM approach to demosaicking, IEEE
Signal Processing Letters, 25 (2018), pp. 778–782. http://dx.doi.org/10.1109/LSP.2018.

2822802.

[41] L. Zhang and X. Wu, Color demosaicking via directional linear minimum mean square-
error estimation, IEEE Transactions on Image Processing, 14 (2005), pp. 2167–2178. http:

//dx.doi.org/10.1109/TIP.2005.857260.

[42] L. Zhang, X. Wu, A. Buades, and X. Li, Color demosaicking by local directional interpola-
tion and nonlocal adaptive thresholding, Journal of Electronic Imaging, 20 (2011), pp. 023016:1–
16. http://dx.doi.org/10.1117/1.3600632.

283

http://dx.doi.org/10.5120/ijca2017914500
http://dx.doi.org/10.5120/ijca2017914500
http://dx.doi.org/10.1109/TIP.2018.2803341
http://www4.comp.polyu.edu.hk/~cslzhang/paper/CNNCDM_ICME2017.pdf
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/ICCV.1998.710815
http://dx.doi.org/10.1109/ICIP.2015.7351454
http://dx.doi.org/10.1109/TIP.2016.2574984
http://dx.doi.org/10.1109/TIP.2016.2574984
http://dx.doi.org/10.1109/ICIP.2014.7025373
http://dx.doi.org/10.1109/ICIP.2014.7025373
http://dx.doi.org/10.1109/TIP.2015.2482899
http://dx.doi.org/10.1109/LSP.2018.2822802
http://dx.doi.org/10.1109/LSP.2018.2822802
http://dx.doi.org/10.1109/TIP.2005.857260
http://dx.doi.org/10.1109/TIP.2005.857260
http://dx.doi.org/10.1117/1.3600632

	Introduction
	Mosaicking and Notation
	Tensor Notation, Filters

	The Hamilton-Adams Interpolation
	HA Green Channel Interpolation
	HA Red and Blue Channel Interpolation

	Gradient Based Threshold Free Interpolation
	GBTF Green Channel Interpolation
	GBTF Red and Blue Channel Interpolation

	Residual Interpolation
	RI Green Channel Interpolation
	RI Red and Blue Channel Interpolation

	Adaptive Residual Interpolation
	ARI Green Channel Interpolation
	Step 1: Iterative RI and MLRI Estimates
	Step 2: Adaptive Selection of Iteration Number
	Step 3: Weighted Combination of Four Interpolated Results

	ARI Red and Blue Channel Interpolation
	Step 1: Diagonal Directions Interpolations

	Experimental Results
	Image Datasets and Peak Signal-to-noise Ratio
	Comparison

	Conclusion
	The Guided Filter
	The Minimized-Laplacian Guided Filter
	The Weighed Guided Filter

