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Abstract

Domain Generalization alleviates the domain gap between training set and test set, improving
the performance of deep neural networks on out-of-dataset data. This opens the possibility
of deploying models on unlabelled data that were previously pretrained on other datasets. In
this article, we study the ideas and performance of RobustNet [Choi et al. CVPR 2021], a
recent method for Domain Generalization in Urban-Scene Semantic Segmentation. Instead of
exposing the network to a wide range of domains, RobustNet tries to separate domain-variant
from domain-invariant features via a whitening transformation. Then, only the domain invariant
features are used for training, which allows to reduce training time since no combination of
datasets is needed to achieve domain invariance. In addition, we provide an easy-to-use demo
where users can quickly test their own data and compare the results of RobustNet against the
state of the art for semantic segmentation.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.md file of the archive. The original
implementation of the method is available here2.

This is an MLBriefs article, the source code has not been reviewed!
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1 Introduction

The cost and effort associated with building a large annotated dataset makes developers and or-
ganizations commonly deploy Deep Neural Networks (DNN) in real data, while training them on
a specific dataset. Nevertheless, datasets will have a set of embedded characteristics given by the
particularities of the acquisition process, such as the location where samples were taken, the weather
conditions, the season of the year, etc. Additionally, the real-world test data can present domain-
specific differences that might not be well represented in the dataset, such as illumination changes.
This challenge, known as the domain shift problem, causes DNNs to decrease their performance
when tested in out-of-dataset data, since the network will learn the domain particularities from the
training dataset that will not apply in real-world data.

In the context of safety-critical applications, such as autonomous driving, solving the domain
shift problem is vital. A common approach to overcome the domain gap between training data and
real-world data is Domain Adaptation (DA). Given a source domain and a target domain, DA focuses
on mapping the source distribution into the target distribution so that the same model trained on
the source domain can be used on the target domain [5]. While multiple DA approaches have been
proposed to decrease the impact of the domain shift problem [20, 5, 14, 16, 12], samples from the
target domain are typically needed. This enforces the requirement of knowing in which domain will
the network be deployed, something unpredictable in fields like autonomous driving. In cases where
the target domain is the entire world, fully covering the target domain span with limited data is
practically impossible.

Domain Generalization (DG) attempts to solve this without the DA limitations by improving the
capability of neural networks to perform well in domains that have never been seen during training.
The most common approach in DG is to leverage multiple source domains and learn from the features
that are consistent across them. Li et al. [10] proposes a learning to learn approach for heterogeneous
DG where an auxiliary loss term used for generalization is itself learned. Li et al. [7] designed an
episodic training strategy for DG, where a DNN is decomposed into two partner components: feature
extractor and classifier. Then, the components are paired with a domain-specific partner that is
mismatched with the current data being input, leading to a domain-agnostic model. MMD-AAE [8],
proposed by Haoliang et al, is an adversarial autoencoder-based method that aligns distributions
from different domains using the Maximum Mean Discrepancy (MMD) measure, and then matches
them to prior distributions via adversarial feature learning. A domain randomization strategy is used
in [18], where, for every input, a number of domain shifts are simulated using CycleGAN [19] and a
randomly selected reference image. Then, a pyramid consistency loss term is used to enforce these
images with the same content but different domain to have similar representations at several layers
of the network. While learning by exposing the network to a number of domains has proven to be
effective and improving state-of-the art DG capabilities, these approaches require a large number of
different, realistic domains. In addition, the performance depends on the amount of domains used
at training.

This article reviews a recent DG method for semantic segmentation known as RobustNet [3],
which proposes a different approach from the ones mentioned earlier. Instead of achieving domain-
invariance by exposing the model to numerous domains, RobustNet tries to suppress the features that
encode style information so that only content information is used for learning. Specifically, a training
strategy with an instance selective whitening loss is proposed to discriminate domain-specific from
domain-invariant properties of the feature representations, thus suppressing the domain-specific ones.
The following sections discuss the method in detail, present some results and cover its limitations,
and explain how to use our demo to test custom data and compare it to the baseline model for
semantic segmentation.
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2 Method

RobustNet separates the style information from the content information using an Instance Whitening
Loss (IWL), and then suppresses the domain-variant terms so that only domain-invariant features
are used for learning. Finally, this approach is embedded into a DNN architecture for semantic
segmentation. Technical details of these three steps are covered in the following subsections.

2.1 Whitening Transformation and Standardized Covariance Matrix

The Whitening Transformation (WT) is a linear transformation that, given the covariance matrix of
a feature map, makes the diagonal terms (variance term of each feature) equal to one and the off-
diagonal terms (covariance between pairs of features) equal to zero [3]. The WT has been associated
with the capability to remove style information from images in style transfer [9]. However, the WT
is typically computed via eigenvalue decomposition, which is computationally expensive. For this
reason, RobustNet proposes an Instance Whitening Loss inspired in GDWCT [2], which approximates
the covariance matrix to the identity matrix. To do so, we need to minimize the off-diagonal elements
of the covariance matrix of an input feature space, while making the diagonal terms equal to one.
Let xi ∈ IRHW be the ith channel of the intermediate feature map X ∈ IRC×HW , where C, H and W
are the number of channels, height and width, respectively. An instance normalization layer is first
applied to standardize the intermediate feature map into Xs

Xs = diag(Σµ))−0.5 � (X − µ · 1T ), (1)

where � is the element-wise multiplication, µ is the mean vector and diag(Σµ) ∈ IRC×1 corresponds
to the diagonal elements of the covariance matrix. Then, the covariance matrix is computed as
follows

Σs =
1

HW
(Xs)(Xs)

T ∈ IRC×C . (2)

Due to the standardization step, the resulting covariance matrix Σs will have ones across its diagonal.
During the first n epochs, no additional loss term is applied and this covariance matrix is used to
capture the statistics of the variance of Σs. After n, which is a parameter set to 5, the following
epochs add an Instance Selective Whitening (ISW) Loss, explained in more detail in the following
section.

2.2 Instance Selective Whitening Loss

As mentioned earlier, RobustNet’s goal is to separate the covariance matrix terms that encode domain
information from the ones that encode content information, and suppress the first ones from the
learning process. The approach proposed for this is to simulate an image domain shift by applying
a photometric transformation, which consists in color jittering and Gaussian blurring. Then, the
covariance matrix Σs of each of the two images is computed according to Equation (2). After that,
the variance between the covariance matrices V for all image samples is computed as

V =
1

N

N∑
i=1

σ2
i , (3)

from mean µΣi
and variance σ2

i , for each element from two different covariance matrices of the ith

image, i.e.

µΣi
=

1

2

(
Σs(xi) + Σs(τ(xi))

)
, (4)
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Figure 1: Image extracted from the original paper [3], which illustrates the computation of the ISW loss. (a) shows how
the variance of the covariances matrix V is computed. (b) Shows how the covariance matrix σ2

i is masked to only suppress
the domain-variant terms.

σ2
i =

1

2

(
(Σs(xi)− µΣi

)2 + (Σs(τ(xi))− µΣi
)2
)
, (5)

where N is the number of image samples, xi is the ith image sample, τ is a photometric transformation,
and Σs(·) extracts the covariance matrix from an input image. The obtained V will therefore consist
of elements of the variance of each covariance element with multiple photometric transformations.

We can consider V to express the sensitivity of the covariance to the photometric transformation.
Thus, the covariance terms with high variance will encode domain-variant information, such as color
or blurriness, while the ones with low variance will be attributed to domain-invariant information.
To separate these terms, a k-means algorithm is applied to the strict upper triangular elements of Vi,j
(i < j) to cluster the terms into k clusters C = {c1, c2, . . . , ck}. Then, these clusters will be divided
into two groups, Glow = {c1, . . . , cm}, containing the low variance terms, and Ghigh = {cm+1, . . . , ck},
which will include the high variance terms. The hyper-parameters k and m are empirically set to
3 and 1 in the original paper, respectively. Finally, an Instance Selective Whitening (ISW) loss is
introduced to suppress only the style-dependent covariance terms. Given a mask M̂ that keeps only
the strict upper triangular terms that are classified within Ghigh, i.e.

M̂i,j =

{
1 if Vi,j ∈ Ghigh and i < j,

0 otherwise,
(6)

the ISW loss is defined as
LISW = IE[‖Σs � M̂‖1]. (7)

This loss is added to the regular segmentation loss after the initial n epochs. Figure 1 illustrates all
the steps to compute the ISW loss.

2.3 Network Architecture with ISW

The official implementation of RobustNet is based on IBN-b, which adds an instance normalization
layer after the addition operation of a ResNet residual block [13]. After all, three instance normal-
ization layers are added after the first three convolution groups (i.e., conv1, conv2 x, and conv3 x).
Then, the ISW loss is added to the regular task loss as

Ltotal = Ltask + λ(
1

L

L∑
i=1

LiISW ), (8)

where λ is the weight for the ISW loss, which is set to 0.6, L is the number of layers to which the
ISW loss is applied, i indicates the ith layer, and Ltask is the task loss (e.g. cross-entropy loss for
semantic segmentation).
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3 Experiments

RobustNet is implemented in the official source code for semantic segmentation with DeepLabV3+
architecture using the SGD optimizer. The initial learning rate is set to 10−2 with a momentum
of 0.9 and a polynomial learning rate scheduling with the power of 0.9. Models are trained for 40k
iterations and the multi-source models are trained for 110k iterations. As mentioned earlier, the first
n iterations are used to gather statistics of the variance of covariances without using the ISW loss,
where n is set to 5. After that, the ISW loss is introduced with the parameters k and m set to 3 and
1, respectively. The photometric transformation to simulate the domain shift is applied using color
jitter and Gaussian blur. In addition, data augmentation to the input images is performed with color
jitter, Gaussian blur, random crops, random horizontal flipping and random scaling in the range of
[0.5, 2.0].

In the original article RobustNet shows considerable quantitative improvements in several datasets.
Nonetheless, qualitative results in uncommon events should be further analyzed to better compre-
hend the domain generalization capabilities of the method. Thus, a collection of out-of-dataset
images were handpicked to test the performance of RobustNet in complex scenarios, which can be
categorized as night, rain, snow, sun reflection, and a combination of two or more of them.

3.1 Adverse Weather Conditions

We evaluate the results of the method for adverse weather conditions, which include the rain and
snow categories. Overall, RobusNet shows an improvement in the details of some challenging classes
with respect to the baseline model, such as terrain, sidewalk or vegetation. Nevertheless, some
confusing labelling can be produced by the model. Figure 2 displays results for some adverse weather
examples. On the one in the second row, RobustNet improves the baseline output for the left side of
the road, but the detection of the car on the right is confusingly mixed with road and sidewalk labels.
Furthermore, we can observe on the third row how RobustNet produces some ghost detections of the
car label as well.

3.2 Adverse Lightning Conditions

We additionally examine the performance of RobustNet for adverse lighting conditions, including
night and sun reflection. As it can be observed in Figure 3, scenes at night are generally more
challenging than sun reflection scenes. While the baseline model does not deal effectively with night
scenes, RobustNet slightly improves the results. Despite this, we can observe how the model tends to
label the sky as buildings, or how the shape of the cars is not consistent with human reasoning (the
first row of Figure 3 shows how the method assigns strange parts of the road to cars). Reflections
from the sun can affect differently to the model. In the third example, the sun does not impact
much the baseline model nor RobustNet. On the fourth one, the scene is very challenging for both.
RobustNet labels some buildings as vegetation, while the sky still is labelled as building.

3.3 Impact of Training Data

Change of location does not seem to affect the performance of RobustNet. However, the training
dataset plays an important role. While RobustNet reduces the domain gap between train and test
data, the larger the gap the more challenging is for the model to perform well. This can be observed
in Figure 4, which shows the results of RobustNet when trained on real data (Cityscapes dataset [4])
and on synthetic data (GTAV dataset [15]). The domain gap between the training synthetic data
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Figure 2: Adverse weather conditions results for RobustNet. The two upper rows correspond to rain, while the two on the
bottom correspond to snow. Input images are shown in the left column. In the middle, baseline model outputs are displayed,
while RobustNet outputs are shown on the right column. All images were produced with a DeepLabV3+ architecture with
ResNet-50 encoder, trained on the Cityscapes dataset [4].

and the real testing data is greater than when both sets consist of real data. In consequence, the
results for RobustNet trained on GTAV show many more inconsistencies.

4 Demo

This article includes an online demo which allows to quickly test custom data on the RobustNet
algorithm, and to compare it to the state of the art for semantic segmentation. The demo refers to
the official source code from the original paper [3] and uses the provided pretrained network weights.
The following subsections discuss how to use the demo and explain how to test the users’ own data.

4.1 Input

The demo only requires one input image to be provided. While uploading custom data for particular
use cases is encouraged, six scenes are provided to quickly visualize the domain generalization capa-
bilities of RobustNet. The provided data consist of three images that present challenging weather and
environment conditions, extracted from the BDD100K dataset [17], and three images from different
locations around the world, extracted from the Mapillary Vistas dataset [11]. These are shown in
Figure 5.
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Figure 3: Adverse lightning conditions results for RobustNet. The two upper rows correspond to night, while the two on
the bottom correspond to sun reflection. Input images are shown in the left column. In the middle, baseline model outputs
are displayed, while RobustNet outputs are shown on the right column. All images were produced with a DeepLabV3+
architecture with ResNet-50 encoder, trained on Cityscapes dataset [4].

4.2 Parameters

The demo loads the pretrained weights of the baseline and the RobustNet models to produce the
results. It includes only one parameter that specifies the network architecture and the training
dataset. There are three possible options:

• DeepLabV3+ [1] with a ResNet-50 [6] encoder, trained on the Cityscapes [4] dataset.

• DeepLabV3+ with a ResNet-101 [6] encoder, trained on the Cityscapes [4] dataset.

• DeepLabV3+ with a ResNet-50 encoder, trained on the GTAV [15] dataset.

4.3 Output

When one of the options and an input image have been selected, the user can click on the button
Run to execute the demo. Execution time of the pre-selected images ranges from 20 to 30 seconds.
Note that if the input images are considerably larger, execution time can increase. The output of
the demo will show the input image, followed by the segmentation output maps from the baseline
model and RobustNet. To clarify, if the architecture chosen is DeepLabV3+ with ResNet-50, the
baseline output will show the predictions of this architecture trained on the selected dataset, while
the RobustNet prediction will show the same architecture with the Instance Whitening Loss approach
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Figure 4: Evaluation of performance of RobustNet for different training datasets. Input images are shown in the left column.
In the middle, the results for RobustNet trained on the Cityscapes dataset are displayed, while on the right column the
results for RobustNet trained on the GTAV dataset are shown. All images were produced with a DeepLabV3+ architecture
with ResNet-50 encoder.

for Domain Generalization. Figure 6 shows an output example for the input image Rain, one of the
suggested input images.

476



A Study of RobustNet, a Domain Generalization Method for Semantic Segmentation

Figure 5: Sample images suggested in the demo. The images on the top row were extracted from the BDD100K dataset [17]
and include challenging weather and environment conditions (from left to right: snow, rain and night). The images on the
bottom were extracted from the Mapillary Vistas dataset [11], and correspond to a set of diverse locations (from left to
right: Africa, South America and Asia).

Figure 6: Example of the output of the demo for one of the suggested input images (Rain).
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Image Credits

from the RobustNet original article [3].

from the BDD100K dataset [17].

from the Mapillary Vistas dataset [11].
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