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Abstract

In this paper, we present a Non-Local Means filtering method for PolSAR (Polarimetric Syn-
thetic Aperture Radar) imagery. We adopted three stochastic distances to measure the similar-
ity of samples. We obtain p-values using the asymptotic distribution of test statistics based on
these distances. Then we use this similarity evidence as input for a smooth activating function
that yields the weights of local convolution matrices. Non-local filters are computationally de-
manding, so we provide an efficient implementation that allows us to experiment with different
settings and find optimal parameters.

Source Code

The source code (ANSI C++), its documentation, and the online demo are accessible at the
IPOL the web page of this article1. Compilation and usage instructions are included in the
README.txt file of the archive.

Keywords: stochastic distances; non-local means; Wishart distribution; PolSAR imagery

1 Introduction

The local mean is the simplest noise reduction filter in image processing. It amounts to applying the
same convolution to every pixel with a typically small, e.g., 3× 3, 5× 5, 7× 7 pixels, mask of equal
and positive weights. Such a filter effectively reduces the noise, it is easily implemented, but it also
introduces blurring. One may mention the Gaussian smoothing among the alternatives that retain
the simplicity and the ability to reduce the effect of noise. The weights are proportional to a normal
density with zero mean and pre-fixed variance in this filter.
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Non-Local Means Filters for Full Polarimetric Synthetic Aperture Radar Images with Stochastic Distances

Those two filters belong to the class of translation-invariant convolutional filters, for which there
is a wealth of knowledge. See, for instance, the book by Lim [19]. Although it is possible to
design filters with good properties, their translation-invariant nature prevents them from adapting
to different situations.

Buades et al. [2, 3] proposed an adaptive convolutional approach: the Non-Local Means (NLM), in
which “Non-Local” refers to the use of large convolutional windows. This class of filters has produced
remarkable results in the denoising of natural [15, 20], Synthetic Aperture Radar – SAR [6, 7, 23, 31],
and medical images [28], among other applications.

While the design of a translation-invariant convolutional filter mainly relies on the analysis of
its Fourier spectrum, NLM filters are defined by two simple concepts: (i) how can we capture the
similarity between two samples, and (ii) how can we transform the similarity into a mask’s weight.

In the original proposal, by extending a single pixel to a local patch, Buades et al. [2] used a
Gaussian weighted Euclidean distance between image patches to measure their similarity. Such a
measure has good properties with additive white noise but is questionable in the presence of other
types of contamination. Besides, the mapping between similarities and weights is implicit, leaving
little control to the designer.

Speckle noise, although a deterministic interference pattern, can be adequately modeled as a
stochastic process [10]. Such noise is neither additive nor Gaussian and is common to all images
obtained with coherent illumination. Gao [12] and Yue et al. [35] provide a survey of distributions
for univariate data, while Deng et al. [8] discuss, from a physical perspective, distributions for
polarimetric observations.

Nascimento et al. [22] obtained tests statistics for the null hypothesis that the same distribution
produced two samples under a model for SAR data: the Multiplicative Model. Such test statistics
stem from computing stochastic divergences between the samples and, thus, consider the peculiar-
ities of these data. This first work handled univariate (intensity) data, and later Frery et al. [11]
extended the approach to the complex-valued multivariate case of polarimetric images. In both
cases, the approach was using the family of h-φ divergences to obtain test statistics [24, 25, 27].
Such information-theoretic tools allow obtaining an arbitrary number of test statistics with the same
asymptotic distribution. We review these divergences and tests in Section 2.3.

Torres et al. [30], Deledalle et al. [6], Wu et al. [33] and Vitale et al. [32] discuss ways of computing
similarities in the presence of speckle. Chan et al. [4] show that the Shannon entropy can also be
used in the comparison. These works designed different similarities to compute the weights of NLM
filters.

Gomez-Deniz and Frery [13] analyzed the effectiveness of three different stochastic distances
(namely, Hellinger, Kullback-Leibler, and Bhattacharyya) for speckle reduction in PolSAR imagery
using NLM filters. This paper pursues this line of research by providing an interactive tool that
allows experimenting with different setups (kinds of distances and tuning parameters) for PolSAR
speckle reduction. Our implementation alleviates the computational burden that NLM filters impose.

The rest of this paper is organized as follows. Section 2 presents an overview of NLM filters and
stochastic distances under the complex Wishart distribution for PolSAR data. Section 3 provides
details of our implementation. In Section 4, we present the set of metrics used to evaluate the
quality of the results. Section 5 contains results obtained with different parameter settings and both
simulated PolSAR data and actual images. Section 6 presents the main conclusions. Specific details
of the codes are provided in the Appendix.
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2 Definitions and Notation

2.1 The Non-Local Means Approach to Noise Reduction

Figure 1 illustrates the idea of statistical non-local means in which we want to estimate 9×9−1 = 80
weights for the convolution mask (right grid) that will act around the central pixel (red double
dash, left grid). The weight w1 is typically a non-decreasing function of p1, the p-value of the test

statistic that assesses the null hypothesis that the samples z(0) = (z
(0)
1 , z

(0)
2 , . . . ,z

(0)
9 ) (red dashes)

and z(1) = (z
(1)
1 , z

(1)
2 , . . . ,z

(1)
25 ) (orange dashes) were produced by the same probability law D(θ),

where θ is the parameter that indexes the distribution. This statistical formulation allows samples
of different sizes, i.e. different estimation windows, cf. the orange and green patches.

Figure 1: Sketch of the statistical non-local means approach.

The sample z(0) which surrounds and includes the central pixel, is transformed into the estimate
θ̂0. The sample z(1) which surrounds and includes the pixel corresponding to w1 (orange double dash)

is transformed into the estimate θ̂1. These estimates are compared by a measure of dissimilarity
between the models d(θ̂0, θ̂1). Such a measure, in the context of h-φ divergences, is turned into a test
statistic for the null hypothesis

H0: the random vectors Z1,Z2 that gave rise to the samples z(1), z(2) obey the same
distribution D(θ).

Knowing the (possibly asymptotic) distribution of such test statistic, we compute p1, the p-value
under H0, and then we transform it into the desired weight w1.
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Analogously, the weight w2 is the result of verifying the hypothesis that the random vectors
Z0,Z2 that produced the samples z(0) and z(2) = (z

(2)
1 , z

(2)
2 , . . . ,z

(2)
9 ) (green dashes) follow the same

distribution. Notice that the estimates θ̂ are computed only once for every pixel.
Each p-value may be used directly as a weight w but, as discussed by Torres et al. [31], such a

choice introduces a conceptual distortion. Consider, for instance, the samples z(1) and z(2). When
contrasted with the central sample z(0) they produced the p-values p1 = 0.05 and p2 = 0.93. In this
case, the first weight is significantly smaller than the second one, but there is no evidence to reject
the hypothesis at the confidence level η = 0.05.

Torres et al. [31] proposed using a piece-wise linear function that maps all values above η to 1,
a linear transformation of values between η/2 and η, and zero below η/2. This work proposes a
smooth activating function with zero first- and second-order derivatives at the inflection points. The
“smoother step function” defined in [9] is given as

fsmoother(x) =


0 if x < 0,

6x5 − 15x4 + 10x3 if 0 ≤ x ≤ 1,

1 if x > 1.

This function connects in a smooth manner the points (0, 0) and (1, 1). We use fsmoother to connect
(η/k, 0) and (η, 1), for every k > 1, and define the weight w as a function of the observed p-value as

w(p) = fsmoother

(p− η/k
η − η/k

)
. (1)

This function is zero for p < η/k, and is one above η. The parameter k controls the steepness of the
transformation, as shown in Figure 2. From our experiments, we recommend k = 2.

Figure 2 illustrates w(p) for η = 0.7 and k = 2, 3, 10.

2.2 PolSAR Imaging and the Wishart Distribution

PolSAR data result from the interaction between the electromagnetic signal emitted by the sensor
and the target. The sensor then captures the return as a complex-valued matrix S′

S′ =

[
SHH SHV

SVH SVV

]
,

in which the indexes “H” and “V” denote Horizontal and Vertical polarization. Under mild condi-
tions, it is possible to assume that the reciprocity theorem holds [18] and, thus, SHV = SVH. All the
necessary information is, therefore, contained in the (complex) scattering vector

S =
[
SHH SHV SHH

]T
, (2)

where “T” denotes transposition.
The joint distribution of S depends on, among other factors, the properties, number and spatial

distribution of the elementary backscatters in each resolution cell [34, 35].
Goodman [14] proved that when the area under observation is comprised of a massive number

of scatterers, and when none dominates the return, then (2) may be described by a zero-mean
complex Gaussian distribution. Different types of targets reflect on the entries of the (complex-
valued) covariance matrix Σ that indexes this distribution.

Dealing directly with scattering vectors data is not as usual as working with multilooked data.
This is because Multilook processing enhances the signal-to-noise ratio. This operation consists
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Figure 2: The transformation between p-values and weights for η = 0.07 and k ∈ {2, 3, 10}.

in forming the average of (complex-valued) matrices with L ideally independent and identically
distributed scattering vectors

Z =
1

L

L∑
`=1

S(`)ST∗(`) =
1

L

L∑
`=1

SHH(`)S∗HH(`) SHH(`)S∗HV(`) SHH(`)S∗VV(`)
SHV(`)S∗HH(`) SHV(`)S∗HV(`) SHV(`)S∗VV(`)
SVV(`)S∗HH(`) SVV(`)S∗HV(`) SVV(`)S∗VV(`)

 =

=

 IHH CovHH,HV CovHH,VV

CovHH,HV IHV CovHH,VV

CovHH,VV CovHH,VV IVV

 , (3)

where “∗” denotes the complex conjugate. The (real-valued) diagonal elements of (3) are referred to
as “Intensity Channels”, and the off-diagonal elements are the “Complex Covariance Channels”.

Two things are noteworthy. First, despite the usual denomination of (3) as “covariance matrix,”
it is a random variable. Second, the expected value of Z is E(Z) = Σ.

Goodman [14] also obtained the distribution of Z under the assumption that S(1),S(2), . . . ,S(L)
are independent identically distributed zero-mean complex Gaussian random variables. The distri-
bution of Z is characterized by the following probability density function

fZ(z; Σ, L) =
L3L|z|L−3

|Σ|LΓ3(L)
exp

{
− LTr(Σ−1z)

}
, (4)

where L ≥ 3, Γ3(L) = π3
∏2

i=0 Γ(L − i), Tr(·) is the trace operator, and z spans the whole set
of positive-definite Hermitian 3 × 3 matrices A. This is the complex scaled multilook Wishart
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distribution, which we denote Z ∼ W(Σ, L) and that we will call “Wishart law”. Lee et al. [17] and
Hagedorn et al. [16] have studied some of the marginal distributions that arise from this model.

Given the random sample z1, z2, . . . ,zn of independent identically distributed W(Σ, L) deviates,

the maximum likelihood estimator (Σ̂, L̂) is given by

the sample mean: Σ̂ =
1

n

n∑
i=1

zi, (5)

and the root of: 3 ln L̂+
1

n

n∑
i=1

ln |zi| − ln |Σ̂| − ψ(0)
3 (L̂) = 0, (6)

where ψ
(0)
3 is the zero-order term of the ν-th order multivariate polygamma function ψ

(0)
3 (L) =∑2

i=0 ψ
(0)(L− 1), and ψ(0) is the digamma function

ψ(0)(L) =
∂ ln Γ(L)

∂L
.

To numerically solve (6), L̂ is initialized to the nominal number of looks of the PolSAR data,

which is a known value. The estimated value, L̂ is also known as ENL or Equivalent Number of
Looks.

2.3 Stochastic Divergences, Distances and Tests

Posed in terms of the non-local means filter situation, Frery [10] noted that this and several other
relevant problems in signal and image processing and analysis could be solved by formulating them
in the form of the following hypothesis test:

Consider the samples z(1) and z(2) of the form z(j) = z
(j)
1 , z

(j)
2 , . . . ,z

(j)
nj for j = 1, 2. Is

there enough evidence to reject the null hypothesis that the same model D(θ) produced
them?

This problem assumes that the samples might be of different sizes n1, n2, and that the model D(θ)
is a probability distribution indexed by the unknown q-dimensional parameter θ ∈ Θ ⊂ Rq.

On the one hand, we deal with complex-valued observations in matrix form, so usual techniques
are seldom helpful. On the other hand, we have an adequate distribution (i.e. the Wishart law)
to model these data. Thus, we will rely on the approach based on stochastic divergences between
Wishart models.

Let X and Y be random variables defined over the same probability space and same support A.
Assume their distributions are characterized by the densities fX(v; θ1) and fY (v; θ2), respectively,
where θ1 and θ2 are parameter vectors. Consider φ : (0,∞)→ [0,∞) a convex function, h : (0,∞)→
[0,∞) a strictly increasing function with h(0) = 0, and indeterminate forms are assigned value zero.
The (h, φ)-divergence between fX and fY is defined by

Dh
φ(X, Y ) = h

(∫
A
φ

(
fX(v; θ1)

fY (v; θ2)

)
fY (v; θ2) dv

)
. (7)

Table 1 presents some well-known divergence measures, constructed by choosing adequately h and
φ.

Some divergence measures lack symmetry. Although there are numerous methods to address the
symmetry problem [29], a simple solution is to define a new measure dhφ given by

dhφ(X, Y ) =
Dh
φ(X, Y ) +Dh

φ(Y,X)

2
, (8)
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(h, φ)-divergence h(y) φ(x)

Kullback-Leibler y x ln(x)
Hellinger y/2, 0 ≤ y < 2 (

√
x− 1)2

Bhattacharyya − ln(1− y), 0 ≤ y < 1 −
√
x+ x+1

2

Table 1: (h, φ)-divergences and related functions φ and h, from [10, 11]

regardless whether Dh
φ(·, ·) is symmetric or not. Henceforth, the symmetrical versions of the diver-

gence measures are termed as “distances”. We obtain integral formulas for the distance measures
by applying the functions of Table 1 into Equation (7), and symmetrizing the resulting divergences
with (8). For simplicity, in the list below, we suppress the explicit dependence on z and on the
support A.

• The Kullback-Leibler distance:

dKL(X, Y ) =
1

2

∫
(fX − fY ) ln

fX
fY
.

• The Hellinger distance:

dH(X, Y ) = 1−
∫ √

fXfY .

• The Bhattacharyya distance:

dB(X, Y ) = − ln

∫ √
fXfY = − ln

(
1− dH(X, Y )

)
. (9)

The distances mentioned above are neither comparable nor semantically rich. References [24, 25,
26] are pioneering works that make a connection between any h-φ distance and a test statistic.

Consider the model D(θ), with θ ∈ Θ ⊂ Rq the unknown parameter that indexes the distribution.
Assume the availability of two samples of i.i.d. observations z(1) = z1, z2, . . . ,zn1 from D(θ1), and
z(2) = zn1+1, zn1+2, . . . ,zn1+n2 from D(θ2), θ1, θ2 ∈ Θ. The maximum likelihood estimates of θ1 and

θ2 are computed as θ̂1(z
(1)) and θ̂2(z

(2)). We are interested in verifying if there is enough evidence

in θ̂1, θ̂2 to reject the null hypothesis H0 : θ1 = θ2.

Under the regularity conditions discussed in Reference [27, p. 380] the following lemma holds:

Lemma 1. If n1/(n1 + n2) converges to a constant in (0, 1) when n1, n2 →∞, and θ1 = θ2, then

Shφ(θ̂1, θ̂2) =
2n1n2

n1 + n2

dhφ(θ̂1, θ̂2)

h′(0)φ′′(1)

D−→ χ2
q, (10)

where “
D−→” denotes convergence in distribution and χ2

q represents the chi-square distribution with q
degrees of freedom.

Note that q is the dimension of θ. Based on Lemma 1, we obtain a test for the null hypothesis
θ1 = θ2 in the form of the following proposition.

Proposition 2. Let n1 and n2 be large and Shφ(θ̂1, θ̂2) = s, then the null hypothesis θ1 = θ2 can be
rejected at level α if Pr(χ2

q > s) ≤ α.
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This result holds for every h-φ divergence, hence its generality. The (asymptotic) p-value of the
Shφ statistic can be used as a measure of the evidence against rejecting H0, so it has rich semantic in-
formation. The p-value could be used to compute the weight of the non-local means filters. Moreover,
since the limit distribution χ2

q is the same for all h and φ, the test statistics Shφ are comparable.

Frery et al. [11] obtained explicit expressions for several stochastic distances between Wishart
models. In particular, we cite the Kullback-Leibler and Bhattacharyya distances

dKL(θ1,θ2) =
L1 − L2

2

{
log
|Σ1|
|Σ2|

− 3 log
L1

L2

+ p
[
ψ(0)(L1 − 2)− ψ(0)(L2 − 2)

]
+ (L2 − L1)

2∑
i=1

i

(L1 − i)(L2 − i)

}
+

Tr(L2Σ
−1
2 Σ1 + L1Σ

−1
1 Σ2)

2
− 3(L1 + L2)

2
, (11)

dB(θ1,θ2) =
L1 log |Σ1|

2
+
L2 log |Σ2|

2
− L1 + L2

2
log

∣∣∣∣(L1Σ
−1
1 + L2Σ

−1
2

2

)−1∣∣∣∣
+

2∑
k=0

log

√
Γ(L1 − k)Γ(L2 − k)

Γ(L1+L2

2
− k)

− 3

2
(L1 logL1 + L2 logL2). (12)

The Hellinger distance dH follows from (9) and (12). These three distances reduce to simple
expressions under the usual condition L1 = L2 [11]. In such a case, L1 = L2 = L (the nominal
number of looks). However, it is recommended to estimate L1 and L2 by solving (6). Also, notice that
these three distances depend only on the number of looks and on simple operations on the covariance
matrix, namely the inverse and the determinant. Coelho et al. [5] proposed a fast algorithm for
simultaneous inversion and determinant computation of these matrices.

Figure 3 shows the steps that transform two samples into a p-value under the Wishart model and
the p-value into the weight of the convolution mask.

Notice that the Non-Local Means approach illustrated in Figure 1 violates the large sample
hypothesis required by (10). The estimation windows (patches) are typically small to avoid blurring.
Previous works, e.g. [11], have shown, though, that h-φ test statistics under the Wishart model are
comparable to their asymptotic distribution even with very small samples. With those results in
mind, the user may choose estimation windows of typical size, e.g. 3× 3, 5× 5, etc., and still count
on the validity of the observed p-values.

Figure 3: Procedure of transforming two samples into the weight used in the non-local mean filter.
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3 Algorithm and Implementation Details

In this section, first, a description of the algorithm implemented and its main details are discussed.
Then, the set of parameters used by the algorithm are explained in Subsection 3.4. Computational
complexity is addressed in Subsection 3.5.

Figure 4 shows the flowchart of the non-local PolSAR filter. A more detailed description is
provided in Algorithm 1.

Three are the main parts of the algorithm: Preprocessing, Filtering, and Post-processing.

3.1 Preprocessing

Non-local filters are highly computationally demanding because a large convolution mask must be
computed for each pixel. This cost is largely increased for the case of PolSAR data, because each pixel
value is a 9× 9 complex matrix. These matrices must be inverted and their determinants calculated
to estimate the stochastic distances, apart from other mathematical operations (statistical tests that
involve transcendental functions). Also, the ENL (equivalent number of looks) is pixelwise estimated
by the method discussed by Frery et al. [11]. Therefore, for a practical PolSAR non-local despeckling
filter, it is necessary to implement the codes efficiently.

The input data consists of nine plain text files of size mrows × ncolumns; one for each term of the
covariance matrix (3). In the Preprocessing box shown in this figure, the covariance matrix for each
pixel is estimated, and its inverse and the determinant are calculated and stored in memory. The
estimates for each covariance matrix (see (5)) are obtained by a mean filter. This is done only once.

The methods to perform these tasks are in the POLSAR DAT.cpp program:

• (line 118), load PolSAR Data: load the nine plain text files. If the user provides a reference
image to estimate the image-quality indices (see Section 4), the nine plain text files are loaded
(line 296, method load PolSAR Data Reference). Both methods also show the Pauli repre-
sentation of the uploaded data. The Pauli representation is explained below.

• (line 592), preprocess data: from the uploaded data, the Z matrix (Equation (3)) for each
pixel is built. Therefore, observations are transformed into a 3× 3 matrix for each pixel within
the Ω PolSAR image (Ω = {Zi,j : 1 ≤ i ≤ mrows, 1 ≤ j ≤ ncolumns}). From each Zi,j, and

by using a mean filter of suitable dimension (user-selected local patch size), the matrices, Σ̂i,j,

for each image pixel i, j are calculated (Equation (5)). The inverses, Σ̂−1i,j , and determinants,

|Σ̂i,j|, |Zi,j| are also calculated.

Notice that the first preprocessing step consists in expanding the image to deal with the edges.
This is done by embedding the original image, whose support is the grid S = {1, . . . ,mrows} ×
{1, . . . , ncolumns} in an image of support S ′ = {−(PW−1)/2, . . . , 0, 1, . . . ,mrows,mrows+1, . . . ,mrows+
(PW − 1)/2} × {−(PW − 1)/2, . . . , 0, 1, . . . , ncolumns, ncolumns + 1, . . . , ncolumns + (PW − 1)/2}. The
new positions are filled with the values mirrored from the original image, e.g. the value at (0, 0) is
the same as at (1, 1). This is done with the method expand image outwards, line 512.

Also, in the Preprocessing box, the ENL is obtained pixelwise by applying the bisection method
to (6) to find the root within an interval centered into the nominal number of looks, L, which is a
known value. The implementation of the bisection method is detailed in Algorithm 2. We adopted
the usual approach for the limits of this interval: the minimum value is the minimum accepted value
for the multilook data following the Wishart distribution, that is, 3. In contrast, the maximum value
is twice the nominal value. This is done with the method Estimate ENL, line 897.
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9 plain text files

Input Image

for  to  
 for  to  

  Calculate , ,  ,  
  Estimate  by bisection 
 end  
end 

Preprocessing

for  to  
 for  to  
  for  to  
   Evaluate stochastic distances 
   Perform statistical tests 
   Compute  
  end  
 end  
end 

Non-local means filtering

9 plain text files

Filtered image

NO

YES

Reference
image?

Non-referenced image
quality indices

SSIM,  
Non-referenced image

quality indices

END

Pauli decomposition Postprocessing

Figure 4: General flowchart of the non-local means approach. The non-referenced image quality indexes are the mean
preservation, the variance reduction, and the equivalent number of looks (ENL).
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Algorithm 1: Non-Local PolSAR Filter algorithm

Input : A fully PolSAR image (a folder name with the data), the nominal number of looks L, the
size of the searching region SW , the size of the local patch PW , the confidence level η for
the statistical test, the stochastic distance to use for estimating patches similarity,
distance option, the selection to estimate ENL locally ENL option, the ROI coordinates
to estimate image-quality indices xy, the reference image option GT , the edge detector to
use edge detector option

Output: The filtered image Ω̂ and the estimated image-quality indices (to a text file)
Ω0 ← load PolSAR Data(foldername) load data (nine text files of size mrows × ncolumns)
Ω ←expand image outwards(Ω0, SW, PW) image is mirror-reflecting across the borders
Ω ← preprocess data(Ω) compute Σ̂, |Σ̂|, Σ̂−1, and |Z|
Initialize ENL← L the ENL matrix is set to nominal L value
if ENL option == 1 then

ENL is pixelwise estimated (See Algorithm 2)
ENL← ENL Estimate(L)

Initialize Ω̂ ← 0
Non-Local Means filtering

foreach i← 1 to mrows do
foreach j ← 1 to ncolumns do

Initialize w ← 0 sum weights is set to 0
foreach patch k of size PW × PW in the SW × SW region centered at the position i, j do

if distance option == 1 then
SD ← Bhattacharyya distance(i, j, k) Equation (12)

if distance option == 2 then
SD ← Hellinger distance(i, j, k) Equations (9) and (12)

if distance option == 3 then
SD ← Kullback Leibler distance(i, j, k) Equation (11)

p value← cdfchi(fabs(SD)) χ2 statistical test
x← p value−η/2

η−η/2
w ← smoother function(x) transform p value to a weight, Equation(1)
n← PW × PW
Ω̂i,j ← 1∑n

k=2 w(1,k)
1
n

∑n
k=2w (1, k)Zk estimate the filtered value Ω̂i,j

if GT== 1 then
evaluate image-quality indices

SSIM Estimates(GT,Ω̂) there is a reference image GT: estimate SSIM
Beta Estimates(Ω̂, GT, edge detector option) there is a reference image GT: estimate β

Estimates in ROIs(xy, Ω̂) estimate referenceless metrics
return Ω̂ return the filtered image Ω̂
Function SSIM Estimates(GT,Ω̂) Equation(13)

return SSIM

Function Beta Estimates(Ω̂, GT, edge detector option) Equation(14)
return β

Function Estimates in ROIs(xy, Ω̂) return estimates of the mean, variance, and ENL
return estimates
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3.2 Filtering

With all the data ready for the estimation of the stochastic distance between patches, the usual
overlapping non-local convolution is performed, and the central pixel (its related covariance matrix)
is updated once the statistical test is done (see Algorithm 1). This is represented in Figure 4 by
the small box which contains the routines to evaluate the stochastic distances and to perform the
statistical test. The method used for these tasks (non-local convolution, evaluation of stochastic
distance, statistical test, and central pixel updates) is get Sigma, line 1017 for the case of using the
nominal number of looks, L, or the method get Sigma ENL, line 1112, if the pixelwise estimated ENL
is used.

As seen in Algorithm 1, the user can select among the three stochastic distances available: the
Bhattacharyya distance, the Hellinger distance, and the Kullback-Leibler distance. Once again,
two methods have been implemented for each of these distances depending on whether the nominal
number of looks, L, or the pixelwise estimated ENL is used. For instance, for the Bhattacharyya
distance, the method used when the nominal L values applies is Bhattacharyya distance ENL, line
1095, and the method Bhattacharyya distance L1 L2, line 1239 is used for the other case. The
same applies for the other two stochastic distances.

It is important to indicate that the codes are implemented in C++ and the unique class Pol-
SAR Data (see header file, “PolSAR Data.h”), is defined, and a unique object is declared, Pol-
SAR Image (main.cpp, line 306). By using simple “set” methods, variables are assigned to the
object, and they are naturally available for methods related to the owner class. The “get” methods
allow to get variables from the class (see, for instance, in this header file, line 111 or line 229). Due to
that, it is not necessary to pass all variables used in the methods as arguments. This is, for instance,
the case of the call to the method ENL Estimate detailed in Algorithm 2. Although this method
requires the precalculated |Z|, |Σ̂|, Σ̂−1, only the L nominal value is passed as argument.

3.3 Postprocessing

For a PolSAR filtering operation, 9 files are obtained (one for each band). The Pauli representation
is the most commonly accepted result for visual evaluation. This color codification provides a well-
suited optical-like image [18] and is generated from the diagonal terms of the covariance data (HH,
HV and VV bands). Figure 10 shows an example of such codification.

Additionally, to account for the vast dynamic range of PolSAR data, the Pauli representation
works with the logarithm of the data (decibels), and histogram equalization is also required (see the
methods double dB char and image adjust in the file Auxilary methods.cpp, lines 66 and 140,
respectively).

This global description of the algorithm concludes with evaluating the metrics to assess the
quality of the despeckling operation done on the original PolSAR data. Several image-quality indices
participate in this assessment, some referenced and others non-referenced. These measures of quality
are described in Section 4. One of the referenced metrics requires an edge detector for evaluating
edge preservation. For that purpose, a standard Canny method has been included in the codes (see
the method CannyEdges in the file Edge detectors.cpp, line 144). The detection of edges through
the Laplacian operator and the zero-crossing algorithm are also available (see in the same file, the
method edges, line 376). This edge detector is also used for estimating the β metric (see Section 4).

More details of the non-local PolSAR filter implementation are in the Appendix.

3.4 Choice of Parameters

The parameters that define an NLM filter for PolSAR data are user-defined. The default setup is:
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Algorithm 2: Method to estimate ENL by the bisection algorithm

Input : precomputed |Z|, |Σ̂|, Σ̂−1, the nominal number of looks L
Output: The ENL matrix
Initialize tolerance← 1.0E − 4 the tolerance value to finish the algorithm
Initialize nmax ← 100 the maximum number of iterations allowed
Initialize ENL← L the ENL matrix is set to the nominal value L; its size is mrows × ncolumns

foreach i← 1 to mrows do
foreach j ← 1 to ncolumns do

Initialize a ← 3 PolSAR valid minimum number of looks
Initialize b ← 2L maximum number of looks to search for
Initialize n ← 1 n is the counter of iterations
rest ← log(|Zi,j | / |Σ̂i,j | ) - trace(Σ̂−1i,j ·Zi,j) constant term in Equation (6)
fa ← ENL function(a, rest) evaluate the function at endpoint a
fb ← ENL function(b, rest) evaluate the function at endpoint b
if sign(fa) == sign(fb) then

continue no root in [a,b]; proceed to next i, j pixel

while n ≤ nmax do
c← (a+ b)/2 central point of interval (a, b)
f ← ENL function(c, rest) call to the function, Equation (6)
if (|f | < tolerance or |b− a| < tolerance) then

ENLi,j ← c root found
break it proceeds to next i, j pixel

if sign(f) == sign(fa) then
a← c root lies in (c, b)
fa ← f

else
b← c root lies in (a, c)
fb ← f

n← n+ 1 next iteration

return ENL estimated ÊNL matrix
Function ENL function(L, rest) Equation(6)

Initialize sum ← 0
foreach i ∈ {0, 1, 2} do

if (L− i) > 0 then

sum← sum+ ψ(0)(L− i)

return (3 · (log(L) + 1)) + rest− sum) return the root

• SW (size of the searching window): a large SW value implies higher computational cost. From
the experiments performed, we set SW to 7 and 11.

• PW (size of the patch): although the computational cost is not dramatically related to the
size of the patch, we set PW to 3 and 7. We impose the constraint SW > PW .

• η value (the confidence level in (1)): used in the statistical test and weight transforming. This
parameter is responsible for the number of patches considered similar to the central pixel to
be estimated. The larger η, the fewer patches participate in the final estimation. In our
implementation, η is set to 0.8, 0.9, and 0.99 to explore its effect on the quality of results. Note
that η controls the acceptance or rejection of patches, and so, it is the more decisive parameter.

• SD (stochastic distance): three options are available, namely the Kullback-Leibler, Bhat-
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tacharyya, and Hellinger distances.

As shown in Table 2, the user can select different parameters either directly from the online-
interface or through command line execution2.

Parameters Default Value Interface? Accepted values

Search window size (SW ) 7 X 7, 9, 11
Patch size (PW ) 3 X 3, 5, 7, 9, 11
η value 0.8 X (0.0, 1.0)
Stochastic distance (SD) KL X KL, Hell, Bhatta

Table 2: Parameters for the non-local means POLSAR filter.

For the offline version, the user can also select:

• to estimate ENL pixelwise (default option), or use a fixed value for the whole data (for instance,
the known nominal number of looks L),

• to use the original mapping function by Torres et al. [30], or the proposed smoother function
(default option),

• to detect edges by using the Canny method (default option), or the zero crossings of the
Laplacian of a Gaussian.

Local estimation of ENL enhances the model expressiveness, but also the computational cost. It
is worth mentioning that the Wishart model is adequate for fully developed speckle and that the
hypotheses under which it is valid may not be met, e.g., by data from forests and urban areas.
Allowing ENL to vary diminishes the discrepancy between the observations and the Wishart law.

3.5 Computational Complexity

As detailed above, all the elements that can be pre-computed off the algorithm’s main loop are
pre-calculated. Thanks to this precaution, the computational complexity is the usual for non-local
filters: For an image of size |Ω| and size of search window SW , the maximum complexity is of the
order of O(|Ω|SW 2). Such complexity does not depend on the size of the local patch (PW ) since
all calculations needed for the estimation of stochastic distances are done before the main loop.

Note that, in our implementation, no iteration is used, and no pixel pre-selection is done. Pixel
pre-selection would slightly reduce the computational cost by using only the similar patches of larger
p-value to estimate the central pixel.

The code runs in parallel. The processing of the synthetic image used in the experiments (image
size |Ω| = 500× 500 pixels), on Intel c© Core R© i7-7700HQ CPU@ 2.8 GHz, 16 GB RAM, with 4 cores
and hyperthreading (8 virtual cores) takes ≈ 20 s (including pre-processing and image generation of
final results).

Tables 3, 4 and 5 report the computational cost of the experiments performed in Section 5.

4 Measures of Quality

Argenti et al. [1] discuss several measures of speckle filter quality. They can be categorized as with-
reference indexes, i.e., when the “perfect” or “noiseless” image is available, and without-reference
indexes (the most usual case in practice). We use the following metrics:

2In Table 2, KL: Kullback-Leibler, Hell: Hellinger and Bhatta: Bhattacharyya.
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• MSSIM (Mean Structural Similarity Index), which measures the similarity between the original
and despeckled images with local statistics (mean, variance and covariance between the unfil-
tered and despeckled pixel values). This measure is bounded in (−1, 1), and a good similarity
produces value close to 1. MSSIM is usually denoted as SSIM, and we adopt this notation. It
is to easy implement through its mathematical definition

SSIM(x, y) =
(2µ̂xµ̂y + c1) (2σ̂xy + c2)(

µ̂2
x + µ̂2

y + c1
) (
σ̂2
x + σ̂2

y + c2
) , (13)

where x and y are selected areas of size m × n within the image I (reference image) and the

image Î (filtered image) respectively. µ̂x, µ̂y, σ̂
2
x, σ̂

2
y are the sample mean and the sample

variance estimated in the areas x and y respectively, and σ̂xy is the covariance of x and y.
The variables c1 = (k1D)2 and c2 = (k2D)2, where D is the dynamic range of the image3,
and k1 = 0.01 and k2 = 0.03 avoid division by zero. SSIM can be measured in the whole
image or in several selected areas (xi, yi) and then averaged to get the MSSIM (Structural
Similarity Index) metric. SSIM is estimated with the method SSIM Estimates, located in the
file Estimators.cpp, line 172.

• β assesses edge preservation by measuring the correlation between edges in the reference and
denoised images. Edges are detected either by the Laplacian or the Canny filter (both methods
are available for the user in the released code, although we present only results with the latter).
The β index ranges between 0 and 1, and the bigger it is, the better the filter is (the ideal edge
preservation yields β = 1). Once the edges of both images, the original noisy (or reference

image), I and the despeckled one, Î, are available, β is obtained through

β =
Γ
(
∆I −∆I, ∆̂I − ∆̂I

)√
Γ
(
∆I −∆I,∆I −∆I

)√
Γ
(
∆̂I − ∆̂I, ∆̂I − ∆̂I

) , (14)

where Γ(I1, I2) is given by

Γ (I1, I2) =
K∑
i=1

I1i · I2i . (15)

∆I and ∆̂I are the high-pass filtered versions of images I and Î, respectively, obtained with
a sliding Laplacian pixel kernel window of size 3 × 3 or another edge detector such as the

Canny detector; ∆I and ∆̂I are the average values of the image I and the average of the
high-pass filtered version of the image ∆̂I, respectively. This metric evaluates the correla-
tion between the ground truth edges within the original image and the edges in the denoised
image detected by means of the Laplacian filter (or the Canny filter). β is estimated with
the method beta estimator, located in the file Estimators.cpp, line 68, and by default, the
Laplacian filter is used.

• Mean preservation: the mean value of the noisy image µN estimated within a large enough
homogeneous area (same radar signature) is compared to the mean value for the denoised
image, µD. A good filtering operation should preserve that value (µN ≈ µD).

• Variance reduction: the variance of the filtered image, varD must be smaller than the variance
of the noisy image (varN), both measured in a large enough textureless area.

3For an 8 bit resolution image, i.e., an image with 255 possible grayscale values, D = 28 − 1 = 255.
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• ENL (Equivalent Number of Looks), is among the simplest and most spread measures of quality
of despeckling filters. As explained above, it can be obtained by solving (6), although, as a
non-referenced metric, it is usually estimated, in textureless areas and intensity format, as the
ratio of the squared sample mean to the sample variance, i.e., the reciprocal of the squared
coefficient of variation. ENL is proportional to the signal-to-noise ratio. The higher ENL is,
the better the quality of the image is in terms of speckle reduction. Much care must be taken
when interpreting ENL; it is well known that large ENL values are easily obtained just by over
filtering an image, which severely degrades details and gives the filtered image an undesirable
blurred appearance. These metrics are evaluated with the method Estimates in ROIs, located
in the file Estimators.cpp, line 275.

SSIM and β are widely applied in SAR images and natural images, and a reference image is needed
for their evaluation. The last three metrics (mean preservation, variance reduction, and ENL) need
no such reference image.

All the estimators are implemented in the file Estimators.cpp. The edge detectors (the Canny
and the Laplacian zero crossing filter) are coded in the file Edge detectors.cpp. The Canny method
requires setting two threshold parameters (the Low and High threshold), which control the number
of detected edges. The default values used in the implementation are in the Edge detectors.cpp

file (lines 69 to 72). Those values work well for all the cases tested, but if not, they must be suitably
modified by the user. That is why one of the program outputs shows the map of detected edges, so
the user can check if the threshold values provide acceptable edge detection.

The usual approach for evaluating the performance of a PolSAR filter, as many bands are involved
with PolSAR data, consists of estimating all the metrics (SSIM, β, mean preservation, variance
reduction and ENL) for the main diagonal components of the covariance matrix (HH, HV and VV
bands), and averaging these values. This is the approach followed in this paper. Additionally, it is
also common to estimate those metrics on what is known as the “span image”, which is obtained
by averaging those components and producing a single band and then estimating all the metrics on
that span image. This is also done in this work.

Apart from that well-known metrics, in SAR and PolSAR images, the evaluation of the perfor-
mances is completed by a visual inspection (by an expert) of the filtered data (the diagonal terms
and the span image) to assess the preservation of edges and fine details.

5 Results

An extensive analysis of the performances of the non-local PolSAR filter can be easily done through
the user-friendly demo. In this section, we focus on showing how the setting of the η value, the use
of the available stochastic distances, and the size of the patches modify the quality of the results.
We want to illustrate that the demo allows tuning the filter for a given input data easily.

We follow the usual procedure for testing filters: first, the filter is extensively tested on a synthetic
image with an available reference (ground-truth). In doing so, conclusions can be achieved utilizing
numerical (objective) image quality indices. Such indices are also discussed in the following. Then,
the performance of the filter is evaluated on actual PolSAR data. In both cases, our interest relies
on denoising the images while preserving details.

The above experimental setup for the case of the synthetic data can be enriched by running Monte
Carlo experiments [21]. However, due to time constraints in the execution times related to IPOL’s
online demo, those experiments have not been included in this paper. We remark that the user can
easily prepare Monte Carlo experiments from the available codes.
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5.1 Simulated Data

We use the simulated data illustrated in Figure 5. This image contains large homogeneous areas and
many edges and, thus, is helpful to test the filter’s performance at reducing noise while preserving
fine details. The images have 500 × 500 pixels. To generate a fully PolSAR sample, we use two
covariance matrices from actual PolSAR data and a Wishart matrix generator that can produce
samples with a given number of looks. The covariance matrices used for the simulation are

Σ1 =

 9.6289 0.1917− j0.0358 −1.5464 + j1.9139
0.1917 + j0.0358 0.5671 −0.0580 + j0.1681
−1.5464− j1.9139 −0.0580− j0.1681 4.7225

 105, and

Σ2 =

 3.2556 0.0556 + j0.0787 2.4046− j2.7287
0.0556− j0.0787 0.1647 −0.0146− j0.0482
2.4046 + j2.7287 −0.0146 + j0.0482 6.1028

 104,

which were observed in urban and pasture regions [11].

(a) Reference image (b) Pauli codification of the three-
looks simulated sample

Figure 5: Simulated PolSAR data used in the experiments. The black rectangle in dotted line is the selected area to estimate
the non referenced metrics.

Figure 6 shows results, in Pauli representation, obtained by using different setting parameters
and two stochastic distances (Kullback-Leibler and Bhattacharyya) for the PolSAR simulated data.
Detected edges by using the Canny detector, for the filtered data (span data), are also depicted.
Similar results are shown in Figure 7 by using different parameters and the Hellinger stochastic
distance.

As seen in these figures, the effect of speckle diminishes with the increase of size patches. However,
although reasonably well preserved, edges also degrade with the increase of patch sizes. Note that
the results (for a given parameter setting) are visually similar. An objective evaluation is provided
by the metrics detailed in the previous section and shown in Figure 8 (metrics evaluated within the
large homogeneous area), and Figure 9 (metrics accounting for the whole image).

Several conclusions can be derived from these plots. First, we analyze the local estimators (mea-
sured in a large homogeneous area).

• mean preservation (µp): a maximum divergence of 5 % from the original value (measured in the
noisy data) is commonly accepted as a good result. In this case, the values are considerably
smaller (|µp| < 0.5), so, acceptable. There are noticeable differences for the stochastic distances
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(a) Filtered result by using the
Kullback-Leibler stochastic distance

(b) Detected edges for the Kullback-
Leibler stochastic distance.

(c) Filtered result by using the Bhat-
tacharyya stochastic distance

(d) Detected edges for the Bhat-
tacharyya stochastic distance.

Figure 6: Filtered results for the setting: 7× 7 (3× 3), η = 0.8 and two stochastic distances.

and the p-value, although not big, the mean is better preserved for a small patch size. The best
result is for the Hellinger distance with p-value equal to 0.8 and 7× 7 patch size, although, as
mentioned above, all results are excellent. This is the expected result from a robust non-local
filter.

• Variance reduction or standard deviation reduction (σp as shown): non-local filters perform
well on strongly reducing the speckle, with a final value, for the worst case, of a reduction
≈ −90 %. Larger patches render better variance reduction (minor standard deviation values,
close to −100 %). Note that dependence on the p-value is irrelevant when using large patches;
that is, no more reduction is possible (a saturated result). A similar best variance reduction is
obtained with the three distances for the large patch case. For the 7 × 7 patch size, the best
result is, as above, for the Hellinger distance.

• ENL: as explained above, a large ENL value relates to a reduction of speckle. As seen in
Figure 8, ENL gets a large relative percentage improvement value (larger than 5000) for any
combination of parameters for the case of using large patches (11×11). This is also the expected
result because larger patches mean that more pixels participate in estimating the weights to
update the central pixel. Note also that an increase of the p-value reduces the ENL value. This
is because fewer patches are selected to update the central pixel.

For the other estimators (measured on the whole image),
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(a) Filtered result by using the
Kullback-Leibler stochastic distance.

(b) Detected edges for the Kullback-
Leibler stochastic distance

(c) Filtered result by using the
Hellinger stochastic distance.

(d) Detected edges for the Hellinger
stochastic distance

Figure 7: Filtered results for the setting: 11× 11 (7× 7), η = 0.99 and two stochastic distances.

• SSIM: in this case, it is clear that the Hellinger and the Bhattacharyya distances provide the
best results. The Kullbak-Leibler distance indeed provides poor results for small p-values. This
is an interesting result and clearly shows the benefits of a simple analysis using the demo to
set the filter parameters better.

• β: edge preservation is similar for all the settings. Also, edges degrade with the size of the
patches (it is worse for larger patches).

From the above analysis, and taking into account that we are discussing the worst (noisiest)
possible case (with ENL set to 3), we can deduce that the filter performs well, as expected, in all the
cases, and that the values of SSIM and β estimators show opposite behavior. This means that one
gets a better SSIM to the price of degraded edges (worse β). Additionally, these conclusions are not
trivially deduced from the visual results, cf. Figure 6 and Figure 7, but may impact the performance
of subsequent procedures, like classification or segmentation.

Table 3 presents the running times for the experiments. The execution time using the default
patches configuration (7 × 7 and 3 × 3) is ≈ 10 s for the main loop (convolution and estimation of
the stochastic distances). The computation time is around twice this value for the whole execution
(within parentheses in the table), that is, including the preprocessing stage for calculating matrix
operations (assembling the matrices, inversion, and calculus of determinants) and the post-processing
stage to generate all images, output files and evaluating the referenced and non referenced estimators.
There are no significant differences in the choices of either the stochastic distances or the selected η
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Figure 8: Some results for the simulated PolSAR data for the measures in the selected homogeneous area (relative values
respected to the original ones and in percentage).

Figure 9: Some results for the simulated PolSAR data for the referenced estimators β and SSIM.

values. The running time for the patches configuration 11× 11 and 5× 5 is ≈ 30 s, and less than 40 s
for the whole execution.

It is interesting to note that the running time is related to the loops to manage the large and
local patches and the estimation of the stochastic distances. Although the expressions for the three
distances are different, they require similar computing times. These similar (and affordable) times
result from careful coding: as much information as possible is obtained during the preprocessing
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Hellinger distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 11.33 (20.07) 11.44 (19.96) 10.93 (19.24)
11× 11, 5× 5 27.46 (36.00) 28.67 (37.20) 29.11 (37.82)

Bhattacharyya distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.79 (19.20) 10.68 (19.04) 10.79 (19.60)
11× 11, 5× 5 27.31 (35.79) 28.81 (37.47) 27.66 (36.79)

Kullback-Leibler distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.73 (19.09) 10.77 (19.34) 11.02 (19.51)
11× 11, 5× 5 28.10 (36.56) 28.04 (36.61) 28.64 (37.19)

Table 3: Computational times for the simulated PolSAR data (seconds).

stage and then remains unaltered. Note also that approximately 10 s (regardless of the patches
configuration) of the running time are related to the pre- and post-processing of the data.

5.2 Actual Data

We tested the non-local filters on the two fully PolSAR data shown, in Pauli decomposition, in
Figure 10. Flevoland is a four-look 1024 × 750 pixels image over a region in the Netherlands. The
San Francisco image (900× 1024 pixels) also has four nominal looks. The AIRSAR sensor obtained
both images in L-band with 10 m× 10 m of spatial resolution. We worked with a sub-image of size
500× 500 for the experiments shown in this section.

(a) Flevoland image (b) San Francisco image

Figure 10: Original images from Flevoland and San Francisco in Pauli decomposition. The white rectangle in dotted line is
the selected area to estimate the non referenced metrics.

As no reference image is available, the metrics used are the mean preservation, the variance re-
duction, and the estimation of the number of looks measured in a homogeneous area (white rectangle
within the shown images).

Visual results for both PolSAR data (see Figures 11 and 12) show, for the different settings of
filter parameters, that speckle has been strongly reduced with acceptable edge and fine details preser-
vation. Strong scatterers (bright isolated pixels) remain unaltered, as expected from a competitive
SAR/PolSAR despeckling filter. Such bright pixels are related to complex signal scattered effects
from reflection from manufactured structures like buildings, vessels, cars, and fences. Also, as the
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patch size increases (11 × 11), less speckle content remains, but the filtered image appears slightly
blurred.

Analogously for the simulated data, it is difficult to extract conclusions from the mere visual
inspection of the filtered results. The non referenced numerical estimators are shown in Figure 13
for the Flevoland image and Figure 14 for the San Francisco data, respectively.

(a) The Kullback-Leibler distance
(7× 7, 3× 3).

(b) The Bhattacharyya distance (7×
7, 3× 3).

(c) The Kullback-Leibler distance
(11× 11, 5× 5).

(d) The Hellinger distance (11 ×
11, 5× 5).

Figure 11: Filtered results for Flevoland for η = 0.8.

Results are, in general, similar for both images (same trend and range of variation for σp and
ENL). However, there are noticeable differences with the simulated data. In particular, the ENL
improvement is inferior (< 1000) for the simulated (5000), and it is less dependent on the p-value.
The mean preservation has larger values than with simulated data. However, they are acceptable
for all the configurations: (|µp| < 5 %) for Flevoland and inferior with the San Francisco data
(|µp| < 0.5 %).

This is also an expected result, and it keeps open the debate about the convenience of extrapo-
lating conclusions from simulated data to the complex scenario of actual PolSAR data.

Therefore, it seems clear that no general setting is valid for all data and, consequently, possibilities
like the ones offered by the demo are of great practical use.

The running times for the experiments for both actual data can be seen in Table 4 and Table 5.
Similar conclusions than for the simulated PolSAR data case can be derived. The computation time
for using the patches configuration 7 × 7 and 3 × 3 is ≈ 10 s (twice for the whole execution) and
for the patches configuration 11 × 11 and 5 × 5 is less than 40 s. Again, we verified no significant
differences among stochastic distances or the selected η values.
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(a) The Kullback-Leibler distance
(7× 7, 3× 3).

(b) The Bhattacharyya distance (7×
7, 3× 3).

(c) The Kullback-Leibler distance
(11× 11, 5× 5).

(d) The Hellinger distance (11 ×
11, 5× 5).

Figure 12: Filtered results for San Francisco for η = 0.99.

Figure 13: Some results for Flevoland PolSAR data for the non referenced estimators.
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Figure 14: Some results for San Francisco PolSAR data for the non referenced estimators.

Hellinger distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.63 (21.60) 10.71 (20.17) 10.59 (20.09)
11× 11, 5× 5 26.53 (37.15) 26.71 (36.38) 27.25 (36.90)

Bhattacharyya distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.62 (20.10) 10.46 (19.87) 10.56 (21.18)
11× 11, 5× 5 26.51 (36.10) 26.25 (35.90) 26.20 (37.48)

Kullback-Leibler distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.84 (20.43) 10.99 (20.47) 10.55 (20.05)
11× 11, 5× 5 26.69 (36.20) 27.77 (37.38) 27.12 (36.82)

Table 4: Computational times for Flevoland data (seconds).

Hellinger distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 11.06 (21.28) 12.69 (22.43) 11.20 (21.00)
11× 11, 5× 5 26.70 (36.22) 26.88 (36.36) 27.27 (36.70)

Bhattacharyya distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.95 (20.40) 10.79 (20.15) 10.57 (19.83)
11× 11, 5× 5 27.53 (37.01) 26.88 (36.32) 26.81 (36.30)

Kullback-Leibler distance η = 0.8 η = 0.9 η = 0.99

7× 7, 3× 3 10.73 (20.09) 11.57 (21.04) 10.83 (20.12)
11× 11, 5× 5 27.12 (35.57) 27.41 (36.92) 27.40 (36.78)

Table 5: Computational times for San Francisco data (seconds).
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6 Conclusions

PolSAR images provide extremely rich remote sensing information. However, since they use coherent
radar signals for the image acquisition, data come corrupted with multiplicative noise known as
speckle. Such speckle content must be reduced through efficient filters for a correct interpretation
of the data and successful post-processing. This paper presented a tool for exploring non-local
despeckling filters for PolSAR data based on statistical tests that rely on stochastic distances.

To minimize computational cost, we provide an efficient implementation that explores pre-calculating
and storing in memory as much information as possible to avoid multiple repetitive matrix opera-
tions. The result is an efficient code that allows the user to explore each filter setup’s properties and
find the optimal tuning for a given PolSAR data set.

Appendix

This appendix provides details about the code and the results generated by the program.

• Input data:

– The fully covariance PolSAR data consists of 9 plain texts, with the usual names, C11.txt
(the term C11 in matrix format), C12 real.txt (<(C12)), C12 ima.txt (=(C12)), C13 real.txt

(<(C13)), C13 ima.txt (=(C13)), C22.txt (C22), C23 real.txt <(C23)), C23 ima.txt

(=(C13)) and C33.txt. Each file must contain a header (first line) indicating the number
of rows and columns as seen in Figure 15.

– Reference image: if a reference image (ground-truth) is provided, the program will get
measures for the referenced metrics (the beta estimator and the SSIM index) accordingly.
Note that such reference image is indeed a PolSAR data also, so, 9 plain files (covariance
data) are required.

• Output data: Several data are generated.

– Filtered data: 9 plain files (covariance data) with the same format as the PolSAR input
files (see Figure 15).

– Metrics data: they are collected in the file metrics.txt, also a plain file. All the referenced
metrics are calculated if the user provides a reference image (the beta and the SSIM
estimators). If not, only the non-referenced metrics are estimated. The file also indicates
the edge detector used (the Canny method or the simple Laplacian zero-crossing method).
See in Figure 16 a complete metrics file as an example.

– Estimated ENL: this plain text contains the ENL (Equivalent Number of Looks) esti-
mates for the PolSAR data. The values are obtained numerically for each pixel from the
covariance matrix. Figure 17 shows the values estimated for Flevoland data (L = 4).

– Visual representation: the images from the original noisy data and the filtered result for
each band (HH, HV and VV), the Pauli representation for the original noisy data, and
the filtered result are generated and saved in TIFF (Tagged Image File Format) format.
Figure 18 shows all the images generated for the Flevoland case.

– Non-Hermitian pixels: a binary image showing those pixels whose covariance matrix is
not positive definite. This helps to understand the obtained results better. An example
of such image for the San Francisco data is shown in Figure 19.
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500 rows

500 columns

..
.

...

Figure 15: Excerpt from a valid input file (C11.txt).

Figure 16: A metrics file (complete and for the case that the user provided a reference image).

Regarding the implementation, a modular programming approach has been followed, that is, the
program is separated in several subprograms. Figure 20 shows how the codes are organized. A brief
explanation is provided below.

• Auxiliary methods.cpp: it contains some brief methods to perform basic matrix operations
and the methods related to get the Pauli representation of the PolSAR data.

• Edge detection.cpp: it contains the two edge detector methods implemented, the Canny and
the Laplacian zero-crossing detector.

• Estimators.cpp: it contains the estimators used: β and, the SSIM and the non-referenced
metrics (preservation of mean value, the variance reduction profile and the ENL).

• Main.cpp: it contains the main program.
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Figure 17: Representation of the ENL estimates for the Flevoland fully PolSAR data.

Figure 18: Visualization of the images generated for the Flevoland case.

Figure 19: Pixels whose covariance matrix is not positive definite for the San Francisco PolSAR data.
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• PolSAR Data.cpp: it contains the methods to load the PolSAR data as well as the non-local
PolSAR filter.

• Headers files: the usual C++ headers for each .cpp code.

Figure 20: Modular design followed in the implementation of the codes.

As an example to show the benefits of the modular design followed, the call to get the referenced
SSIM metric has this form:

double ssim value = SSIM Estimates (true data, filtered data);

where true data and filtered data are the reference image (the ground truth) and the filtered
result respectively. For a user to include a new estimator, just a similar call is required, and the
body of the method is inserted in the Estimators cpp subprogram.
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[24] L. Pardo, D. Morales, M. Salicrú, and M.L. Menéndez, Generalized divergence mea-
sures: Information matrices, amount of information, asymptotic distribution, and its appli-
cations to test statistical hypotheses, Information Sciences, 84 (1995), pp. 181–198. https:

//doi.org/10.1016/0020-0255(95)00017-J.
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[26] M. Salicrú, M.L. Mendéndez, and L. Pardo, Asymptotic distribution of (h, φ)-entropy,
Communications in Statistics - Theory and Methods, 22 (1993), pp. 2015–2031. https://doi.
org/10.1080/03610929308831131.
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