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Abstract

Access to high quality datasets is an essential condition for data-driven methods as it is known
that mismatches between the distributions of training and test data may cause learning-based
methods to fail. This issue has led to one of the most active research subjects in learning-based
image restoration. For instance neural networks trained on unrealistic synthetic data may
not generalize to real data even if they perform well on those synthetic data. This is specially
problematic for image and video processing tasks, such as denoising, which are performed on raw
data, since acquiring real raw datasets is not straightforward and is even impossible in some cases
(acquiring a video dataset of real noise with clean ground-truth, for instance). Consequently,
CNNs are often trained on synthetic data. Synthesizing realistic raw data is a difficult task and
requires to invert properly the image processing pipeline. This paper focuses on the backward
pipeline proposed by Brooks et al. [Unprocessing images for learned raw denoising, CVPR 2019]
which aims at producing raw data from sRGB images.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.txt file of the archive. The original
implementation of the method is available here2.

This is an MLBriefs article, the source code has not been reviewed!

Keywords: unprocessing; raw; pipeline

1https://doi.org/10.5201/ipol.2022.438
2https://github.com/timothybrooks/unprocessing
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1 Introduction

After acquisition, raw images (or videos) are processed by a pipeline which aims to render the
final sRGB output. The pipeline stages, as well as the order, differ between camera-makers or
softwares, but all of them share the same main essential elements such as demosaicking, denoising,
color correction, tone-mapping, etc.

However in image or video processing, many tasks are performed in the raw domain (demosaicking
or denoising tasks, for example).

In recent years, data-driven methods have proved very efficient in many image processing tasks
for which they set the current state of the art. In these methods, neural network (NNs) are trained
with supervision on large datasets consisting of clean-noisy pairs. Although a very large amount of
sRGB images and videos can be found easily on the internet, there are unfortunately not so many
datasets for raw data. Consequently, most data-driven methods are trained on synthetic data. Of
course, the performance of the NNs at test time highly depends on the data used for training. The
distribution of the training and test (on which the evaluation is done) data should be as close as
possible.

Generating realistic raw data from sRGB images requires to invert properly the processing
pipeline. In 2018, Brooks et al. [2] trained a denoising CNN (convolutional neural network) for
the task of raw denoising with real noise. They proposed a reverse pipeline for generating realistic
raw images by “unprocessing” sRGB ones. In this paper, we describe the unprocessing method intro-
duced in [2] and show some results obtained with it. The next section is dedicated to the methodology
and the technical details for the inversion of the pipeline. In Section 3, we give the pseudo-code of
the method as it is used in the demo. Results of the method are presented in Section 4. Finally in
Section 5, we present the demo itself and we show how to use it. This includes a brief discussion
about the parameters of the demo.

2 Method

The unprocessing pipeline proposed by Brooks et al. consists of a few main steps. In Figure 1, we
summarize them in the order they appear in the procedure. For each step, we provide an example
image of the output.

sRGB invert  
tone-mapping

invert  
gamma compression

invert  
camera color matrix 

invert  
white-balance and gain remosaicked

Figure 1: Overall unprocessing pipeline: visualization of the typical output of each unprocessing step. Each step takes as
input the output of the previous stage.

Basically, the pipeline consists of:

1. Inverting the tone-mapping curves.

2. Inverting the gamma compression.

3. Inverting the color matrix multiplication (from RGB to the camera color-space).

4. Inverting white-balance and brightening.
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5. Mosaicking the 3 channels image.

Starting with a clean sRGB image, this pipeline produces a realistic clean raw image. In the
demo, we also include the possibility to add synthetic but realistic real noise. The next paragraphs
detail the pipeline steps in more depth: we start by explaining how each step is operated in the
forward processing pipeline and then how it can be inverted in the unprocessing pipeline.

Tone-mapping. In an image processing pipeline (from raw to sRGB), the final output is rendered
with a contrast enhancement curve. Although some local enhancements can be done, we consider
in this step a global tone-mapping. Basically, the purpose of the global tone-mapping is to stretch
the dynamics by pushing up the high values while darkening the dark areas further. This curve
(sometimes denoted as “S-curve”) can be approximated by a cubic polynomial. For images between
0 and 1, an approximation can be x 7→ −2x3 + 3x2 [2], which has the reciprocal function

x 7→ 1

2
− sin

(

asin(1− 2x)

3

)

.

Therefore, this reciprocal function can be directly used for the unprocessing pipeline. In Figure 2,
we show the stretching effect (or crushing effect for the inverse) of the global tone-mapping.

Figure 2: Illustration of how the global tone-mapping (respectively its inverse) stretches (respectively crashes) the dynamic
range.

Gamma compression. Human perception of brightness is not a linear function of the luminosity
level. It has a higher sensitivity to small changes of brightness in the dark areas than in the lightest
ones. Furthermore, two times more light is only perceived as slightly brighter. On the other hand,
cameras have a linear perception since in this case, the signal output by the camera is simply doubled
when two time more photons hit the sensor. In order to compensate that difference of behavior, a
gamma correction (also called gamma compression or sometimes gamma encoding) is performed:
basically, it ensures that the images taken by the camera appear as they do to the human eye.
Another advantage is that, when images are stored with quantization (finite number of levels), it
optimizes the brightness encoding by using more levels to encode the low intensity range of the
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dynamics (for which the human eye is more sensitive to changes), leading then to more details in the
dark areas.

The gamma corrected image is simply obtained from the linear one by applying a power function

v = u
1
γ where v is the gamma corrected image and u is the linear one. In the unprocessing pipeline,

the goal of this step is to go back to the linear space and the inversion is straightforward: u = vγ. In
practice, a standard value of γ = 2.2 is usually used [2, 8] and data are clipped to 0 to avoid negative
values.

Figure 3 shows the stretching of the dynamic range for an image u ∈ [0.255], and one example of
a linear and a gamma corrected gradient of luminosity.
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Figure 3: Left, illustration of the gamma stretching of the dynamics. Top right, the linear dynamics [0, 255]. Bottom right,
the same dynamic range stretched with γ = 2.2.

Camera Color Matrix. Usually, the final rendered color space after the processing pipeline is
different from the camera color space. The latter is camera dependent. For converting from the
internal camera color space to the sRGB one, camera-makers have tuned a 3 × 3 invertible matrix,
called the “Camera Color Matrix” (CCM). This matrix depends on the camera. The Darmstadt Noise
Dataset [8] is a dataset of real raw images taken with four different consumer cameras for which the
CCM matrix is available. In [2], the authors trained a denoising network which was afterwards
evaluated on this dataset. In order to yield a good generalization, they synthesized realistic raw data
by simulating a camera which has a CCM as a random convex combination of these four CCMs. In
the demo, we propose either to apply this randomly synthesized CCM or any of these four consumer
cameras. For inverting the color space change, once the CCM has been sampled (either randomly
computed or as a fixed and pre-selected one), the CCM is inverted and applied to the intermediate
image in the unprocessing pipeline.

White-balance and digital gain. In the processing pipeline, the image exposure is corrected
using a global digital gain (which is applied to all the channels). Unfortunately, the value of this
gain is image-dependent. In [2], the authors estimated an average value by looking at the digital
gain on the Darmstadt Noise Dataset and found the value 0.8. When they trained their denoising
network, they sampled a gain from a normal distribution centered on this value with a small standard
deviation of 0.1, leading to roughly spanning the interval 0.8± 3× 0.1 = [0.5, 1.1]. In the demo, we
propose to select the global gain (called grgb) in this range.

Channel-wise gains are also applied in the processing pipeline for balancing color channels to-
gether. Basically, the goal of a white balance is to display areas that look white when seen by
humans in the scene as white in the screen thus balancing any color cast due to the illumination
source light. Furthermore, the white balance compensation not only depends on the scene (the real
colors in the scene) but also on the light condition, thus it has to be set individually for each image.
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Figure 4: Graph of the function fgc (x, g). This function is applied channel-wise. It allows to create saturation even when
the inverse gain of a given channel c is smaller than 1, by pushing up the values toward saturation (for intensities i ≥ 0.9).

Since a global gain (applied to all the channels) is used, instead of having three channel-wise gains
(for the red, green and blue channels), we can formulate the color balancing for only two channels
as a ratio with respect to the third channel (set as a reference channel). The green channel has
often higher intensities than the others (it is in the green wavelengths that the sun emits most of
its radiation, and nature reflects a rather green hue). Therefore the green channel is set as reference
and a white-balance algorithm estimates the gains which need to be applied to the red and blue
channels (equivalent to fix the green gain to 1). When the gains used are unknown, inverting this is
a very difficult task. Instead, Brooks et al. proposed to estimate an average red and blue gain on the
Darmstadt Noise Dataset for which the gains have been saved in the metadata. They determined
that the red gain gred spans the range [1.9, 2.4] and the blue gain gblue spans [1.5, 1.9]. They sampled
white-balance gains uniformly in their respective interval for synthesizing their training data. In the
demo, the user can specify the value of these gains in the corresponding range.

Finally, for inverting the color balance in the unprocessing pipeline, we divide instead of multi-
plying by the color balance coefficients of each channel: [ 1

gredgrgb
, 1

grgb
, 1

gbluegrgb
]. However, given the

range values of grgb, gred and gblue, the per-channel inverse gain (of the form 1/g) is sometimes smaller
than one, and consequently the intensity in channel c is likely to be decreased after the inverse gain
1/gc. As a result, the synthesized raw image is unlikely to contain any highlights or saturated areas
and may be therefore in some ways unrealistic. In [2], the authors used the inverse gain 1/gc if it is
greater than one and then does not prevent the creation of saturated areas. Otherwise, they applied
it only if the intensity i was smaller than 0.9 (for images in the range [0, 1]), and if not (then close to
saturation) they used a cubic polynomial function which is 1 for intensity 1 and is 0.9/gc for intensity
0.9 to ensure continuity. Each intensity i of channel c with inverse gain 1/gc is then transformed
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with the continuous function

fgc : i 7→











i
gc

if inverse gain 1

gc
≥ 1

i
gc

if inverse gain 1

gc
< 1 and intensity i ≤ 0.9

i
gc

+ 100i(i− 0.9)2
(

1− 1

gc

)

if inverse gain 1

gc
< 1 and intensity i ≥ 0.9.

Note that in [2], the value of 0.9 is a threshold value that the authors determined to add enough
highlights. Figure 4 shows a plot of this function for the intensities in the range [0, 1].

Remosaicking. In a camera sensor, each pixel is like a single intensity sensor which counts the
number of photons (the light intensity) that hit it during the exposure. The count is independent of
the color and there is only a single counting per pixel: a color filter array (CFA) is placed in front
of the sensor, determining the intensity of the light for one given color per pixel. The CFA consists
in a mosaic of color filters (either red, green or blue), arranged in a Bayer pattern such as RGGB,
for instance. This results in a single channel output with sparse color samples. In the processing
pipeline, the 3 channels (RGB) image is computed by interpolating the missing color channel [5].
Consequently, in the unprocessing pipeline, we need to remosaick the RGB image, that is, undo
this interpolation. This can be done straightforwardly by omitting two thirds of the color values
according to the Bayer pattern.

Simulating realistic noise. Real noise has very complex characteristics. Although modeling the
distribution of real noise is still a research subject, the sources of noise are well known. Basically, there
are two mains sources: the shot noise (the photons hitting the sensor) and read (or readout) noise
(sensor-based sources of noise). There are other sources of noise like row noise (banding pattern),
dark-current noise, thermal noise, quantization noise, dead pixels, non-linear behavior of the sensor
(e.g. clipping), etc.

Shot noise is signal-dependent and follows a Poisson distribution [6]. Read noise can be approxi-
mated with a Gaussian distribution [4]. A simplifying assumption (which holds especially true in the
case of non extreme low-light conditions [9]) consists in modeling both shot noise and read noise with
a single heteroscedastic Gaussian noise [7]. Although simplistic, a recent work [3] showed that for
normal illumination conditions, a network trained directly on real data or on synthetic data degraded
using this noise model has a similar performance.

In the demo, we propose to add heteroscedastic Gaussian noise with variance σ2 = a ·u+b, where
u is the clean image and a, b are two noise parameters pre-selected by the user.

3 Algorithm

The Python code is split in two main functions: unprocessing of noise-free data and adding a realistic
noise (optional). Both functions are written in pseudo-code in Algorithm 1. Starting from the RGB
image, the noise-free raw output is computed with the function unprocessing. If the user wants to
add noise, this output is fed to the function add noise to get the noisy raw output.

4 Experiments

In Figure 5, we display an example of the results obtained using the default parameters and to which
we add noise. The default parameters are set to produce a realistic result. For some applications,
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Algorithm 1: Image unprocessing

1 function unprocessing(rgb)
Input rgb: a png 8-bits RGB image
Param bl: black-level of the raw output image
Param wl: white-level of the raw output image
Param γ: γ value used in the gamma-decompression
Param camera: camera model used for the CCM coefficients. A convex combination of

several cameras can be simulated
Param gred: digital gain for the red channel used in the white-balance inversion
Param gblue: digital gain for the blue channel used in the white-balance inversion
Param grgb: global gain used for brightening inversion
Output raw: the clean raw unprocessed output

2 rgb← rgb/255 # put the data in [0, 1]
3 smooth← 0.5− sin (arcsin (1− 2× rgb) /3) # invert the tone-mapping

4 linear ← smoothγ # invert the gamma compression

5 CCM ← find CCM(camera) # load the pre-recorded CCM of the selected camera

6 linear ← apply ccm(linear, CCM) # apply the CCM matrix to each RGB triplet

7 color balanced← invert gain(linear) # invert the gains as shown in Section 2

8 color balanced← min (max (color balanced, 0) , 1) # clip data to [0, 1]
9 Bayer CFA← mosaick(color balanced) # remosaick the 3 channels image

10 raw ← Bayer CFA× (wl − bl) + bl # switch to the range [bl, wl]
11 return raw

12 function add noise(raw)
Input raw: the clean raw unprocessed image.
Param a: signal-dependent parameter of the heteroscedastic Gaussian noise variance.
Param b: constant parameter of the heteroscedastic Gaussian noise variance.
Output ˜raw: the noisy raw unprocessed image.

13 n ∼ N (0, 1) # sample a normal Gaussian distribution

14 ˜raw = raw +
√
a · raw + b× n # add heteroscedatic Gaussian noise

15 return ˜raw

it is interesting to tune the white-balance gain parameters, for instance when the user wants to
simulate a specific lighting condition (or knows the color cast of the illumination which produces
the sRGB image). However, modifying those gains is a tricky task. As explained in Section 2,
applying the inverse gain is not a trivial multiplication, but a function which aims at producing
highlights. In Figure 6, we show an example for which the choice of white-balance gains can create
many saturations. To produce this example, we set the white-balance gains to the extreme cases
with the minimum values (gred = 1.9, gblue = 1.5, grgb = 0.85) (top of the figure) and the maximum
values (gred = 2.4, gblue = 1.9, grgb = 2.05) (bottom of the figure).

In Figure 7, we show another example with the clean RGB image and the results of the clean
unprocessed images with small and large inverse gains. Again, we used the extreme values. In the
sRGB image, the alley on the right and the house on the top left are saturated; the house in the
background is close to saturation. After unprocessing, the house on the top left is still uniformly
saturated, but the alley contains some discontinuities, due to the highlight-preserving function used
to invert the gains. With small inverse gains (inverse gain 1/g < 1), this function creates a jump
toward saturation (on high values of intensity). This means that a small variation of intensity is
highly amplified. In this latest case (Figure 7c) the alley contains much more highlights and the
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(a) sRGB input (b) clean raw output (c) noisy raw output (d) crops

Figure 5: Unprocessing of a sRGB image with the default parameters of the demo. In (d), we show crops of the clean raw
(top) and the corresponding noisy (bottom)

(a) sRGB input (b) clean raw output (c) noisy raw output

(a) sRGB input (b) clean raw output (c) noisy raw output

Figure 6: Top, the set of gains used does not create more saturation. Bottom, with a different set of gains, more saturation
is created.

house in the background has also some highlights. This is wanted by the authors of [2], who designed
a function for inverting gain which is likely to produce highlights with small inverse gains. The
demo allows to produce this type of results by tuning the gain values. For example, if one wants to
evaluate a CNNs on (real) data with highlights, it is possible to create datasets with many highlights.
Alternatively, one can generate datasets with few, or even no highlights.

(a) sRGB input (b) clean raw output (large inverse gains) (c) clean raw output (small inverse gains)

Figure 7: Highlights created by the highlight-preserving gain function.
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5 Demo

Taking as input a sRGB image saved in 8-bits format, the demo aims to produce a noise-free raw
image. Additionally, the user can also choose to add noise using the heteroscedastic Gaussian noise
model described in Section 2. For that, the parameters a and b of the variance should be specified.
For the default values, we estimated the heteroscedastic Gaussian noise of the sensor IMX385 at ISO
level 3200 from the Captured Raw Video Dataset (CRVD) [10], which consists of natural and outdoor
videos (in particular with real noise). The user is free to change the noise parameters.

The demo displays the input as well as the clean (and noisy) generated raw output. For displaying
purposes a contrast stretching is applied to the output, mapping the minimum-maximum interval
to the full range. The raw image with Bayer pattern RGGB without contrast stretching can be
downloaded in .dng format using 16-bits integers [1]. The final range (black-level and white-level)
are specified by the user. The downloaded raw images contain metadata such as width, height,
color-matrix, Bayer pattern, black-level, white-level and white-balance coefficients.

The demo allows the user to select camera-based parameters, which are optional. By default, they
correspond to the average values determined by Brooks et al. in [2]. Among them are the gamma
value in the gamma compression inversion (set to γ = 2.2), color-balance gains (gred and gblue) and
the global gain grgb (see Section 2). The parameter named “camera” selects a specific camera model
from those used in the Darmstadt Noise Dataset. The four camera sensors used in this dataset are
the Sony A7R, Olympus OMD E-M10, Sony RX100 and Nexus 6PF. The Python code will load a
specific and pre-recorded CCM. In [2], the authors sample a new CCM as a convex combination
of those four. We keep this possibility and use it as the default behavior of the demo (parameter
camera = ‘convex’ ).

6 Conclusion

In this work, we provide an implementation of the unprocessing pipeline introduced in [2]. While
there are very little to even no datasets of real raw data in certain specific conditions (videos denoising
with clean-noisy pairs for instance), there are billions of images available, for example, on the web.
This method allows to create datasets easily. It can be used for image or even video processing. The
pipeline is decomposed in many steps which we detailed in this paper, and we give the possibility
of tuning those steps independently in the demo. First, for common users, the parameters set by
default are those estimated on a real image dataset and thus lead to realistic raw data without tuning
them. Second, the demo offers more flexibility and freedom than the initial implementation of [2]
for the users who need to tune the parameters for very specific cases. In particular, a given camera
model among several can be fixed, which helps reproducibility; but also the user can change the color
parameters or control the range of the output data. This is particularly useful to create datasets
for data-driven based methods (CNNs), since we can therefore tailor them so that they match real
data on which the CNNs are evaluated afterwards. For the purpose of denoising, we also add the
possibility of degrading the data with a realistic noise. The level of noise is adjusted by the user.

Image credits

All images are from the denoising template on IPOL3, Miguel Colom, CC-BY.

3http://mcolom.perso.math.cnrs.fr/pages/no_noise_images/
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