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Abstract

Classical blur models are based on simplifying assumptions, namely shift-equivariance and cir-
cular boundary condition (CBC), that rarely hold in practice. Shift-equivariance means that
a shift of the input produces the same shift of the output, which implies that blur is spatially
invariant and image aliasing is not present. The CBC assumes that the image is rectangular
and periodically repeating. Discrepancies between simplified models and real blurred observa-
tions cause strong artifacts in image restoration. The common remedy is to increase the model
complexity and remove simplifying assumptions. However, this also brings extra computational
complexity to the restoration task. We present spectral pre-adaptation (SPA) that pre-processes
blurred images so they can be restored using fast standard deconvolution algorithms suitable
for simplified models. The SPA serves as a connector between classical deconvolution methods
and a variety of real observations involving blur. Experiments on simulated and real images
show that standard deconvolution of SPA-interpolated images not only greatly reduces arti-
facts compared to direct deconvolution, but performs on a par with more complex restoration
methods.

Source Code

The reviewed source code and documentation for this algorithm are available from the web page
of this article1.

Keywords: image restoration; non-circulant deconvolution; maximum likelihood interpolation;
spectral models; missing samples; model discrepancies
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Spectral Pre-Adaptation for Restoring Real-World Blurred Images using Standard Deconvolution Methods

1 Introduction

1.1 Simple Blur Models in Restoration

A standard procedure for evaluating the performance of image restoration algorithms is to use a set of
test images, plus a set of blur kernels and noise levels, and then apply simple convolution and add noise
to simulate observations. The very same degradation model is used by the restoration algorithms. As
this approach provides a ground truth, it allows for an objective performance comparison. Problems
arise when we want to apply the algorithms to real captured blurred images. Because the simulated
blur perfectly fits the blur assumed by the restoration algorithms, the referred performance tests
provide no information about the robustness to different types and amounts of discrepancy between
the model explaining a real blurred image and the observation model used for restoration. Such model
discrepancies typically cause strong artifacts when restoring real images, considerably dropping the
performance with respect to results of simulation tests.

Classical blur models used for image restoration assume a blur kernel that is constant across
the image, and a sufficient sampling rate avoiding aliasing. These two conditions, jointly with that
of spatially homogeneous noise statistics, translate into shift-invariant observation models. In many
real situations, these assumptions are not acceptable approximations, and more sophisticated models
and corresponding algorithms have been developed to tackle such scenarios. In particular, there is a
significant amount of literature on shift-variant blur and its restoration; see e.g. [14, 2]. In contrast,
the problem of restoring blurred aliased images, due in part to its greater difficulty, has been addressed
rarely; see e.g. [6, 25]).

Another strong assumption, almost universally made by classical blur simulations, concerns the
shape and boundary conditions of the blurred image support: Images are assumed to be discrete
samples on a rectangular grid with CBC (also named periodic, providing continuity on a torus) for
the blur. Whereas using rectangular arrays to represent images is simple and convenient for digital
processing, the CBC seems, at first, a strange assumption2. The justification is purely numerical.
The CBC allows us to calculate any linear shift-invariant transformation of a discrete signal in an
efficient way, as the matrix representing this transformation is diagonalized by the discrete Fourier
Transform (DFT). Even if modern, non-linear, restoration methods go far beyond a regularized
kernel inversion in the Fourier domain, virtually all of them perform such operations as part of more
complex, iterative, algorithms.

Summarizing, we write the reference observation model assumed by standard deconvolution algo-
rithms as a discrete circular convolution with additive noise on a rectangular grid

z = x~ h+ ω. (1)

1.2 Using a Spectral Model for Pre-processing the Observation

To address the above model discrepancy there are two possible strategies. The conventional one is
to bring models closer to reality, i.e., to refine blur models used by the restoration algorithms, thus
introducing extra complexity and degrees of freedom to provide a better fit for real observations.
Improving the model is interesting from a scientific point of view, however its practical application
has drawbacks, such as added computational cost and lower robustness due to the requirement of
estimating more model parameters.

A less conventional venue to bridge the misfitting gap consists in bringing reality closer to models.
This means transforming (pre-processing) the observation to enforce a good fit to the reference blur

2Note that the CBC is not just unrealistic but directly inconsistent in almost every real scenario. Two exceptions
are full visual field (360 degrees) and periodic images (e.g. repeated tiles).
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Figure 1: Two alternative approaches for restoring real blurred observations. Up: adding complexity to the observation
model, which translates into an ad-hoc restoration algorithm. Bottom: include a versatile preprocessing (like SPA), and
then using a standard deconvolution method, which assumes a simple blur observation model.

model in Equation (1); see Figure 1. Pre-processing the observation is a common practice when
dealing with the boundary condition problem, e.g. by applying a smoothly decaying window [19]
or edge extension strategies [11]. It is not usually applied to mitigate the effect of other model
discrepancies, such as non-rectangular image support, aliasing, or slightly shift-variant blur kernels.
Here we present a spectral pre-processing that partially compensates for such model violations.
This makes it a powerful and versatile tool for deblurring real images using off-the-shelf, standard
deconvolution algorithms.

Our pre-processing method, termed spectral pre-adaptation (SPA), requires that pixels violating
the reference blur model are marked, and additional pixels are added to deal with the CBC and/or
aliasing. Marked and added pixels are treated as unknowns that must be estimated. To estimate
these pixels, we first obtain a power spectral density (PSD) model of the blurred image, which we
compute from (i) a PSD model for uncorrupted images, (ii) blur kernel, and (iii) noise level (assuming
noise is additive and decorrelated from the blurred image). Then we derive a linear, shift-variant,
optimal solution, the most likely according to a multivariate Gaussian model given the image and
degradation parameters. The solution is a rectangular, uniformly CBC-blurred image, consistent
with the reference observation model of Equation (1) and thus a candidate for being successfully
restored with a standard deconvolution algorithm.

As mentioned before, other methods exist that tackle the image restoration of real-world blurred
images, which depart from the simple reference observation model described above. Among all
methods recently proposed for dealing with model discrepancies in image restoration, we believe
that two of them, one proposed by Almeida-Figueiredo [1] and one by Kotera et al. [10], deserve
special attention, because of their applicability and good performance. The first one uses the idea
from Reeves [17] to estimate a boundary extension of the restoration solution with the property of
maximizing a smoothness criterion across boundaries under CBC. Almeida and Figueiredo extended
the concept of using a mask for extending the image along the boundaries to using a more generic mask
to estimate all pixels not obeying the CBC homogeneous blur model, because of occlusions, lost pixels
and arbitrary image supports. They adapted the acclaimed ADMM restoration method to deal with
unconstrained boundary conditions (UBC-ADMM). Kotera et al. went further by determining areas
with model discrepancies automatically. They formulate the deconvolution problem as a Variational
Bayesian inference similarly to [20] and decompose noise into Gaussian and non-Gaussian. The non-
Gaussian part matches the areas where the convolutional model is violated. That method is showed
to effectively deal not only with boundary pixels and occlusions, but also with clipping, such as dead
under-exposed pixels, or over-exposed pixels (e.g. in highlights), both breaking the model’s linear
response.

The two generic approaches in Figure 1 that deal with model discrepancies have, each, pros
and cons. On the one hand, using a single-step restoration instead of two sequential steps, generally
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achieves higher performance. On the other hand, encapsulating and compensating for model discrep-
ancies before restoring the image is appealing, for it leaves open the choice of using any deconvolution
method without requiring ad-hoc adaptations. In addition, the SPA computational cost, SPA being
a linear estimate, is relatively modest when compared to non-linear restoration costs and even more
when compared to non-standard blur methods. Therefore, the question of which generic option is
better depends on the particular task, both in terms of performance and computational cost. Results
presented here indicate that, at least in some cases, the SPA approach is superior in both terms and
in other cases the performance is only moderately worse.

This paper unifies previous contents presented in a series of conference papers [15, 4, 5]. Besides
providing a deeper, more comprehensive and thorough description of the involved models and meth-
ods (including open-source implementation), we have added an application of SPA to the case when
there is a discrepancy between the assumed blur kernel and the real one. We have studied the regu-
larizing effect of SPA pre-processing in two kernel mismatch scenarios (shift variant and inaccurate
shift invariant blur), in the presence of aliasing. In addition, we have improved a previous method
for computing the solution, which involves solving a large linear system of equations, by using a more
efficient implementation based on the conjugate gradient method.

This paper is organized as follows. Section 2 describes our SPA method in detail including an
explanation of the theory and description of the implementation. In Section 3, we demonstrate the
usefulness of SPA via several applications. Visual and numerical results are shown and compared by
experiments on both simulated and real images. Finally, in Section 4 we draw conclusions.

2 Models and Methods

We assume that a non-rectangular blurred observation y follows a model

y = (x ∗ h+ ω)↓Q, (2)

where x is the latent high-resolution image defined on an arbitrary non-rectangular region, ∗ denotes
valid convolution, h is the blur kernel inside the region, ω is noise, and ↓ Q denotes an optional
downsampling factor along each direction, typically causing aliasing when Q > 1 (see Section 3.2).
We assume we have a good estimate of h in the original resolution of x, i.e. before downsampling.
In real cases, however, we may not know exactly the kernel, or it may vary over the image. Here
we consider a shift-invariant kernel model, but explore robustness of SPA pre-processing for non-
exact and/or mildly shift-variant kernels (see Section 3.3). Since the blurred image support is non-
rectangular and the complete estimated image is rectangular, we introduce a rectangular mask large
enough to include y, which marks each pixel as either belonging to y or as unknown. The mask is
assumed to be given. First, “unknown” pixels are those that do not follow the modeled blur. In
addition, if the downsampling factor is present, we need to upsample the dropped samples and mark
the new samples also as unknown. Finally, we also want to extend the rectangular support around y
with stripes of several pixels wide along the edges, and mark them also as unknown. This is necessary
to create a transition area for allowing the blur to obey the CBC; see Figure 3.

The SPA’s goal is to calculate all pixels marked as unknown, such that the resulting image, which
we will denote as z and which includes y, is the most likely in the sense of a Gaussian image model
following the reference observation model in Equation (1).
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2.1 Observation and Image Models

The reference observation model in Equation (1) becomes the formation model for our interpolated
blurred image z. It can be written in a matrix-vector form as

z = Hcx + w, (3)

where Hc is a square block-circulant matrix performing CBC convolution with the kernel h, and
x, w are the vectorized ideal image and noise, respectively. To complete our observation model,
we implement the mask using a selection matrix S (M × N , with M < N), which expresses the
vectorized observation y as a subset of pixels of the extended image z

y = Sz. (4)

For defining a likelihood measurement, we have posed a standard stationary Gaussian model and
additive white noise3 with variance σ2

w

p(z) =
1

(2π |Cz|)1/2
exp

(
−1

2
zTC−1z z

)
, (5)

where Cz is the covariance matrix of z, which is fixed for the observed image. The proposed inter-
polated solution is

ẑ = arg max
{z,Sz=y}

p(z)

= arg min
{z,Sz=y}

zTC−1z z. (6)

From Equation (3) follows that
Cz = HcCxH

T
c + Cw,

where Cx and Cw are the covariance matrices of the uncorrupted image and noise, respectively. Here
we assume a spatially homogeneous behaviour of signal and noise, and thus Cx (and consequently
also Cz) is a block-circulant Toeplitz matrix, that is diagonalizable by the DFT similarly as Hc. If
we assume white noise then Cw = σ2

wI and we can write

Cz = (FDHcF
∗)(FDPxF

∗)(FDH∗
c
F∗) + σ2

wFF
∗

= F(D|Hc|2DPx + σ2
wI)F

∗ (7)

= FDPzF
∗,

where F∗ and F are the orthogonal matrices implementing the direct and inverse DFT, respectively,
and D·’s are diagonal matrices with DPz = D|Hc|2DPx + σ2

wI. Using Equation (6) and inverting Cz

in Equation (7), the minus log-likelihood we want to minimize can be written in the Fourier domain
as

− log(p(z)) ∝
∑
u,v

|Z(u, v)|2

PZ(u, v)
+ const., (8)

where Z(u, v) represents the DFT of z(n,m) and PZ(u, v) is the corresponding Power Spectral Density
(PSD), which appears (lexicographically reordered) in the coefficients of the diagonal matrix DPz

PZ(u, v) = |Hc(u, v)|2PX(u, v) + σ2
w. (9)

3For notation simplicity, and without loss of generality, we have dropped the mean in the following expressions,
though it has been considered in the actual implementation, as shown in Algorithm 1.
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Maximizing the likelihood of the interpolated image z returns a likely observation of an image filtered
by the blur kernel using a rectangular support under CBC conditions. As such, we ensure that the
interpolated image will not overcome the noise level in the vicinity of the kernel zeros, thus avoiding
strong artifacts in the restoration phase.

Note that our cost function is a more powerful and complete criterion to follow than mere smooth-
ness as in [17, 11]. Besides forcing consistency to the blurring kernel spectrum, by including the
PX term, the model also provides a weight for each frequency corresponding to its relative abun-
dance according to a natural image PSD model. In particular, for modeling PX , we have cho-
sen a separable stationary continuous Gauss-Markov process model [13], whose autocovariance is
R(dx, dy) = σ2

xρ
|dx|+|dy |, from which we obtain its PSD

PX(u, v) =
4σ2

x log2(ρ)

(log2(ρ) + 4π2u2)(log2(ρ) + 4π2v2)
. (10)

We have hand-optimized the parameters for optimizing the results in a small set of typical images,
obtaining σx = 30 and ρ = 0.65, the first adjusted to the image intensity range [0, 255]4. We have
observed, nevertheless, a wide tolerance for the behavior of our algorithm with respect to the choice
of these parameters. We have also used this model for doing Wiener restoration in the experiments.

2.2 Problem Formulation and Solution

Expressing Equation (8) back in a vector-matrix notation and including the consistency constraint
on z from Equation (6) yields

ẑ = arg min
z
||D−1/2PZ

F∗z||2, s.t. Sz = y. (11)

To reformulate Equation (11) to an unconstrained optimization, we split the interpolated image z into
zi and zo by zP = Pz = [zi zo], where P is a permutation matrix. zi and zo are two non-overlapping
vectors representing the (N −M) interpolated pixels, and the M observed pixels, respectively. Sim-
ilarly, the Fourier Transform matrix F∗ can also be split such that F∗P = F∗P−1 = [F∗i F∗o], which
performs a 2D DFT, but enforcing a explicit separation of observed and interpolated pixels. The
interpolation constraint also implies zo = y, and then we can rewrite the cost in Equation (11) as

||D−1/2PZ
F∗z||2 = ||D−1/2PZ

F∗PzP ||2 (12)

= ||D−1/2PZ
(F∗i zi + F∗oy)||2,

which attains a minimum at
ẑi = −(FiD

−1
PZ
F∗i )

−1FiD
−1
PZ
F∗oy. (13)

The previous solution is difficult to implement directly due to the involved permutations. For a
practical implementation, we introduce the complementary N × (N −M) selection matrix, which
is the complement of S and selects from z the non-observed pixels, i.e. zi = Ez. The transposed
matrices ET and ST perform expansions from the vectors corresponding to the selected pixels zi and
zo = y to the full domain of z by filling the missing pixels with zeros. It is immediate to realize that
F∗i zi = F∗ETzi and F∗oy = F∗STy, which can be easily computed using fast operations: standard
DFT and expansion with zeros. This gives us the solution for the interpolated pixels

ẑi = −(EFD−1PZ
F∗ET )−1EFD−1PZ

F∗STy. (14)

4We can trivially adapt to other ranges by making σx ∝ max(x).
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And the final solution for the interpolated image z is

ẑ = STy + ET ẑi. (15)

The solution in Equation (14) requires an inversion of a large shift-variant matrix. However in
practice, we do not need to invert the matrix and instead apply the conjugate gradient method for
solving the involved system of linear equations

Aẑi = b , (16)

where
A = EFD−1PZ

F∗ET (17)

and
b = −EFD−1PZ

F∗STy . (18)

Note that computing b and applying A involves only fast operations, namely: direct (F∗) and inverse
(F) discrete Fourier transforms, point-wise division in the Fourier domain (D−1PZ

), masking (E and S)

and expansion with zeros (ET and ST ) in the spatial domain. The complete procedure is summarized
in Algorithm 1.

2.3 Using SPA for Image Restoration

To use SPA pre-processing for image restoration, three steps are required: (i) prepare SPA input
items (observed data, mask and parameters); (ii) perform SPA, and (iii) deconvolve the SPA output.
Additionally, one may want to recompose a new image combining deblurred pixels with non-blurred
pixels in the observation. Details are given in Algorithm 2. Figure 2 shows the flow chart of the
algorithm.

2.3.1 Input Data and Parameters for SPA

First, for calculating the PSD of the ideal image x, the variance σ2
x is required. As a rule of thumb,

we have experimentally validated that for typical images in an 8-bit range (from 0 to 255) σ2
x = 30

is a suitable value. Second, as we mentioned before, we assume that the blurring kernel is known
or has been previously estimated. If the kernel is unknown, one needs to apply assumptions, blur
estimation methods or a combination of both with trial and error (e.g. if we know that the blur kernel
comes from defocus we may approximate it by a disk, and just estimate its radius). In addition, the
noise variance σ2

w has to be estimated. This is usually easy using standard methods, such as median
absolute value deviation (MAD) [8]. An essential component of the input is the mask defining which
pixels are observed and which ones are to be interpolated. We discuss this in Section 2.3.3. One also
needs to decide how much to extend the observed image. We discuss this in Section 2.3.2. Finally,
the conjugate gradient used for solving the optimization problem of SPA requires another parameter,
either the number of iterations (the one we used) or a relative tolerance criterion for the convergence.

2.3.2 Extending the Original Support

Here we analyze the problem of extending the support of the raw rectangular image yrec, which in-
cludes the observed pixels y that we want to deblur. Besides extending the generally non-rectangular
support of y to the rectangular support of yrec, it is also necessary to extend the raw observed image
yrec with four stripes, one along each edge, to avoid the discontinuity across opposed boundaries
(up-bottom, left-right) under our reference observation model with CBC. As we mentioned before,
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Algorithm 1: Spectral pre-adaptation (SPA) pre-processing for image restoration

input : initial guess zinit, kernel h, mask, PSD of ideal image PX(σ2
x), noise variance σ2

ω

output: maximum likelihood estimate ẑ

step 1: calculate b // Equation (18)

1.1 calculate the mean of the observed pixels y: sum(zinit ×mask)/sum(mask) → µ
(y = zinit(mask))

1.2 subtract the mean from the observed pixels: (zinit − µ)×mask → yext

1.3 Fourier Transform of blur kernel: FFT (h) → H

1.4 compute reference PSD for z using H, PX(σ2
x) and σ2

ω → DPZ
// Equation (7)

1.5 Fourier Transform of the observed pixels: FFT (yext) → F∗STy

1.6 Inverse Fourier Transform of (FFT (yext)×D−1PZ
) → q = FD−1PZ

F∗STy

1.7 select interpolated pixels as −q(NOT mask) → b = −EFD−1PZ
F∗STy

step 2: find the solution ẑi using the conjugate gradient (CG) method // Equation (16)

2.1 set zi and z according to the initial guess: z = zinit − µ, zi = z(NOT mask)

2.2 iteratively update zi until convergence, in each CG step, multiplication with A is performed:

2.2.1 Fourier Transf. of the extended interpolated pixels: FFT ((NOT mask)× z) → F∗ETzi

2.2.2 Inverse Fourier Transf. of (FFT ((NOT mask)× z)×D−1PZ
) → r = FD−1PZ

F∗ETzi

2.2.3 select interpolated pixels as r(NOT mask) → Azi = EFD−1PZ
F∗ETzi

step 3: construct the final solution // Equation (15)

3.1 combine observed and interpolated pixels: yext + expand(ẑi) + µ→ ẑ

other authors (starting with [17]) have proposed to optimize a simple smoothness criterion for en-
forcing the so-extended image to be smooth under CBC. Note that, when dealing with blurred
images we want to restore, it is crucial to keep smoothness across boundaries. However, smoothness
(a particular, fixed, measurement of it), by itself, is arguably not the best criterion to optimize. As
we have described, SPA not only provides smooth results under CBC, but also results that are likely
in terms of the spectral behavior of typical images affected by the involved blur kernel. We have set
the minimal width of each extended stripe as half the blur kernel size (rounded down), which is the
minimal extension allowing to compute a non-CBC convolution with valid pixels. However, enlarg-
ing the estimated area even more may bring other benefits. For example, an interesting criterion is
choosing the extension that minimizes the entropy rate under a Gaussian homogeneous model [9]
of the extended image z according to the spectral model of Equation (9). This implies minimizing
the average of the logarithm of the PSD. Here a key role is played by the spectrum of the blur
kernel |Hc(u, v)|2, whose low values produce a significant entropy decrease, especially when placed
at spectral locations where PX is large. The lowest possible values of |Hc|2 are zeros, and they can
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Algorithm 2: Image Restoration using SPA

input : (partially) blurred observation on a rectangular support yrec

output: restored image x̂

step 1: prepare input parameters for SPA
• calculate PSD of the ideal image → PX(σ2

x) // Equation (10)

• estimate/set the degradation parameters→ h, σ2
ω

• set boundary extension widths → Le
x, Le

y // Section 2.3.2

• identify the mask → mask
• calculate a SPA initial guess: extrapol(y,S)→ zinit // Section 2.3.4

step 2: estimate the extended blur image with SPA → ẑ
step 3: deconvolution and recomposition

• deconvolution: ẑ → x̂rec

• recomposition with the raw rectangular observation yrec: (yrec, x̂rec,mask)→ x̂

yrec

Set Ideal

Image PSD

Estimate

Degra-

dation

Parameters

Set

Boundary

Extension

Widths

Estimate

Mask

h

Le
x, L

e
y

σ2
x PX(σ2

x)

σ2
ω

mask

Compute

Initial

GuessMasking

and

Extension

y

zinit

SPA ẑ Deconvolution x̂

Figure 2: Flow chart of restoration algorithm with SPA.

be attained if the image size is chosen such that they fall exactly on sampled discrete frequencies.

For the case of xy-separable blur kernels, an independent adjustment of Lx and Ly is possible.
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In particular, for the case of uniform blur kernels, or any convolved version of them, we can easily
compute an extension that forces the zeros of the blur kernel to exactly fall on discrete samples in the
Fourier domain. This can be done by extending the original image such that its new size becomes a
multiple of the kernel size. Under this criterion, the width of each stripe is calculated by

Le
x = (bNx/nx + kcnx −Nx)/2, (19)

where Nx and nx are the dimensions of the original image and the kernel in the horizontal direction
(same in vertical), b·c is the floor rounding operator, and k is a non-negative integer, usually the
smallest providing an integer solution to Le

x. This makes the extended final image have dimensions
(Nx + 2Le

x, Ny + 2Le
y).

2.3.3 Setting up the Selection Mask

A crucial input for SPA is the selection mask s(n,m) (from which the matrix S is derived), which
divides pixels into two classes: s = 1 for pixels in the observed uniformly blurred area compatible
with the reference blur model of Equation (1), and s = 0 for unknown pixels, which need to be
substituted by their SPA interpolated values. Pixels in the extended areas along the rectangular
boundaries (explained in Section 2.3.2) are labeled as s = 0 since they are not observed and must be
interpolated. For the other pixels, it is sometimes difficult to discern the boundaries of a uniformly
blurred object that we want to restore. If the estimation of the mask is not straightforward, image
matting methods such as [22] can be applied. As a general advice, it is worth noting that excluding a
valid blurred pixel from the valid observation y does not cause a model violation, while the opposite
(including a pixel that does not belong to the uniformly blurred area) does. Therefore, it is better
to be conservative and not include pixels in the transition area5. For example, if a uniformly blurred
object is observed over a sharp background, blurred pixels close to the object boundary are affected
by the background and should be excluded from the mask.

Another interesting case is the construction of a mask for aliased observations. Although many
aliasing scenarios are possible, in this article we have contemplated only the case where the aliased
observation can be expressed as in Equation (2). For this case, we can construct the selection mask
of the pixels to be interpolated by including Q − 1 interleaved new samples between each pair of
observed pixels. Figure 3 illustrates how to set the mask for a non-rectangular image patch suffering
from aliasing with Q = 2. First it is framed into a rectangular patch, and then embedded into
a larger image, which has extended boundaries to allow CBC and includes interleaved samples to
address aliasing.

2.3.4 Computing an Initial Interpolation Guess

A good initial guess helps to speed up the convergence of the iterative step 2 in Algorithm 1. In
order to obtain a starting point that is reasonably close to the final solution, we propose to use a
method of our own: a shift-variant inter/extrapolation filtering using kernel he(n,m) with the mask
s(n,m). The inter/extrapolated image uint(n,m) is computed by

uint(n,m) =
he(n,m) ∗ (s(n,m)y(n,m))

he(n,m) ∗ s(n,m)
, (20)

where the inter/extrapolation kernel he(n,m) is a decreasing function of its radius. Thus, the esti-
mation is a weighted average of the known pixels, which gives more weight to the closer pixels and
less weight to the farther ones. To avoid excessive blurring, he(n,m) must be carefully designed so

5A more powerful model is to consider non abrupt masks, as in [3].
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Figure 3: A graphical explanation of how a non-rectangular, non-CBC-complying, aliased blurred image (irregular dark blue
area, on the left) is first framed (orange rectangle) and then reformatted for SPA interpolation, keeping the observed pixels
(dark blue, s = 1) and marking the rest (light color) for being inter/extrapolated (s = 0). Here Le

x = Le
y = Q = 2.

that it behaves as a small filter at locations close to observed pixels, whereas acts like a large filter
at locations far from the observed pixels. A good choice is a large radially symmetric filter, peaky
at the center and rapidly decaying. Here we have chosen he(r) = r−ne , for r > 0, and he(0) = 0 (as
in any predictor filter, the central sample must vanish), with the power ne = 7 being chosen as the
highest value not producing numerical instability. Using the above inter/extrapolation, our initial
guess of z(n,m) is obtained as

zinit(n,m) = s(n,m)y(n,m) + (1− s(n,m))uint(n,m), (21)

combining the interpolation with the observation in the same way as in Equation (15).

3 Applications and Experiments

SPA is a flexible method, applicable to many real-life imaging scenarios. To use it for different cases
of blur model discrepancies, it only requires the mask indicating the pixels to interpolate, and setting
the correct degradation parameters (blur kernel and noise). Here we give examples of using SPA
to deal with circular boundary conditions, aliasing, kernel mismatch and arbitrary boundary shapes
presented in blurred observations. This section describes four applications of SPA, three of them
published in [15, 4, 5]. In all cases we have implemented the experiments using the latest versions of
the SPA and L2-r-L0 methods [16]6 (the latter using Niter = 10 with its default parameters optimized
for typical images, so no free parameter needs to be adjusted).

3.1 Non-circulant-boundary Restoration

To use the DFT, image restoration techniques typically assume CBC for convolution. As this is an
unnatural constraint for real-world blurred images, directly applying such methods for restoring real
images usually results in strong artifacts.

6The latest version of the c©MATLAB source code for the L2-r-L0 restoration method is available at:
https://www.researchgate.net/publication/325903515_L2rL0deblurMatlabToolbox2p1
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Among the many methods and recipes used for dealing with this problem, probably the most
successful has been that of Reeves [17], initially applied to a Tikhonov-regularized blur inversion and
later on integrated in non-linear restoration methods such as those in [18, 1, 10]. Reeves had the idea
of extending the image along the boundaries in such a way that a classic smoothness measurement
(namely, the Euclidean norm at the output of a Laplacian filter) was optimized across the periodic
boundary transitions. A similar criterion was applied by [11], but aiming at producing a doubled-
size CBC-tiling image including the three full mirror extensions of the original, as a pre-processing.
Whereas this processing is effective at avoiding some artifacts during restoration, it is based on an
elementary concept of smoothness. The smoothness criterion considers neither the particular blur
kernel and noise level, nor the typical power spectrum of natural images. In contrast, SPA maximizes
the overall likelihood (according to a still simple, but far richer, Gaussian model), on which both the
particular shape of the blur kernel and the power spectral density of natural images have a strong
impact. All this results in less artifacts during restoration, as we show here. Another successful
method for non-circulant restoration is [12], which introduces a selection mask that removes invalid
pixels affected by CBC in the estimation loop. This was later used by [10] in the context of automatic
detection of pixels violating a blur model. The referred methods, except for [11], have in common that
extra constraints are added to the restoration loop to deal with boundary conditions. In contrast,
SPA and Liu’s method (besides other classical methods, like windowing), are pre-processing methods:
they modify the observation so it can be restored using a standard deconvolution method.

Images and degradation parameters. For our experiments we have used three grayscale im-
ages all having size Nx = Ny = 256 pixels for testing. Two of them are typical photographic images,
Cameraman and House, and the other one is a highly textured image, Straw, having a lot of
diagonal and obliquely oriented features. We have used 8 configurations of degradation parame-
ters, consisting of 4 blur kernels and two noise levels (low and medium). For the 4 blur kernels,
PSF1 is hi,j = (1 + i2 + j2)−1, for i, j = −7 . . . 7, which is non-separable; PSF2 is a 9 × 9 uni-
form kernel; PSF3 is a 9 × 1 vertical motion blur; PSF4 is a 5 × 7 oblique kernel proportional
to [0 0 0 0 1 1 1; 0 0 1 2 3 2 1; 0 1 3 4 3 1 0; 1 2 3 2 1 0 0; 1 1 1 0 0 0 0]. Details of each degradation pair (blur
plus noise) are shown in Table 1.

Simulation. To obtain our simulated observation, we first performed a circular convolution and
added noise. Then we kept the valid convolution area not affected by the CBC, resulting in an
image with size Mx × My, where Mx = Nx − 2n′x, My = Ny − 2n′y, assuming odd-dimensions
(2n′x + 1)× (2n′y + 1) kernel sizes.

Compared methods. Our proposed method first uses SPA to estimate an extended blurry image
and then applies a standard deconvolution method. The extended image has size (Mx+2(n′x+Lex))×
(My + 2(n′y + Ley)), which means our estimation goes beyond the original image support Nx ×Ny.
Here we use Lex = Ley = 8 and 50 iterations for SPA. We first compare SPA with mirror extension,
which extends the image to the same size as in the case of SPA (N ′x = Nx+2Lex = Mx+2n′x+2Lex),
followed by edge tapering using c©MATLAB edgetaper.m (with a Gaussian kernel of σ = 6, hand-
optimized value). We also compare to [11], as probably the most successful previous purely pre-
processing method for avoiding boundary artifacts in deconvolution. To the best of our knowledge
the only publicly available implementation of this method is the one from Sunghyun Cho7. In the

7We used https://github.com/CoupeLibrary/handleoutlier/blob/master/code/wrap_boundary_liu.m

and passed a total size double of that of the observation. This simplifies the optimization problem to that of a
membrane (minimizing the square of a Laplacian subject to boundary conditions), setting the parameters in [11] to
α = 1, λ = 0.
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results we have referred to this method as WML, as a mnemonic of “Wrapping Minimum Laplacian”.
Finally, we also compare to an oracle, meant to provide an upper bound of the performance. This is
calculated by directly deconvolving the simulation in its original Nx×Ny support and then cropping
the Mx × My central area in the deconvolved result. Two deconvolution methods, Wienerfilter
(Hc(u, v)∗PX(u, v)/PZ(u, v), using the spectral model of Equation (9) and (10)) and L2-r-L0 [16], are
used for comparison. Whereas the Wiener method performs well on images containing textures, the
second one, based on sparsity, performs better on common real-world photographic images.

Results and comparisons. The performance of each method is measured by the Improvement
in Signal-to-Noise Ratio (ISNR) calculated in the region not affected by CBC (Mx ×My = (Nx −
2n′x)× (Ny − 2n′y)). Figure 4 provides a comparison of the average performance of the two methods
on the three images, for each degradation pair PSF+noise. It shows that our SPA is substantially
more robust and it outperforms the two compared boundary extension methods (mirroring followed
by edgetaper and [11]) for all cases, especially for degradation numbers #3, #5, #6 and #7, where the
kernel has zeros in the low-medium frequencies or lacks horizontal/vertical symmetry. It is interesting
to note that the only PSF, for which the SPA improvement is smaller, is PSF1 that corresponds
to a filter not having blurring zeros in low and medium frequencies. In general, the difference in
gain is higher when the noise level is low, as low-noise implies higher amplification of the involved
spectral components. In contrast, SPA significantly improves the results by correctly reproducing
the blurring kernel’s zeros at their locations in the spectrum.

Figure 5 shows a visual comparison of mirroring plus edgetaper, WML [11], and SPA for Straw
(a crop of the upper left corner without the pixels extended beyond the original image support,
Nx × Ny) with degradation #7. Edgetaper, and WML to a lesser extent, produce strong artifacts
along the image boundaries. SPA, in contrast, reduces drastically the artifacts and preserves the
texture continuity.

Table 1 shows all the numerical results. The increase in performance using SPA is consistent
for both deconvolution methods, as an indication of its universal applicability. We emphasize that
not only average performance is much better using SPA, but also our method did not produce
any catastrophic failures, like those of WML and edge tapering in House and Straw under the
degradation #7 (oblique convolution kernel under low noise), using L2-relaxed L0 restoration.

3.2 Aliasing-aware Restoration

Real-life imaging systems usually have a combination of blur and aliasing. The Point Spread Func-
tions (PSFs) of real imaging devices are generally far from being ideal low-pass filters, which au-
tomatically gives rise to a certain amount of aliasing when going from a continuous to a discrete
image representation. Also, the sensor’s detectors usually have an active area size comparable to the
effective PSF size, and leave a significant proportion of their surface inactive. In real optical digital
cameras, the combined effect of optics and pixel area integration in the sensor has been traditionally
chosen to trade off the amount of aliasing against the spatial resolution. Usually a certain amount
of aliasing in the digital images has been considered preferable to images that are alias-free but
very blurry. In the last two decades, the spatial resolution of the sensor has grown faster than the
improvement of the optical PSFs, which effectively reduces the amount of aliasing on the sensor.
However, there are still medium resolution cameras having large detectors (e.g. thermal cameras),
which are used for the cases where noise is a bigger concern than spatial resolution, for which the
amount of aliasing is still considerable.

Another issue is that, when empirically measuring PSFs in a digital system affected by aliasing,
the resulting PSF images are not shift-invariant anymore, and using them for restoration violates
the shift-invariance implied in the conventional image degradation model, Equation (1). In addition,
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Figure 4: Average performance (using Wiener filter and L2-r-L0, and the three images of the set) of non-CBC image
restoration, for three compared (edgetaper, WML [11], SPA) extension methods, plus the CBC-oracle, and 8 degradation
(blur + noise) pairs. It is striking how close the SPA interpolation (yellow bars) gets to the ideal CBC-filtered image (oracle,
drawn as a bounding box).

(a) (b) (c) (d)

Figure 5: Visual results for CBC-handling in restoration. Upper left corner of Straw. (a) Simulated observation (degradation
#7). (b) Deconvolution result using edgetaper and the Wiener filter. (c) Same as in (b), but using WML [11] for extending
the image boundaries. (d) Same as in (b), but using SPA for extending the image boundaries.

albeit aliasing is typically not noticeable in blurred observations, it nevertheless results in serious
artifacts after restoration as we show here.

Another interesting practical scenario combining blur and aliasing is the raw color channels in
the camera color filter array (CFA) used in most consumer digital cameras. Camera lenses introduce
blur, but not enough to avoid a certain amount of aliasing on each of these raw color mosaics.
Again, preserving high spatial frequencies is usually considered preferable to completely removing
the aliasing (causing artifacts in the demosaiced image).

Most often the aliasing problem in images is addressed by using anti-aliasing filters (which reduces
both the aliasing and the spatial resolution) or making use of multiple observations (which is the base
for most super-resolution algorithms), either as multiple captures, or as frames from a video sequence.
Interpolation methods considering a single observation, such as [6] and [25], build sophisticated
prior image models using self-similarity of natural images through scale and space to cope with
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Wiener L2-r-L0
ET+R WML+R SPA+R Ora. ET+R WML+R SPA+R Ora.

deg. # h σ2
w HOUSE

#1 PSF1 0.25 7.41 6.95 7.77 7.82 9.23 8.15 9.94 9.95
#2 PSF1 2.00 5.01 4.94 5.11 5.16 7.82 7.17 8.23 8.31
#3 PSF2 0.31 5.75 5.46 6.49 6.69 8.29 7.88 9.62 10.63
#4 PSF2 4.00 4.04 4.00 4.10 4.07 6.97 7.14 7.48 7.70
#5 PSF3 1.00 2.40 5.78 6.08 6.27 3.26 8.03 9.10 9.56
#6 PSF3 4.00 1.80 4.30 4.32 4.34 3.02 7.22 7.63 7.88
#7 PSF4 0.25 2.73 2.28 3.10 3.01 5.13 2.77 5.92 5.97
#8 PSF4 4.00 1.97 2.02 2.11 2.09 3.96 3.99 4.36 4.40

deg. # h σ2
w CAMERAMAN

#1 PSF1 0.25 8.67 8.63 8.69 8.71 10.90 10.64 10.93 10.88
#2 PSF1 2.00 5.56 5.55 5.53 5.56 8.23 8.10 8.23 8.30
#3 PSF2 0.31 5.58 5.65 5.94 6.24 8.43 7.86 8.78 9.07
#4 PSF2 4.00 3.88 3.85 3.87 3.90 5.48 5.51 5.58 5.56
#5 PSF3 1.00 5.47 5.41 6.40 6.60 7.30 7.10 9.51 10.02
#6 PSF3 4.00 4.03 4.13 4.42 4.49 6.28 6.61 7.47 7.66
#7 PSF4 0.25 3.77 3.73 3.90 3.90 6.44 5.68 6.77 6.83
#8 PSF4 4.00 2.32 2.35 2.35 2.36 3.56 3.59 3.65 3.67

deg. # h σ2
w STRAW

#1 PSF1 0.25 8.97 8.87 9.29 9.39 8.22 7.70 8.40 8.36
#2 PSF1 2.00 5.85 5.91 5.97 6.01 6.16 6.00 6.28 6.27
#3 PSF2 0.31 3.50 3.65 4.56 4.84 3.54 3.05 4.94 5.28
#4 PSF2 4.00 2.27 2.37 2.53 2.60 2.22 2.28 2.53 2.62
#5 PSF3 1.00 4.95 6.18 7.92 8.46 4.71 4.64 8.38 9.08
#6 PSF3 4.00 4.21 5.24 5.81 6.03 4.19 4.79 6.18 6.42
#7 PSF4 0.25 2.37 2.72 4.91 4.96 -1.32 -2.07 4.04 3.99
#8 PSF4 4.00 2.62 2.94 3.15 3.19 2.19 2.21 2.91 2.90

average 4.39 4.70 5.18 5.28 5.59 5.67 6.95 7.14

Table 1: Performance comparison for non-CBC image restoration measured as ISNR in decibels. “E-T” refers to ”edgetaper”,
“WML” to “Wrap Minimum Laplacian” [11], “Ora” to the oracle (CBC-restoration result on CBC-complying simulation),
and “SPA” to our SPA extension method. Results in Figure 5 are shown on yellow background.

aliasing. Unlike these approaches, SPA tackles aliasing in a single blurred observation by using
spectral properties derived from the PSF, noise and power spectral density of images for interpolating
the missing samples. As we will show in some examples, thanks to aliasing, it may achieve super-
resolution to some extent, i.e., recover spectral contents beyond the Nyquist frequency of the observed
image.

Simulation procedure. An important requirement to recover an approximation of the missing
samples in the observed image is to be able to reliably estimate the blur kernel in high resolution
(HR). As in previous applications, the observation y is modeled as a subset of pixels of an extended
image z complying with the reference observation model in Equation (1). The simulation procedure
first generates such image z with size Nx × Ny, which is an alias-free CBC-blurred noisy image.
Accordingly, our mask for the known pixels is a binary array in HR with ones at every other pixel
location. In this set of experiments boundary pixels affected by CBC are neither masked nor added for
interpolation, because we want to address the aliasing problem without being affected by boundary
effects. As a consequence we set Lex = Ley = 0 for SPA.
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Images and degradation parameters. We have tested our method on two 8-bit grayscale images:
Barbara and Pirate, with Nx = Ny = 512, from a public image database8. Three different PSFs are
used as the HR kernel (hHR): PSF1 is hi,j = (1+i2+j2)−1, for i, j = −7 . . . 7; PSF2 is a 9×9 uniform
kernel; and PSF3 is a 5 × 7 oblique kernel given by [0000111; 0012321; 0134310; 1232100; 1110000].
Each kernel is normalized to sum up to one. In addition, three different noise levels categorized as low
(σ2

ω = 0.09), medium (σ2
ω = 0.25) and high (σ2

ω = 2.25) are added. Thus, in total nine degradation
sets consisting of three blur kernel and three noise levels are used for experiments.

Compared methods. Likewise in non-CBC restoration, we have used two different methods, the
classic Wiener filter and the L2-r-L0 method [16]. We let SPA to run 50 iterations in all cases. The
performance of the algorithm is measured as ISNR in decibels with respect to a double-size version
of y, which is created by repeating each pixel three times. We have compared the results of three
different restoration schemes with a baseline image:

(1) R+I, (Restoration+Interpolation): directly deconvolving the observation (Mx×My) with a 2×2
subsampled hHR (always keeping the PSF’s central sample), and then applying a bi-cubic spline
interpolation to get the HR image (Nx ×Ny).

(2) I+R (Interpolation+Restoration): applying first a bi-cubic spline interpolation on the observa-
tion (Mx ×My), and then deconvolving the HR image (Nx ×Ny) with hHR.

(3) SPA+R, (SPA+Restoration): applying SPA interpolation on the observation (Mx ×My) and
then deconvolving the HR image (Nx ×Ny) with hHR.

(4) Oracle: the baseline image obtained by deconvolving the alias-free image z. This sets an upper
bound for the performance.

Results and comparisons. In order to understand the influence of different degradation sources
on the results, we have plotted in Figure 6 the mean ISNR in dB of the compared methods for
each simulated degradation. The mean values are calculated over both images and both deblurring
algorithms. The plot shows that for the PSFs having zeros in the Fourier domain, namely PSF2 (a
uniform blur) and PSF3 (an oblique blur), the non-aliasing-aware methods R+I and I+R produce
poor results, especially for the low-noise scenarios. In contrast, the proposed SPA+R performs more
evenly for all the tested degradation types, and is always significantly better than the other two
methods.

Visual outcomes (256 × 256 close-ups of both images) are shown in Figure 7, with top row
corresponding to Barbara with PSF3 (oblique kernel) and σ2

ω = 0.09 (low noise level), and bottom
row to Pirate with PSF2 (uniform kernel) and σ2

ω = 2.25 (high noise level). As one can see, visually
our SPA+R method outperforms the other two on both images by producing less artifacts, even in
the case of Barbara, which suffers more from aliasing due to its large amount of high frequencies.
By estimating the alias-free HR image, SPA+R is able to even recover some aliased details in the
observation such as the strips on Barbara’s shoulder. ISNRs for these two cases are highlighted in
yellow in Table 2.

Table 2 presents the numerical results as ISNR in decibels, from which we have concluded that,
on average, our SPA+R is 1.5 dB and 2.5 dB above R+I and I+R, respectively, and 2.5 dB below
the Oracle. Wiener filter and L2-r-L0 restoration methods behave similarly across all experiments.
Roughly speaking, SPA method goes half-way between the standard (spline) interpolation and the
ground truth.

8ImageProcessingPlace.com, http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
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Figure 6: Aliasing-aware restoration results: Average performance (using Wiener filter and L2-r-L0, and two images, Barbara
and Pirate) of the 3 compared restoration methods for the 9 degradation (blur + noise) experiments.

R+I I+R SPA+R (our result) Oracle

Figure 7: Results of aliasing-aware restoration. Top row: Crops of blurred and aliased simulated observations. Rest, from
left to right: R+I, I+R, SPA+R (our result), Oracle using L2-r-L0 [16] for restoration. R+I refers to first restoration,
then spline interpolation. I+R the same, but in the reversed order. SPA+R refers to our method, spectral pre-adaptation
plus image restoration. Oracle is the upper bound reference derived from direct deconvolution of the HR alias-free blurred
image.
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Wiener L2-r-L0
R+I I+R SPA+R Ora. R+I I+R SPA+R Ora.

deg. # h σ2
w BARBARA

#1 PSF1 0.09 2.23 2.63 2.73 9.75 2.27 2.61 2.78 11.61
#2 PSF1 0.25 2.14 2.50 2.57 7.09 2.23 2.54 2.72 9.45
#3 PSF1 2.25 1.63 1.48 1.72 3.23 1.96 1.80 2.08 6.15
#4 PSF2 0.09 -1.19 -0.60 2.46 4.44 -2.81 -1.03 2.70 6.59
#5 PSF2 0.25 -0.17 0.03 2.13 3.43 -0.80 -0.08 2.35 5.15
#6 PSF2 2.25 0.66 0.21 1.36 1.97 0.91 0.73 1.72 2.68
#7 PSF3 0.09 1.40 -1.72 1.83 3.76 1.41 -4.99 1.92 5.61
#8 PSF3 0.25 1.36 0.01 1.68 2.84 1.40 -2.83 1.79 4.36
#9 PSF3 2.25 1.13 0.90 1.20 1.62 1.29 0.34 1.34 2.17

deg. # h σ2
w PIRATE

#1 PSF1 0.09 4.96 5.10 6.11 9.37 4.99 4.82 6.19 10.16
#2 PSF1 0.25 4.78 4.94 5.64 7.54 4.85 4.61 5.86 8.65
#3 PSF1 2.25 3.67 2.88 3.64 4.80 3.97 3.04 4.42 6.69
#4 PSF2 0.09 -1.63 1.49 4.70 6.54 -3.50 2.38 5.39 8.63
#5 PSF2 0.25 -0.18 1.82 4.19 5.54 -1.24 2.87 4.94 7.47
#6 PSF2 2.25 1.39 1.03 2.77 3.61 1.71 2.35 3.71 5.23
#7 PSF3 0.09 3.54 -3.53 4.38 5.34 3.57 -8.10 4.74 7.56
#8 PSF3 0.25 3.44 -0.63 4.10 4.73 3.50 -4.70 4.54 6.59
#9 PSF3 2.25 2.92 1.87 3.10 3.70 3.10 1.38 3.73 4.93

average 1.78 1.13 3.13 4.96 1.60 0.43 3.50 6.65

Table 2: Aliasing-aware restoration. Performance comparison, measured as ISNR in decibels. Results in Figure 7 are
highlighted in yellow. See text for details.

3.3 Kernel Mismatch

Apart from real observations being aliased or not, we cannot expect to know the exact real blur
kernel. Even for the cases in which we know the theoretical PSF (e.g. because we know every
detail of the optical design), the real optics will not be exactly the same as the designed ones, due to
tolerance errors in fabrication. Therefore, in reality, some extent of discrepancy between the real PSF
(causing the blur in the observation) and the modeled PSF (the one assumed during deconvolution)
is unavoidable. As expected, this blur kernel mismatch causes artifacts in the restoration result.

The obvious approach to deal with the inaccurate kernel estimation problem is to use more
advanced kernel estimation tools. Goldstein and Fattal [7] explored the statistical irregularities in
the power spectrum of blurred natural images. Xu and Jia [21] took a close look at the role of image
edges in image deblurring, and proposed an efficient kernel estimation method based on a spatial prior
and iterative support detection kernel refinement. Others, such as [23] and [24] obtain improvements
through the power of deep neural networks. However, ultimately, it is hard to measure the achieved
accuracy in the estimated kernel. Instead of pushing the model kernel closer to the actual one, SPA
pushes the observation to be more likely under the assumption that the estimated blur kernel is
correct. Of course, still, for this latter approach to be fruitful, there should not be significant gaps
between the real PSF and the estimated one. Both approaches (bringing the model kernel closer to
the actual one, and bringing the post-processed observation closer to the modeled kernel) are, rather
than alternative, complementary: We can think of a sequential process, namely, first obtaining the
best possible model kernel, subject to whatever constraints and model limitations, and, only then,
applying SPA to bring the observation as close as possible to the assumed observation model, thus
further reducing the restoration artifacts.

In our experiments, we use SPA to interpolate the unknown pixels in order to adapt the spectral
properties of the modified observation, such that it becomes likely in terms of the modeled PSF. In
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order to introduce the necessary degrees of freedom to make such a transformation, we start from an
aliased observation, identical as the one described in the previous section. The SPA goal is, again, to
interpolate those discarded pixels (3 out of 4, in 2× 2 neighborhoods), according to the observation
model of Equation (2) with Q = 2. However, now, besides the observation being aliased, there is
a mismatch between the real blur used to generate the observations and the modeled PSF assumed
by the deconvolution method. Two sets of experiments are conducted for two different kinds of
mismatches. In the first set, the real and modeled PSF are both spatially invariant, but have slightly
different sizes. In the second, the real PSF slightly varies across the image, while the modeled PSF
is kept fixed (shift-invariant), always according to the reference observation model of Equation (1).
Since these are more challenging cases, with both aliasing and kernel mismatch, we increased the
number of iterations for SPA to 100. We compared three restoration approaches:

(1) Directly deconvolve an alias-free oracle simulation in HR, assuming the modeled PSF.

(2) Use SPA to estimate a HR version of the aliased LR observation based on the modeled PSF,
then deconvolve it assuming the modeled PSF.

(3) Use a standard bi-cubic spline interpolation method to interpolate the aliased LR observation,
then deconvolve the result assuming the modeled PSF.

For the deconvolution, we used the L2-r-L0 method [16] as in previous experiments.

Size mismatch. We have used a uniform disk blur kernel here for simulation. We have simulated
the kernel size mismatch by setting the diameter D of the real PSF to range from −40% to +40% of
the modeled PSF diameter, in 2% steps. Figure 8 panel(a) shows the performance of each method
with Dmodeled = 9, σω = 0.3, Lena image. One can see that, when there is both aliasing and mismatch
(blue and black curves), SPA interpolation gives better restoration results compared to the standard
spline method across all kernel size deviations. More importantly, even when there is no aliasing
(red oracle curve) in the observation and the kernel size mismatch is significant (more than 4%),
directly deconvolving it with the modeled PSF gives worse results (up to 2 dB performance drop)
than using SPA on the aliased observation. That is, when kernel size mismatch dominates, SPA can
compensate its side effects even if aliasing is present at the same time, and this compensation has a
larger positive effect than the loss of information caused by aliasing (at least in the examples tested
by us).

Spatially variant kernels. For the spatially variant blur experiments, we have considered that
the kernel diameter grows linearly with the radius from the center of the image, varying its diameter
from (100 − p)% of its nominal (modeled) value at the center of the image to (100 + p)% at the
center of the four image edges. We swept p from 0 to 40, in 1% incremental steps. We use the same
diameter (Dmodeled = 9) for the modeled PSF and the same noise level (σω = 0.3) with Lena image,
as for the uniform size mismatch experiment. Figure 8 panel(b) shows the performance of each
method. Similar as before, SPA-based restoration behaves very robustly against kernel mismatch
(blue curve), as compared to a simple standard interpolation (black curve). Furthermore, it even
outperforms alias-free oracle restoration when the kernel mismatch is large.

Figure 9 shows some visual results. The images in the first row are spatially-variant simulated
observations, HR alias-free oracle (left), LR aliased after cubic spline interpolation (center), and LR
aliased (right). The image on the left was downsampled by taking one out of four pixels (one in
2, along x and y, i.e., Q = 2), for simulating the aliased observation, on the right. Images in the
second and third row, from left to right, are deconvolution results of the observation in HR, spline
interpolated image and SPA interpolated image, all of them assuming the reference, shift-invariant,
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Figure 8: (a) Performance effect of PSF size mismatch. (b) Performance effect of PSF size variability.

PSF. Images in the second row are results at 5% variability. In this case, from Figure 8 panel(b) one
can see that deconvolving directly on the HR simulation provides a higher SNR than on the SPA
interpolation. Visually, it is true that the left image in the second row better preserves high frequency
details than the SPA-processed one (right). However, SPA still gives a visually comparable result
without increasing the artifacts. We believe this is a remarkable result, considering that, unlike for the
alias-free oracle, the SPA-based restoration is dealing here both with aliasing and kernel mismatch.
The third row shows results at the crossing point (8%) of the red and blue curves in Figure 8 panel
(b), where the oracle and SPA-interpolated images give the same SNR. One can see that with larger
kernel size variability, SPA produces relatively less artifacts than directly deconvolving the alias-free
oracle. On the other hand, using a general purpose (cubic spline) interpolation applied to the aliased
LR simulated observation (right) gives rise to strong artifacts.

3.4 Complex-shape Support Deconvolution

When blur changes abruptly from one image region to another, the image will have multiple distinct
blurred areas of arbitrary shape. To restore such heterogeneously blurred images, we propose to
frame these distinct uniformly blurred areas in rectangular regions and then apply SPA to estimate
a rectangular shaped blurry image for each area. For each rectangular shaped sub-image, pixels not
obeying the local blur model (single homogeneous blur, rectangular, CBC) are inter/extrapolated by
SPA, thus enforcing them to follow the reference blurring model of this area. Then each estimated
rectangular shaped blurred sub-image can be restored by any standard deconvolution algorithm.
Finally, composing all masked restorations results with the original discarded pixels results in the
final restored output.

Such two-step method can be very useful in practice. For example, an image with foreground in
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Oracle Spline interpolation Proposed SPA interpolation

Figure 9: Visual results of kernel mismatch: using a standard deconvolution method to restore an aliased spatially-variant
blurred image after being interpolated using SPA (right column). We compare with direct deconvolution not using SPA: on
an oracle, alias-free version (left column), and on the aliased observation after spline interpolation (central column). First
row: Simulated observations for a 5% real kernel variation. Second row: Restoration results for a 5% real kernel variation.
Third row: Restoration results for 8% real kernel variation. Note that SPA results not only have less artifacts compared
to deconvolving the spline-interpolated LR image (central column), but also compared to deconvolving the alias-free oracle
(left column).
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focus and blurred background is considered as a two-area case, and can be restored with the help of
SPA9 as mentioned above. Although not shown here, this general model is applicable to more complex
situations, such as having different motion blur in the scene, possibly in combination with out of focus
elements, etc. In addition, this approach is powerful enough even for recovering missing blurred areas
(in-painting) that have a size comparable to that of the blur kernel. We have compared the proposed
two-step method with a successful unconstrained boundary conditions (UBC) variant of Alternating
Direction Method of Multipliers (ADMM) restoration algorithm proposed in [1]. Experiments on
real images have been conducted as well.

Block in-painting. For fair comparison with [1], we repeated the authors’ experiment with Lena
image (256 × 256) and generated the blur kernel using their code10. The observation suffers from
uniform blur with size 19 × 19 and a very low noise level having a Blurred Signal-to-Noise Ratio
(BSNR) of 60 dB. Also, pixels of three relatively large areas (eyes: 19× 19, same size as the kernel;
mouth: 39 × 39, almost twice of the kernel size) are discarded, together with the CBC-affected
pixels along the boundaries (resulting in 256 − 2 × ((19 − 1)/2) = 238 pixel size on both axes),
as shown in Figure 10 panel (a). Since it is an ill-posed problem with extremely little noise, the
number of iterations for SPA had to be increased to 12500. We needed 500 iterations in UBC-
ADMM to guarantee convergence. The boundary extension was set to Lex = Ley = 5 as follows
from Equation (19) ((256 + 2× 5)/19 = 14), and the original intensity range ([0, 205]) was enforced
in L2-r-L0.

Figure 10 panel (b) shows the SPA result ((256 + 2 × 5) × (256 + 2 × 5) = 266 × 266), which
gives an estimation of the blurred image in the missing blocks as well as in the extended boundary
areas. After the deconvolution, the final in-painting results of SPA is presented in Figure 10 panel (c)
along with the result of UBC-ADMM in panel (d) (both with size 256× 256). In this extreme case,
and thanks to the non-linear regularization, UBC-ADMM clearly gives a better restoration than our
method, both visually and in terms of SNR on the whole image (23.33dB vs. 22.52dB). However, the
fact that our method successfully recovers the missing eyes of size comparable to the kernel indicates
that a relatively simple spectral linear method like SPA suffices to regenerate incomplete blurred
observations.

(a) (b) (c) (d)

Figure 10: Recovering lost regions in a blurred image (a), using SPA interpolation (b) followed by a standard deconvolution
(c), vs. using UBC-ADMM [1] (d). Note that the simulated observation (a) is smaller than the original size (and restored,
(c) and (d)), which, in turn, is smaller than (b).

9Note that it is possible to use the same scheme for the reversed situation, where the foreground is blurred and the
background is sharp. However, better results are obtained in that case using a more complex observation model [3].

10We thank M.S.C. Almeida and M.A.T. Figueiredo for making their code available.
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A sharp foreground on blurred background. We tested our SPA-based restoration method
on a simulated observation (Nx = Ny = 512) composed of a foreground object in focus partially
occluding a blurred background. We used a uniform disk of 9-pixel diameter for simulating the out-
of-focus blur, and additive noise with σω = 0.3. SPA is applied to estimate the blurred image with
Lex = Ley = 8 and 100 iterations followed by the L2-r-L0 deconvolution method [16] with default
parameters. The result is compared with UBC-ADMM (FA-MD variant), with a hand-optimized
parameter λ = 0.003 and running 150 iterations to achieve practical convergence.

Visual results are shown in Figure 11. Panels (a) and (b) show the reference (ground-truth) image
and the simulated observation, respectively. The result of UBC-ADMM is in panel (c). The result
of SPA after deconvolution (using L2-r-L0 [16]) is shown in panel (d). Stitching the deconvolved
results with the observed sharp foreground object, we get the final restorations for both methods
shown in panels (e) and (f). Both methods provide excellent results, yet our combined method better
preserves texture and has less artifacts (see, for instance, the pirate’s chin, zoomed in panel (e)).
This is a typical behaviour of L2-relaxed L0-sparse methods against TV-based methods. This leads
to a significantly better Signal-to-Noise ratio (SNR) (measured on the restored background) of our
method (24.96dB vs. 24.44dB). Running both algorithms on an Intel(R) Core(TM) i7-9700 CPU
@ 3.00GHz using c©MATLAB code on R2019b version, UBC-ADMM takes ca. 25 s (in full silent
mode), which is 5.7 times slower than the sum of SPA (ca. 0.8 s) plus L2-r-L0 (ca. 3.6 s).

Real images. We have applied our method also to real images, in what we believe is the ultimate
(and necessary) challenge for any method claiming to be applicable to real observations. The first
testing photo, a crop of which is shown in Figure 12 panel (a), has been taken11 by a professional
digital camera12, indoors, with tripod and without flash. Although its sensor uses 12 bit pixels, it is
mapped into a 16 bit intensity range ([0, 65535]). In this case, we have taken the mean of all three
color channels to convert it into grayscale, which further reduced the noise. We eventually used a
512 × 512 region of the photo for processing. The foreground (close up of a comb) can be easily
segmented to obtain the mask, since it has a much darker color with respect to the background.
For estimating the blur kernel, we first assumed a uniform disk, and then manually optimized the
diameter by sweeping its value while deconvolving a different region of the original image containing
only the background. The final estimated diameter is D ≈ 29.5. For the noise, by applying [8], we
have estimated σω ≈ 4.

The second case is more challenging: restoring a picture taken with a mid-range mobile phone,
indoors, indirect natural light, without tripod, and in JPEG format13. A 512 × 512 crop of the
picture is shown in Figure 13 left. For this case, we obtained the foreground object mask through
high-pass filtering and morphological operations, and estimated D ≈ 14.5, σω ≈ 1.25 similarly as
before. We processed the background image in gray-level, and after the restoration we re-scaled each
color channel to match their means in the observation.

For the SPA method, we used Le
x = Le

y = 5 and 100 iterations of the CG method for both pictures.
For the L2-r-L0 method, we have imposed the range [30000, 54000] for the first image and [120, 210]
for the second one during the restoration loop. Results for both pictures are presented in Figure 12
panel (d) and Figure 13 right. One can see that some of the letters/words on the background text
become readable after restoration.

11Many thanks to Isabel Portilla for kindly taking and providing us with this picture.
12Canon EOS 5D Mark II, 20 Mpix, CR2 to uint16 TIFF, focal length 50mm, exposure 1/2500 s., ISO 100, f/3.5.
132Mpix camera from Sony Xperia D2203, focal length 2.78mm f/2.4, exposure time 1/250 s, JPEG compress:

approx. 2.4 bits per RGB pixel.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 11: Visual results of complex-shape image restoration (realistic simulation). (a) Reference image (ground truth).
(b) Simulated observation. (c) UBC-ADMM result. (d) Restored SPA result. (e) Detail of (c) (top) and (d) (bottom). (f)
Final masked UBC-ADMM result. (g) Final masked SPA result.
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(a) (b)

(c) (d)

Figure 12: Restoring a high-quality photography. (a) Observation. (b) Background SPA result (scaled). (c) Restored
background (scaled). (d) Final result.

4 Conclusions

We have proposed spectral pre-adaptation (SPA) as a new pre-processing method, which allows to
apply any standard deconvolution method to observations with complex blur that goes beyond the
standard convolution model. SPA uses a simple Gaussian spectral model and obtains a maximum
likelihood estimate, given a subset of the observed pixels, of an hypothetical observation free from
model discrepancies. SPA achieves this by substituting/adding interpolated pixels, through solving
a large spatially-variant linear system of equations, by means of conjugate gradient optimization.
By introducing this spectral pre-processing, we narrow the gap between the real observation and
the blur model assumed in standard deconvolution methods. This makes restoration more robust
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Figure 13: Restoring a JPEG-compressed medium quality photography. Left: observation. Right: restoration result using
SPA.

against artifacts. After applying SPA, the user is free to choose any deconvolution method based on
a standard blur model (shift-invariant, alias-free, based on a rectangular observation with circular
boundary conditions), to which our pre-processing does not add significant computational overhead
(note that state-of-the-art deconvolution methods are iterative, complex and non-linear, whereas SPA
is linear and quite simple). Finally, usually one may want to post-process the deconvolution result,
to recompose some areas of the image, by including previously discarded pixels (e.g. non-blurred
pixels), and discarding some added ones (typically along the boundaries).

We have demonstrated the usefulness of the algorithm with several real-life applications by con-
ducting experiments that deal with observations having non-circular boundary condition, aliasing,
kernel mismatch, slightly shift-variant kernels and complex-shape blurred areas. Results indicate
that SPA, when combined with efficient deconvolution methods, greatly mitigates artifacts with
lower computational cost compared to state-of-the-art non-standard restoration methods. More im-
portantly, for some experiments we have also tested SPA on real images and the results are as good
as on simulations. Our restoration recovers heavily blurred texts in the background, becoming now
partially readable. One experiment shows that this even applies to photos that are not taken with
professional cameras but by inexpensive commercial cellphones, even subject to JPEG-compression.
This fact suggests that the proposed algorithm has a large potential in its application to a broad set
of real-life captured images.

We conclude that, when doing blurry image pre-processing prior to standard image deconvolution,
preserving the observed image spectral behavior under CBC, and not merely its smoothness (as done
traditionally) is a key factor for improving the restoration quality of real/realistic images. This is
efficiently and robustly achieved by the spectral pre-adaptation method proposed here.
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