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Abstract

This work describes deep single-image portrait relighting, a method to change the lighting of
an image. The method is based on an hourglass convolutional neural network, which encodes
the image and its estimated original lighting features, then replaces the lighting features with
the target light. We highlight the overall good results produced by this method, as well as its
limitations and the lighting artifacts that sometimes appear on relighted images.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article!. Usage instructions are included in the README.txt file of the archive. The authors’
original implementation of the method is available here?.

This is an MLBriefs article, the source code has not been reviewed!
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1 Introduction

Image relighting, in particular portrait relighting, aims at simulating a modification of the light
sources on an image. Originally tackled by optimization-based inverse rendering [2, 1, 3, 9], the
emergence of deep learning saw this field get more interest in the past years [7, 8, 4, 3, 6, 12, 10], in
addition to parallel works on video portrait relighting [11].

In this work, we briefly describe and analyze deep single-image portrait relighting (DPR), a
method by Zhou et al. [12] to relight images. It is the first deep learning-based method that is able
to process relatively high-resolution images (up to 1024 x 1024 pixels). Using the implementation
from the authors, we experiment with the method to analyze its results and limitations.
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2 Method

The method consists of a convolutional neural network, that estimates the original lighting condition
and changes it in the image. The structure of the network is presented in detail in Figures 1 for the
global network structure and 2 for the basic blocks.

Encoding. The network takes as input a grayscale image, or the luminance channel of a color
image, resized to 512 x 512 pixels with bilinear interpolation. The encoder progressively extracts
features and downsamples the input to 32 x 32. A total of 128 image features and 27 lighting features
are extracted.

Light estimation and relighting. The 27 lighting features are then spatially averaged, and two
fully-connected layers yield the 9-parameters lighting estimation of the image. These 9 parameters
correspond to second-order spherical harmonic coordinates. To relight the image, the 9-parameters
target lighting is processed into 27 lighting features with 2 fully-connected layers, then spatially-
repeated into a 32 x 32 uniform image.

Decoding. The original 27 lighting features are replaced by the 27 ones from the target. Then,
the decoder progressively upsamples and creates the relighted image. The spatial features are recon-
structed using skip connections from the encoder in addition to the decoding.

Output. The neural network yields a 512 x 512 one-channel image. The image is resized into the
original size with bilinear interpolation. In case of a color input, the output luminance channel is
inserted back into the image.

1024 x 1024 model The original model works on 512 x 512 images. Zhou et al. [12] provide another
model to work on 1024 x 1024 inputs. It is very similar in structure to the original model, with
the addition of a 2-downsampling after the first convolution and a 2-upsampling after the last skip-
connection (before the last convolution block in Figure 2). The model thus does not really work at
a true 1024 x 1024 resolution, it only manages the super-resolution from 512 x 512 to 1024 x 1024
in the last block, without using the base resolution of the original image to do so.

Training. The network is trained on images from the CelebA [5] dataset with synthetic lighting.
Example images from this dataset can be seen in Figure 3.

The images are synthetically relit using a relighting pipeline, that estimates the original reflectance
as well as a face mesh, fits it with detected facial features and generates the final image with modified
lighting conditions. Details from the training can be found in the original article [12]. In the
experiments, we use the weights provided by the authors®.

3 Experiments

In our experiments, we test the method against images not coming from the training dataset, so as to
test the generality of the method. Indeed, the CelebA [5] dataset, used to train the network, features
portraits of celebrities, a specific type of portrait made in optimal settings. For this purpose, we use
various images found on flickr?. Specific credits for each image can be found in the last section.

3https://zhhoper.github.io/dpr.html
4f1ickr.com/
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Figure 1: Network structure. All convolutions are without bias. See Figure 2 for the structure of the ResBlockIN and
ResBlockBN blocks.
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Figure 2: Structure of ResBlockIN and ResBlockBN, using batch normalization (ResBlockBN) or instance normalization
(ResBlockIN).
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Figure 3: Example images from the CelebA dataset. Source: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

3.1 Light Estimation

The method estimates the lighting features from the image, and replaces them with target features.
As a consequence, a correct estimation of the light features seems crucial for a successful relighting.
We thus start by examining the ability of the method to estimate the original lighting of a portrait.
As can be seen in Table 1, in many cases, the method is able to provide a good estimation of the
lighting, despite a few errors, seen in Table 2. One particular limitation is that the second-order
spherical harmonics used as representation cannot represent more complex shadings such as shadows
from a hat or external elements.
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Table 1: In most cases, the method is able to provide good estimations of the image lighting, even when the face is occluded
or if the background is not neutral.

424



EXPERIMENTS ON DEEP SINGLE-IMAGE PORTRAIT RELIGHTING

Image Estimated light Image Estimated light Image Estimated light

Table 2: Examples of failures to estimate the original lighting. In the first row, this is due to the incapacity of the chosen
representation to represent complex lightings such as those from a hat or external elements.

3.2 Relighting

We now study the ability of the method to relight images. As seen in Figure 4, the method can
correctly relight the image in many cases. However, it is not without failures.

As stated earlier, the use of second-order spherical harmonics limits the representativeness of the
lighting estimation. It also makes it difficult to correctly recast external shadows, such as those due
to hair or hats. Such issues can be seen in Figure 5.

The method is not an interpolation method either; as a consequence, and as seen in Figure 6, it
cannot reconstruct details that were missing from the original image due to shadow or light saturation,
but should theoretically be visible from the target lighting.

Another issue is caused by the resolution of the method. Since the image is resized to 512 x 512
pixels for processing, and rescaled to the original size afterwards, many details are lost on big images.
As seen in Figures 7 and 8, this even creates artifacts in some images. Zhou et al. [12] propose
another network which takes and outputs 1024 x 1024 images, encapsulating the original network
and managing the resampling. Nevertheless, large images still need to be resampled. Although this
is the first method to provide relighting on more than thumbnail-sized images, we note that a decent
resampling could easily improve performances on large images. Ideally, though, one could attempt
to restore the resolution perfectly using features from the original image.

As can be seen in Figure 9, the method sometimes fails to properly generate the desired lighting
orientation. This may be due to a failure to correctly capture the initial lighting features.

More importantly, the method tends to generate many lighting artifacts, seen in Figures 10, 11
and 12. The background is sometimes modified with incoherent bands of highlight or shadow. This
appears mostly, but not only, on non-uniform backgrounds. This may be due to the training dataset
featuring mainly images with no or little background. As the normal map is diffused from the face
to the background, the new background can be incorrectly modified. Artifacts also appear directly
on the face, with highlights or shadows appearing — or not disappearing correctly — in target lighting
that should not produce them.
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Figure 4. Examples of successful relighting
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Original image Light estimation Target light Relight

Figure 5: In those examples, the second-order spherical harmonics representation prevents the method from recasting
shadows due to external elements such as hair or hats.

Original image Light estimation  Target light Relight

A

Figure 6: When the original image is saturated due to strong shadows or highlights, the saturated regions cannot be
reconstructed even when they should be visible under another lighting.

i

427



QUENTIN BAMMEY

. =
P
Original image Light estimation

wad A

Relight (512 x 512 network).

IV @ |8

= .
Relight (1024 x 1024 network).

Figure 7: Working on 512 x 512 images, details are lost and artifacts created when large-scale images need to be resized by
bilinear resampling. The 1024 x 1024 network only partly alleviates this issue. Full resolution versions of the images in the mid-
dle and bottom rows can be found in the demo’s archive, at https://ipolcore.ipol.im/demo/clientApp/demo.html?
id=429&archive=516158 and https://ipolcore.ipol.im/demo/clientApp/demo.html?id=429&archive=516159,
respectively.
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Original image Light estimation Target light Relight 512 x 512 Relight 1024 x 1024

Figure 8: Possibly due to the working size, sharp noise appears throughout this example with the 512 x 512 model, but
mostly disappears with the 1024 x 1024 network

Original image Light estimation  Target light Relight

Figure 9: In those examples, the target light orientation is not perfectly generated.
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Figure 10: The method sometimes creates lighting artifacts. They especially appear in non-neutral backgrounds, where
lines or bands of light or shadows are created when none existed in the original image.
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Original image Light estimation Target light Relight

Figure 11: More lighting artifacts created by the method, seemingly not due to background-related causes. In the bottom
three rows, lighting artifacts appear at the forehead, where the method is unable to remove the highlights when needed,
despite this region not being saturated.
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Original image Light estimation Relight Target light

Figure 12: In this example, the method creates strange highlights on the eyebrows.

4 Conclusion

The presented method relights a portrait by modifying the lighting features extracted by an encoder-
decoder network. It works well overall, but could be improved by a better resampling for bigger
images, especially considering it would be possible to make use of the original image at full resolution
for this purpose. Its choice of second-order spherical harmonics, while reasonable in most cases, could
be improved when more complex shadows need to be recast, such as shadows from hair, hats or
external elements. The main issue for the method is the appearance of lighting artifacts in different
scenarios, that give the impression of unnatural lighting.
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