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Abstract

This work describes the ManTraNet network for image forgery detection. ManTraNet is an
end-to-end convolutional neural network composed of two sub-networks, one to extract features
linked to traces of manipulation, and another to detect local anomalies between the features.
It is trained on pristine and forged images from several datasets. We briefly analyze the results
provided by ManTraNet, so as to highlight its qualities and limitations. Overall, ManTraNet
yields state-of-the-art results on benchmark datasets with images similar to the one it sees in
training, but is unreliable on wild images, due to its opacity and the difficulty distinguishing
true detections from false positives.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.txt file of the archive. The original
implementation of the method is available here2.

This is an MLBriefs article, the source code has not been reviewed!

Keywords: image forensics; forgery detection; convolutional neural network

1 Introduction

Image forensics has become an important field of study over the past few years, sparked by the
ubiquity of images on the internet and the proliferation of fake news in social media. Originally,
image forgeries were mainly detected by manual methods targeting specific traces left by the image
signal processing pipeline (ISP) such as demosaicing artifacts [3, 10, 13, 14, 20, 23, 27, 33, 35, 4],
JPEG compression [1, 8, 18, 25, 26, 31, 32, 30], or noise inconsistencies [11, 15, 28, 29].

1https://doi.org/10.5201/ipol.2022.431
2https://github.com/RonyAbecidan/ManTraNet-pytorch
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With the advent of deep learning, convolutional neural networks (CNN) were recently introduced
to image forensics. They can be trained on pristine images so as to detect whether two patches
could come from the same image or might have been processed differently, indicating a forgery [12,
17]. Some networks are introduced to improve the analysis of a specific point, such as demosaicing
artifacts [2, 6]. ManTraNet [39], which we study here, pioneers a third category of methods, that are
trained directly on forged images to localize their forged regions.

The ability of methods such as ManTraNet to provide exceptional results on benchmark datasets
has already been demonstrated. However, in such datasets, neural networks can be trained on images
and forgeries similar to those of the evaluation set. One can wonder whether such performances hold
in the wild, where images are diverse and largely differ from the controlled environment of training
datasets. Furthermore, the interpretability of the results can be questioned; as the reason behind
the detection is not immediately clear, such results can often be seen as opaque.

After a brief description of ManTraNet, we will analyze its results on various images to ques-
tion the performances in uncontrolled scenarios. While highlighting the interpretability issue of
ManTraNet, we will also conduct short experiments to try to understand what triggers detections.

We use the pytorch re-implementation from https://github.com/RonyAbecidan/ManTraNet-pytorch,
which is equivalent and uses the same weights and network structure as the original authors’ [39]
repository, available at https://github.com/ISICV/ManTraNet. Note that even in the official imple-
mentation, the network architecture is slightly different than described in the paper, this discrepancy
has already been acknowledged by the authors. The structure described here corresponds to the one
that was actually implemented.

2 ManTraNet

In this section, we briefly detail the ManTraNet method.

2.1 Network Architecture

ManTraNet is an end-to-end CNN, whose architecture is presented in Figure 1. The input is a color
image. The output is a one-channel heatmap with floating scores between 0 and 1 (or integer scores
between 0 and 255 after saving the result as an image), representing the confidence in each position
belonging to a forged region. Scores closer to 1 (or 255) correspond to areas which ManTraNet is
very confident have been forged, whereas scores closer to 0 correspond to regions considered pristine.

Figure 1: Overview of the ManTraNet architecture. Figure from https://github.com/RonyAbecidan/

ManTraNet-pytorch.

The network itself is composed of 2 sub-networks. The first sub-network aims to extract manip-
ulation traces from the image and follows a VGG [36] architecture. It takes the image as input and
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outputs 256 feature maps of the same size, which represent features related to different types of ma-
nipulations. A first layer consists of 16 5× 5 convolutions to extract initial features from the image.
4 of those convolutions are classic convolutions, 9 are style-based recalibration modules (SRM) [24]
and the remaining three are Bayar constrained convolutions3 [7]. The 16 features are concatenated
and followed by 3 × 3 convolutions layers; in order, one layer with 32 feature channels, 2 with 64
channels, 4 with 128 channels and 6 with 256 channels. The output of the last layer is used as the
extracted features. All convolutions are followed by ReLU activations, except for the last layer which
is processed by L2 normalization.

The second sub-network takes the feature map as input, and outputs a single-channel map rep-
resenting the confidence in each position being forged. The 256 feature maps are first summarized
and adapted into 64 maps with a pointwise convolution layer followed by a batch normalization. For
each feature map, ManTraNet computes the deviation of each pixel from the dominant feature of
this map. If F is the feature map, the globally dominant feature µ

−1 is the average of all values of
F

µ
−1[x, y] , µ

−1 ,
1

XY

X−1∑

i=0

Y−1∑

j=0

F [i, j], (1)

where (X, Y ) is the size of the image. The locally dominant feature at resolution n (for non-negative
odd n) µn

X is computed as the local average within a n× n window centered at each pixel

µn[x, y] ,
1

n2

n+1
2∑

i=n−1
2

n+1
2∑

j=n−1
2

F [x+ i, y + j]. (2)

The normalized deviation of each pixel from one of these dominant features is then

Zn[x, y] =
F [i, j]− µn[x, y]

max (σF , ǫ+ ω)
, (3)

for non-negative odd n (local scale) or n = −1 (global resolution), where σF is the standard deviation
of F , ǫ = 10−5 and ω is a non-negative weight learned independently for each feature map.

This process, known as Z-pooling, is performed at the global scale (n = −1) and at resolutions
n ∈ [7, 15, 31]. The rationale for using local scales in addition to the global average is to mitigate the
influence of multiple forgeries in an image. The four resolutions are concatenated along an artificial
time axis, and the 4× 64×X ×Y tensor is passed through a convolutional LSTM [34], that looks at
the features starting from the global resolution and moves towards more local resolutions if it is not
certain at the current level. The convolutional LSTM uses 7× 7 convolutions and returns 8 feature
maps. A final 7× 7 convolution followed by a sigmoid activation yields the single-channel heatmap.

2.2 Training

Here we describe the training of the network in the original paper. We focus on analyzing the results
of the method and do not recreate the training ourselves, as details for training are not provided in
the paper nor in the implementation.

The first sub-network is trained using the Dresden Image Database [16] of pristine images. Of all
the images, 80% are used for training, 10% for validation and the remaining 10% for testing. Images
are divided into 256×256 patches, and homogeneous patches with intensity standard deviation below
32

255
are rejected. In total, 1.25M patches are kept. Samples are generated by uniformly sampling a

3This description corresponds to the actual architecture of the official implementation. The original paper itself
[39] instead describes 10 classic convolutions, 3 SRM and three Bayar-constrained convolutions.
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random patch and manipulation, applying the manipulation to the image, and cropping a random
128 × 128 region of the output. The network is fed with the cropped manipulated region, and
trained to identify which manipulation was used. Details on the module for auxiliary training are
not provided in the original paper.

The second sub-network is trained on four synthetic datasets: [37], [38], a dataset synthesized by
using OpenCV [9] inpainting on the Dresden images [16], and another dataset obtained by locally
applying random manipulations on the same images. Training is done on patches of size 256× 256.

Both networks are trained with a batch size of 64, 1000 batches per epoch, using the Adam [19]
optimizer with an initial learning rate of 10−4 without decay. The learning rate is halved if the
validation loss fails to improve for 20 epochs. The epoch with the best validation loss is kept for the
final model.

3 Experiments

In this section, we conduct several experiments: we test ManTraNet on authentic images to test its
robustness to false positives, as well as on forgeries, both real and from controlled environments,
to see whether it responds to the forgeries. Finally, we investigate to which changes the method is
sensitive.

3.1 Response to Authentic Images

We first test the detections of the method on authentic images. The Korus database [21, 22] contains
220 tampered images of size 1920 × 1080 from 4 different cameras, and their associated pristine
images. We run ManTraNet on the 220 pristine images, and check the proportion of images that
contain false positive connected regions over a given size where the output is above a given confidence
threshold. Results can be seen in Table 1. These observations on pristine images show the difficulty
of identifying forgeries with ManTraNet; even at a threshold of 0.9, more than half of the pristine
images contain a detection over 256 pixels (corresponding to a 16×16 square region). In other words,
even if ManTraNet detects a small region with very high confidence, it is impossible to consider this
detection reliable, as many (authentic) regions will be detected with the same confidence. Larger
forgeries might more easily be identified, nonetheless there are still large pristine regions that are
detected with high confidence: detections from the method cannot be considered fully reliable.
Furthermore, as seen in visual results in Figure 2, even though the noise-like false positive responses
can be rejected by a trained eye, the strongly-confident responses on some regions cannot be reliably
distinguished from real detections.

3.2 Detection of Forgeries

In Figure 3, we show the response of ManTraNet to forged images from the Korus Dataset [21, 22].
First of all, we note that the ManTraNet strongly responds to many forgeries, which can help in their
detection. That being said, the response of ManTraNet to those forgeries is not unlike its response
to pristine images as those from Figure 2. Given only the output from ManTraNet, it is thus difficult
to distinguish true forgeries from false positives, even to a trained eye.

To complicate the matter, the tested images correspond to controlled forgeries from a dataset.
In real cases, images often undergo much more post-processing and editing, which can make their
detection different or more difficult than on benchmark datasets, where forgeries are closer in nature
to those on which the method has been trained. In Figure 4, we can indeed see that ManTraNet is
unable to detect most of the tested real cases of forgeries.
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Threshold 0.5 0.6 0.7 0.8 0.9 0.95

64 pixels 100% 100% 99% 98% 91% 74%
128 pixels 100% 99% 97% 91% 78% 58%
256 pixels 97% 93% 89% 82% 59% 40%
512 pixels 90% 85% 78% 60% 42% 26%
1024 pixels 79% 68% 54% 44% 28% 18%
2048 pixels 59% 48% 40% 31% 16% 12%
4096 pixels 45% 35% 28% 20% 12% 8%
8192 pixels 30% 25% 20% 12% 8% 2%
16384 pixels 20% 15% 11% 8% 4% 2%

Table 1: Percentage of pristine images of the Korus dataset for which ManTraNet outputs a confidence over a given threshold
within a connected region over a given size, in pixels. Images are 1920× 1080 of size.

Pristine image ManTraNet output Pristine image ManTraNet output

Figure 2: Example detections of ManTraNet on pristine images from the Korus [21, 22] dataset. Although the noise-like
false positive responses can be rejected by a trained eye, the strongly-confident output on some regions cannot be reliably
distinguished from real detections.

3.3 Interpretability

The Trace [5] database introduces invisible forgery traces in the form of pipeline inconsistencies. Each
raw image is processed with two different camera pipelines, then both obtained images are merged
according to a forgery mask. The content of the image stays unchanged, only the pipeline is altered.
The database is divided into several datasets with the same images and masks but different changes
in the pipeline: the region inside the forgery mask can have a different demosaicing pattern (cfa grid

dataset), a different demosaicing altogether (cfa alg), a different JPEG grid (jpeg grid dataset),
a completely different JPEG compression (jpeg quality), different noise levels on the raw image
(noise) or a combination of those changes (hybrid). The forgery masks are selected randomly from
a semantic segmentation of the image4. Because the only change between the authentic and forged
images is the processing inside a mask, detections cannot be made for purely semantic reasons. The

4The database also exists with exogenous forgery masks taken from other images; both are equivalent for our use
case so we only consider the endogenous masks.
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Forged image ManTraNet response Ground Truth

Figure 3: ManTraNet response to forged images from the Korus Dataset [21, 22]. In many cases, ManTraNet is sensitive
to the forgeries. However, it also responds to other, authentic regions in the image. In the last image, the forgery is an
internal copy-move. Note that ManTraNet also responds to the original (authentic) region, albeit not as strongly. Overall,
even the true positives are difficult to distinguish from false positives from Figure 2.

structure of this database enables us to see whether ManTraNet is sensitive to the different changes
in processing. We report the scores in Table 2. As can be seen, ManTraNet is entirely insensitive to
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Forgery ManTraNet output Forgery ManTraNet output

Figure 4: Response to several real-case forgeries. ManTraNet is able to detect the dog’s added bandana and one of the
@GuillaumeTC images, but is unable to detect the other forgeries, that can differ a lot from forgeries seen in training
environments. See the last section for image credits.

shifts in the traces of the image, such as shifts in the mosaic (CFA Grid) or in the JPEG grid. It is
somehow sensitive to inconsistencies of the noise level, demosaicing algorithm and JPEG compression
quality, but this sensitivity remains low compared to the standard deviation of the scores.

Overall, the grounds for detection by ManTraNet remain obscure, as only a small part of the
reasons can be explained by the analysis with the Trace dataset. We note, though, that this lack of
interpretability is not fatal. Indeed, the first part of the network is trained to identify manipulations
among a large palette of potential changes. The output of the auxiliary network, if it were made
public, might enable a much better interpretability of the results, as it would be possible to know at
least why the network responds positively to some regions.
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Dataset MCC MCC standard deviation

Noise 0.032 0.099
CFA Grid -0.004 0.065
CFA Alg 0.053 0.165

JPEG Grid 0.000 0.043
JPEG Quality 0.086 0.171

Hybrid 0.107 0.176

Table 2: For each dataset of the Trace [5] database, we report the Matthew’s Correlation Coefficient (MCC) of ManTraNet,
taken with the globally-best threshold for each dataset. The MCC takes values between -1 and 1, with 1 representing a
perfect detection, -1 its complementary. As a baseline, a random classifier or input-independent method is expected to
yield a score of 0. The globally-best threshold is selected over each dataset, then the MCC is computed separately for each
image and averaged. We also provide the standard deviation of the score over the dataset. As can be seen, ManTraNet
is entirely insensitive to shifts in the traces of the image, such as shifts in the mosaic (CFA Grid) or in the JPEG grid. It
is somehow sensitive to inconsistencies of the noise level, demosaicing algorithm and JPEG compression quality, but this
sensitivity remains low compared to the standard deviation of the scores.

4 Conclusion

In this work, we briefly described the ManTraNet forgery detection network, and analyzed its results
in different cases. While ManTraNet is able to respond to many forgeries in datasets, it fails to do
so in controlled environments. Furthermore, it is highly sensitive to even pristine regions, and lacks
a method for automatic detection – the network only outputs a confidence heatmap. This creates
difficulties in distinguishing true forgeries from false positives in the output of the method, even to
expert eyes. Finally, the reasons for which a strong response is output by the end-to-end network
remain obscure. Access to the auxiliary network in the middle of the method, used in training
to different kinds of forgeries, could provide insight into the reasons for detection, and ultimately
more interpretability at least to experts. Overall, the lack of interpretability and robustness to false
positive seem to limit the role ManTraNet can play in image forensics. Nevertheless, it remains a
useful tool to help localize or confirm forgeries detected by other means, as well as to hightlight
suspicious regions for analysis by other methods.
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