
Published in Image Processing On Line on 2023–01–17.
Submitted on 2022–04–25, accepted on 2022–12–21.
ISSN 2105–1232 c© 2023 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2023.401

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Binary Shape Vectorization by Affine Scale-space

Yuchen He1, Sung Ha Kang2, Jean-Michel Morel3

1Institute of Natural Sciences, Shanghai Jiao Tong University, China
2School of Mathematics, Georgia Institute of Technology, US

3Centre Borelli, École Normale Supérieure Paris-Saclay, France
(yuchenroy@sjtu.edu.cn, kang@math.gatech.edu, moreljeanmichel@gmail.com)

Communicated by Pascal Monasse Demo edited by Pascal Monasse

Abstract

Binary shapes, or silhouettes, are building elements of logos, graphic symbols and fonts which
require various forms of geometric editing without compromising the resolution. In this paper,
we present an effective silhouette vectorization algorithm that extracts the outline of a 2D
shape from a raster binary image and converts it to a combination of cubic Bézier polygons
and perfect circles. Compared to state-of-the-art image vectorization software, this algorithm
has demonstrated a superior reduction in the number of control points while maintaining high
accuracy.

Source Code

The reviewed source code and documentation for this algorithm are available at the web page
of this article1. See README.txt for usage instructions in the archive.

Keywords: silhouette vectorization; affine scale-space; curvature extrema

1 Introduction

A silhouette is a subset of the plane traditionally obtained by copying on paper the shadow projected
on a wall by a person placed in front of a point light source2. In modern computer graphics,
a silhouette’s boundary is described as a union of primitive components, such as line segments,
circular arcs, and Bézier curves for their real-time rendering [18]. The boundaries of these shapes
are encoded in the Scalable Vector Graphics (SVG) format3 where each involved primitive element
is specified by a small number of 2D vectors, called control points, and the encoded shape can be
scaled independently from the resolution. Very often the silhouette is first given as a grayscale
image. Thresholding this image yields a binary image, but this representation as a union of black

1https://doi.org/10.5201/ipol.2023.401
2https://en.wikipedia.org/wiki/Silhouette
3https://en.wikipedia.org/wiki/SVG

Yuchen He, Sung Ha Kang, Jean-Michel Morel, Binary Shape Vectorization by Affine Scale-space, Image Processing On Line, 13 (2023),
pp. 22–37. https://doi.org/10.5201/ipol.2023.401

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2023.401
https://doi.org/10.5201/ipol.2023.401
https://doi.org/10.5201/ipol.2023.401
https://doi.org/10.5201/ipol.2023.401
https://en.wikipedia.org/wiki/Silhouette
https://en.wikipedia.org/wiki/SVG

Binary Shape Vectorization by Affine Scale-space

and white pixels, is not scalable and can show traces of the pixel grid. It must be converted to an
SVG format, which becomes scale independent, and can be zoomed in or deformed without creating
blur or aliasing. The conversion from a pixel image to the SVG format is called vectorization. The
geometric features captured by vectorization are also important in feature identification [19], remote
sensing [12], and other applications [29, 28, 30].

Common silhouette vectorization methods [5, 24, 7, 16, 20, 29, 21, 27] consist of two steps:
identification of control points on the shape’s boundary and approximation of the boundary curves
connecting these control points. Ramer [24] proposed an iterative splitting scheme for identifying a

set of control points on a polygonal line C such that the Bézier polygon Ĉ defined by these vertices
approximates C in L∞ norm. The Hausdorff distance between Ĉ and C is constrained to stay below
a predefined threshold, and the number of control points is suboptimal. More recently, Sarfraz [27]
proposed an outline vectorization algorithm that splits the outline at corners which are identified
without computing curvatures [6], then new control points are introduced to improve curve fitting.

We present here a detailed implementation of a novel vectorization approach fundamentally based
on mathematical advances for their stability and sub-pixel accuracy. The method’s theory was
published in [11]. It has three main steps that work together to find geometrically meaningful
control points: it first identifies (i) curvature extrema of the outline computed at the sub-pixel level,
by (ii) backpropagating control points detected as curvature extrema at coarser scale in the affine
scale-space, then (iii) computing piecewise least-square cubic Bézier polygons joining these control
points while fitting the smoothed outline with a predefined accuracy.

We organize the paper as follows. Section 2 presents the proposed algorithm, which consists
of three steps. We explain the first step in Subsection 2.1, the level line extraction and sub-pixel
curvature computation. In Subsection 2.2, the second step, the affine scale-space induced by the
smooth bilinear outline and define the candidate control points. In Subsection 2.3, we describe the
final step of an adaptive piecewise least-square Bézier polygon fitting, where the set of candidate
points is modified to achieve a compact representation and to guarantee a predefined accuracy.

2 Silhouette Vectorization by Affine Scale-space

On a rectangular domain Ω = [0, H]× [0,W] ⊂ R
2 with H > 0 and W > 0, a silhouette is a compact

subset S ⊂ Ω whose topological boundary ∂S, the outline, is a piecewise smooth curve. Suppose S
is shown in a raster binary image I : Ω ∩ N

2 → {0, 255}, that is, the set of black pixels

S = {(i, j) ∈ Ω ∩ N
2 | I(i, j) = 0}

approximates S. We assume S ∩ ∂Ω = ∅, so that the level lines only consist of closed curves. The
main objective of this paper is to find a cubic Bézier polygon close to ∂S in the Hausdorff distance
such that the vertices are geometrically meaningful. As a result, the proposed algorithm takes any
binary raster image and converts it to an SVG file with compact size. In the following description,
our algorithm will be applied independently to each connected component of the boundary of S.
Hence, without loss of generality, we assume that ∂S is a single closed curve homeomorphic to a
circle.

Figure 1 shows the overview of the proposed method. From the input image (a), which is a
pixelized raster image, [Step 1] bilinear outlines are computed in (c), and [Step 2] affine scale-space
is used to find the control points in (f). [Step 3] By cubic Bézier polygon, the vectorized result
is presented in (g). Images (b) and (h) show the zoom-in of one of the corners, which illustrates
a sharp representation of the given raster image in the vectorized form. Every step is designed to
fully explore mathematically and geometrically meaningful features of the silhouette, utilizing the

23

Yuchen He, Sung Ha Kang, Jean-Michel Morel

Figure 1: A flowchart of the proposed method. (a) A given raster image of a cat’s silhouette. (b) Zoom-in of (a). (c)
Extracted bilinear outline of (a). (d) Inversely tracing the curvature extrema along the affine shortening flow. (e) The
vectorized outline of (a) with control points marked as red dots. (f) Zoom-in of (e). (g) Vectorized result of silhouette (a)
by the proposed method. (h) Zoom-in of (g). Notice the improvement from the given raster image (a) to the proposed
method’s result in (g), as well as the zoom of (b) and (h).

techniques which promote affine invariance. This approximation guarantees subpixel accuracy in
reconstruction. In the following, we describe the three main steps.

2.1 Sub-pixel Curvature Extrema Localization

For [Step 1], we extract level lines considering the sub-pixel curvature via the bilinear interpolation [8]
u : Ω → [0, 255] such that

u(i+ 1/2, j + 1/2) = I(i, j) , (i, j) ∈ Ω ∩ N
2 .

For any λ ∈ (0, 255), the level line of u corresponding to λ is defined as Cλ = {(x, y) ∈ Ω | u(x, y) = λ}.
It approximates the discrete outline as a piecewise C2 Jordan curve, except at finitely many points
such as image saddle points [4]. Fixing any non-integer λ∗ ∈ (0, 255)\N, Cλ∗ is either piecewise linear
(horizontal or vertical) or a part of a hyperbola whose asymptotes are horizontal and vertical [8].

Due to pixelization, Cλ∗ shows strong staircase effects [3], which causes unstable curvature com-
putation. Such oscillatory behavior is effectively reduced by the affine shortening flow [3, 26] by
evolving the noisy curve C by the following time-dependent PDE

∂C(s, t)
∂t

= κ1/3(s, t)N(s, t) , C(s, 0) = C(s) , t ≥ 0 (1)

till some short time T0 ≥ 0. Here each curve C(·, t) is arc-length parameterized by s ∈ [0,Length(C(·, t))]
for any t, κ denotes the signed scalar curvature, and N is the inward unit normal at C(s, t). This
process is independent from the viewpoint on the shape [14, 17]. For the curve evolution we use
the level line extraction scheme which delivers a polygonal curve with fine subpixel sampling and
Moisan’s affine curve evolution scheme which processes this polygonal line [15], as implemented in
the IPOL article [9].

Denoting the smooth bilinear outline by Γλ∗ , at any vertex P ∈ Γλ∗ , its unit normal direction
N(P) is computed by central difference, and its curvature κ(P) is approximated by the curvature
of the circumcircle that passes through three consecutive vertices on Γλ∗ [9]. The discrete curvature
values can be obtained at arbitrary resolution based on the sampling frequency applied to the bilinear
outline Cλ∗ , and the curvature extrema are localized via Algorithm 1. To stabilize the process of
identifying extrema, we smooth the curvature values via a simple moving average approach, whose
kernel is designed heuristically to achieve good experimental results.

24

Binary Shape Vectorization by Affine Scale-space

Algorithm 1 Curvature extrema localization

Require: Sequence of curvature values {κ(P k
i)}N

k

i=0 of the curve Σk
λ∗ at scale k∆σ.

1: Process{κ(P k
i)}N

k

i=0 by repeatedly applying the filter (1/18, 4/18, 8/18, 4/18, 1/18) with periodic
boundary condition for 20 times.

2: Based on the filtered data {κ̃(P k
i)}N

k

i=0, P
k
i is a curvature extremum if

|κ̃(P k
i)| > |κ̃(P k

j)| , for j = i± 1, i± 2 .

and
|κ̃(P k

i)| > 0.001 .

3: return Sequence of curvature extrema {Xk
i }S

k

i=1.

2.2 Affine Scale-space Control Points Identification

In [Step 2], we filter the control points by incorporating varying geometric scale of the outline based
on the affine scale-space.

The set of solutions of (1) at different time t ≥ 0, i.e., {C(·, t)}t≥0 defines an affine scale-space [26],
and the non-negative parameter t is called scale. This parametric space satisfies the causality [26]
that every curvature extremum on the curve at a coarser scale, i.e., at larger t, is the continuation of
at least one of the extrema at a finer scale, i.e., at smaller t. The lack of one-to-one correspondence is
due to the possibility of multiple extrema (e.g., two maxima and one minimum) merging to a single
one during the evolution. By tracing curvature extrema from the coarser scales to the finer scales,
the resulting extrema are robust to noise and help capture prominent corners.

We define the control points as the curvature extrema on Γλ∗ which persist across different scales
in its affine scale-space. Given a sequence of discrete scales t0 = 0 < t1 < · · · < tK for some positive
integer K, we obtain the curve C(·, tn) at scale tn by the affine shortening flow (1) for n = 0, 1, . . . , K.
For any 1 ≤ n ≤ K, the affine shortening flow (1) is approximated as

C(s, tn)− C(s, tn−1)

tn − tn−1

= (κn(s))1/3Nn(s) + r(s) , (2)

where κn and Nn denote the curvature and normal at the scale tn, and r is a remainder such that
||r(s)|| = O(tn − tn−1). Rearranging (2) gives

C(s, tn−1) = C(s, tn)− (tn − tn−1)(κ
n(s))1/3Nn(s)− (tn − tn−1)r(s) .

This expression shows that, if tn − tn−1 is sufficiently small, by following the opposite direction of
the affine shortening flow at C(s, tn), that is, −sign(κn(s))Nn(s), we can find C(s, tn−1) nearby. Here
sign(r) denotes the sign function which gives +1 if r > 0, −1 if r < 0 and 0 if r = 0.

Starting from K, for any curvature extremum XK on CK = C(·, tK), we set up the following
constrained optimization problem to find a curvature extremum XK−1 on CK−1 at scale tK−1

max
X∈CK−1

〈X −XK ,−sign(κK)NK〉
||X −XK || (3)

s.t.
〈X −XK ,−sign(κn)Nn〉

||X −XK || > α, ||X −XK || < D, and X is a curvature extremum on CK−1,

where ‖ · ‖ denotes the Euclidean norm, D > 0 is a positive parameter that controls the closeness
between X and XK , and α enforces that the direction of X−XK is similar to that of the inverse affine

25

Yuchen He, Sung Ha Kang, Jean-Michel Morel

shortening flow. The problem (3) looks for the curvature extremum on CK−1 in the D-neighborhood
of XK that is the nearest to the line passing XK in the direction of the inverse affine shortening
flow. When D and α are properly chosen, if (3) has one solution, we define it to be XK−1. If (3)
has multiple solutions, we choose the one with the shortest distance from XK to be XK−1. In case
multiple solutions are having the same shortest distance from XK , we arbitrarily select one to be
XK−1. In practice, if (3) has a solution, it is almost always unique.

We repeat (3) for decreasing K − 1, K − 2, . . . , 1. Either the solutions always exist until the
scale t0, or there exists some m ≥ 1, such that (3) at tm does not have any solution. In the first
case, we call XK a complete point, and in the second case, we call it incomplete. For each curvature
extremum XK on CK , we construct a sequence of points L that contains the solutions of (3) for
K,K − 1, K − 2,. . . , starting at XK in a scale-decreasing order. If XK is complete, then L has
exactly K+1 elements, and we call the sequence complete; otherwise, the size of L is strictly smaller
than K + 1, and we call the sequence incomplete.

If there is at least one complete sequence, we define the last elements of the complete sequences
as the candidate control points, and denote them as {Oi(tK)}M(tK)

i=1 , where M(tK) ≥ 1 is the number
of complete sequences. These points are ordered following the orientation of Γλ∗ . The parameter
tK in the parenthesis indicates that the candidate control points are associated with the curvature
extrema identified at the scale tK . When the scale tK is fixed, we simply write {Oi}Mi=1.

This inverse affine scale-space approach prioritizes the curvature extrema, which persist across
different affine shortening flow scales. This step is essential in keeping geometrically meaningful
control points and reducing the total number of control points. However, if all the sequences are
incomplete, i.e., there is no curvature extrema identified by tracing backward the scale space, we
encounter the degenerate case, which calls for a different procedure.

Degenerate Case: When there is no complete sequence, either S is a disk, or ∂S has curvature
extrema with small curvature, which failed to be numerically identified. We propose to address these
two scenarios separately, since if S is a disk, the vectorization only requires its center and radius,
which simplifies the following curve approximation. We use the isoperimetric inequality to determine
if Γλ∗ represents a circle: for any closed plane curve with area A and perimeter L, we have 4πA ≤ L2

and the equality holds if and only if the curve is a circle. In practice, we decide that Γλ∗ is a circle
only if the corresponding ratio 1− 4πA/L2 is sufficiently small. By this criterion, if Γλ∗ is classified
as a circle, its center and radius are easily computed by arbitrarily three distinct points on Γλ∗ . For
numerical stability, we take three outline points that are equidistant from each other. Otherwise, we
insert a pair of most distant points on Γλ∗ to be the candidate control points. An efficient approach
for finding these points is to combine a convex hull algorithm, e.g., the monotone chain method [1],
which takes O(N logN) time, with the rotating calipers [23], which takes O(N) time. Here N is the
number of vertices of the polygonal line Γλ∗ . The subroutine for dealing with degenerate cases is
described in Algorithm 2. Note that in a degenerate case, S is close to a convex shape, thus the area
computation is simplified to summing areas of a sequence of triangles. Moreover, the cross product
of 2D vectors is computed as they are embedded in R

3 with the third component set to be 0.

2.3 Adaptive Cubic Bézier Polygon Approximation

After the control points are identified from the affine scale-space, H := {Oi}Mi , we adjust H by
deleting non-salient sub-pixel curvature extrema and inserting new control points for guaranteeing a
predefined accuracy. In [Step 3], this adaptive approach yields a cubic Bézier polygon B(H) whose
vertices are points in H and edges are cubic Bézier curves computed by least-square fittings.

A cubic Bézier curve is specified by four points B0, B1, B2, and B3. Its parametric form is

B(s) = (1− s)3B0 + 3(1− s)2sB1 + 3(1− s)s2B2 + s3B3 ,

26

Binary Shape Vectorization by Affine Scale-space

Algorithm 2 Subroutine for the degenerate case

Require: closed polygonal curve Σ = {P0, . . . , PN} with PN = P0 and there is no complete sequence
after tracing back the affine-scale space (3).

1: Compute the area A and perimeter L of Σ as follows:

A =
1

2

N−2∑

i=1

‖(Pi − P0)× (Pi+1 − P0)‖, L =
N−2∑

i=0

‖Pi+1 − Pi‖.

2: if 1− 4πA/L2 < 0.005 then

3: Mark Σ as a circle.
4: Take three equidistant points on Σλ∗ to compute the center O and radius r.
5: return O, r.
6: else

7: //Σ is not a circle, yet no corner is identified by tracing back the affine-scale space.
8: Find the most distant pair of points on Σ: O1, O2. Set H = {O1, O2}.
9: return H

for s ∈ [0, 1]. Here, (i) B0 and B3 are the two endpoints for B(s); and (ii) B1 − B0 is the right
tangent of B(s) at B0, and B2 − B3 is the left tangent at B3. To approximate a polygonal line
segment Σ = {P0, P1, . . . , PN}, we find a cubic Bézier curve that is determined by B0 = P0, B1, B2,
and B3 = PN such that the squared fitting error

S̃ =
N∑

i=1

‖Pi − ((1− s̃i)
3B0 + 3(1− s̃i)

2s̃iB1 + 3(1− s̃i)s̃i
2B2 + s̃i

3B3)‖2 (4)

is minimized. Here s̃i = (
∑i

k=1 ||Pk − Pk−1||)/(
∑N

k=1 ||Pk − Pk−1||) is the chord-length parameter
for Pi with i = 1, . . . , N . We note that (4) is used to initialize an iterative algorithm in [22] for a
more accurate Bézier fitting. The benefit of this approximating setup is that we have closed-form
formulae [16] for the minimizing Bj, j = 1, 2. See Algorithm 3.

2.3.1 Control Point Refinement: Deletion of Sub-pixel Extrema

The candidate control points H = {Oi}Mi=1 are curvature extrema at sub-pixel level, and they may not
reflect salient corners of the silhouette. To remove spurious sub-pixel extrema from H, we compare
the left tangent and right tangent at each candidate control point. In particular, we take advantage
of the second property of cubic Bézier curves above. For i = 1, . . . ,M , we fit a cubic Bézier to the
polygonal line segment whose set of vertices is

{Oi = Pj(i), Pj(i)+1, . . . , Pj(i+1) = Oi+1} ,

where j(i) denotes the index of the vertex of the polygonal line segment that corresponds to the i-th
control point in H. We take OM+1 = O1, and obtain the estimated defining points Bi,1 and Bi,2 for
the Bézier curve. The left and right tangent at Oi are computed as

T−
i = Bi−1,2 −Oi , T+

i = Bi,1 −Oi , (5)

respectively, where B−1,2 = BM,2. These tangent vectors are associated with all the points between
neighboring candidate control points. The angle formed by T−

i and T+
i measures the sharpness of

27

Yuchen He, Sung Ha Kang, Jean-Michel Morel

Algorithm 3 Subroutine for Bézier fitting

Require: A polygonal curve segment {P0, P1 . . . , PN}
1: Set B0 = P0 and B3 = PN .
2: if N = 1 then

3: B1 = B2 = 0.5(P0 + P1)
4: else if N = 2 then

5: B1 = B2 = P1

6: else if N > 2 then

7: Set

B1 = (a2C1 − a12C2)/(a1a2 − a212), B2 = (a1C2 − a12C1)/(a1a2 − a212)

where

a1 = 9
N∑

i=1

s̃i
2(1− s̃i)

4, a2 = 9
N∑

i=1

s̃i
4(1− s̃i)

2, a12 = 9
N∑

i=1

s̃i
3(1− s̃i)

3

C1 =
N∑

i=1

3s̃i(1− s̃i)
2[Pi − (1− s̃i)

3P0 − s̃i
3P3], C2 =

N∑

i=1

3s̃i
2(1− s̃i)[Pi − (1− s̃i)

3P0 − s̃i
3P3]

and s̃i = (
∑i

k=1 ||Pk − Pk−1||)/(
∑N

k=1 ||Pk − Pk−1||).
8: Compute the error e by (6).
9: return The Bézier curve defined by B0, B1, B2, B3, and error e.

Γλ∗ at Oi from a more global perspective. We delete Oi from the set of candidate control points H if
the angle between T+

i and T−
i is close to π. The set H is updated with the remaining control points.

When all the candidate control points {Oi}Mi=1 are removed after this procedure, we encounter a
degenerate case. If the underlying outline is a circle, we compute the center and radius; if it is not,
we take the most distant pair of outline points to update H.

2.3.2 Control Point Refinement: Insertion for Accuracy

The candidate control points in H split the outline Γλ∗ into polygonal line segments, each of which
is approximated by a cubic Bézier using least square fitting. We obtain a Bézier polygon that
approximates Γλ∗ , denoted by B(H). A natural measure for the error of approximating Γλ∗ using
the Bézier polygon B(H) is

e = max
Pi∈Γλ∗

dist(Pi,B(H)) , (6)

where dist(Pi,B(H)) = infP∈B(H) ||Pi −P || is the distance from Pi to the curve B(H). It is desirable
that the user can specify the threshold for the error, τe > 0. To guarantee that e ≤ τe, we apply the
splitting strategy [24] which inserts Pnew ∈ Γλ∗ to H as a new control point if

dist(Pnew,B(H)) > τe , (7)

and among those points on Γλ∗ satisfying (7), the distance from Pnew to B(H) is the largest. After
the insertion, we fit Γλ∗ using a Bézier polygon based on the new set of control points in H. If the
error of the newly fitted Bézier polygon is still greater than τe, we insert another point based on the
same criterion. This series of insertions terminates once the condition e ≤ τe is met.

Finally, B(H) with the updated set of control points H gives a Bézier polygon that approximates
the outline ∂S. With its interior filled with black, we obtain the vectorized silhouette for S from

28

Binary Shape Vectorization by Affine Scale-space

the raster image I. Note that the interior and exterior of the boundary curve (Jordan curve) is
determined by the ray-algorithm (evenodd fill-rule) embedded in the SVG format.

2.4 Summary of the Algorithm

Algorithm 4 presents the pseudo-code of the proposed method. It requires any gray-scale raster image
as the input and efficiently converts the pixel silhouette to a scalable vector graphic. There are mainly
two parameters adjustable by the user: the error threshold τe and the smoothness parameter σ0. For
a more accurate representation of the original silhouette, smaller values of τe should be chosen; and
for smoother boundary curves of the silhouette, larger σ0 should be considered. The effects of these
parameters will be explained in the numerical section.

3 Numerical Experiments

After obtaining the SVGs from SVG SILH4, we rasterized them as PNG images, which were used as
inputs in the following experiments. The inputs were either binary or gray-scale. We extracted the
level line for λ∗ = 127.5 to approximate the outlines throughout the experiments.

To solve (1), we apply the fully consistent geometric scheme [15] which is independent of grid
discretization. Consequently, the scale parameter t is conveniently replaced by a chord-area pa-
rameter σ. The scale T0 for the initial smoothing (Section 2.1) required for curvature computation
thus corresponds to some smoothness parameter σ0. The computed discrete curvatures are filtered
by moving average with periodic boundary condition to reduce the noise. A curvature extremum is
identified only if it has absolute value greater than its neighbors and above 0.001. For the parameters
in (3), we fixed D = 10 and α = 0.9. During the inverse tracing K = 4, and since the sequence
of scales {tk}Kk=1 can be replaced by chord-area parameters, the curvature extrema were traced for
scales corresponding to chord-areas k∆σ, k = 1, 2, 3, 4 respectively, where ∆σ = 0.5. The threshold
for the degenerate case (Section 2.2) is set to be 0.005.

By default, we set the error threshold τe = 1, so that the vectorized outline was guaranteed to
have sub-pixel accuracy; and the smoothness parameter σ0 = 1. Table 1 collectively displays the
silhouettes used in the following experiments. They are all downloadable from https://svgsilh.

com, which are released under Creative Commons CC0.

3.1 General Performance

We present some results of our proposed algorithm in Figure 2. In (a), we have a silhouette of a
cat. It has a single outline curve that contains multiple sharp corners on the tail, near the neck,
and around the paws. These features provide informative visual cues for silhouette recognition, and
our algorithm identifies them as control points for the silhouette vectorization shown as the red dots
in (b). The outline of a butterfly in (c) has multiple connected components. In addition to the
control points corresponding to corners, we observe in (d) some others on smooth segments of the
outline. They are inserted during the refinement step of our algorithm, where a single Bézier cubic
is inadequate to guarantee the accuracy specified by the error threshold τe = 1. In (e), we show a
tessellation of words, and (f) presents the vectorized result. The input is a PNG image of dimension
1934 × 1332 and takes 346 KB in the storage. In contrast, its silhouette vectorization, saved as an
SVG file, has 2683 control points and takes 68 KB if the coordinates are stored in float. In this
example, our algorithm provides a compression ratio of about 80.35%. The total computational time
for this case only takes 0.83 seconds.

4https://svgsilh.com. All contents are released under Creative Commons CC0.

29

https://svgsilh.com
https://svgsilh.com
https://svgsilh.com

Yuchen He, Sung Ha Kang, Jean-Michel Morel

Algorithm 4 Shape Vectorization by Affine Scale-space

Require: • I: gray-scale raster image
with intensity variation concentrating
around the contour.

• τe: error threshold.

• σ0: smoothness parameter.

• Fixed parameters λ∗ = 127.5, ∆σ =
0.5, K = 4, D =

√
10, α = 0.9, ε = 0.1.

Ensure: Scalable vector graphic.

I. Curvature extrema in varying scales

1: Extract the bilinear level line Cλ∗ .
2: By Moisan’s scheme [15], smooth Cλ∗ (a Jor-

dan curve; see the explanation before the al-
gorithm) via (1) up to scale σ0 yielding a sub-
pixel smooth contour Σλ∗ = {Pi}Ni=0.

3: for k = 1, 2, . . . , K do

4: Evolve Σλ∗ up to scale k∆σ, denoted by
Σk

λ∗ = {P k
i }N

k

i=0.
5: for i = 0, . . . , Nk do

6: Compute curvature κk
i of Σk

λ∗ at P k
i by

κk
i =

−2 det

[
xk
i−1 − xk

i xk
i+1 − xk

i

yki−1 − yki yki+1 − yki

]
.

||P k
i−1P

k
i || ||P k

i P
k
i+1|| ||P k

i−1P
k
i+1||

.

where (xk
i , y

k
i) is the coordinate for P k

i .
7: Locate curvature extrema {Xk

i }S
k

i=1 ⊆ Σk
λ∗ .

(See Algorithm 1)

II. Inverse affine shortening flow

8: if SK ≥ 1 then

9: for i = 1, . . . , SK do

10: Initialize a sequence Li = {XK
i }, and set

X
(K)
i = XK

i .
11: for k = K,K − 1, . . . , 1 do

12: Solve the problem (3) associated with

X
(k)
i

13: if (3) has a solution X
(k−1)
i then

14: Append X
(k−1)
i into Li.

15: else

16: break

17: Collect the final elements of complete se-
quences as H, whose elements are denoted
by Oi, i = 1, . . . ,#H, where #H is the
total number of control points.

18: else

19: Run Algorithm 2 for Σλ∗ .

III. Boundary fitting

20: if #H > 0 then

21: for i = 1, . . . ,#H do

22: Given periodic boundary condition, run
Algorithm 3 for the curve segment

[Oi, Oi+1] :=

{Oi = Pj(i), Pj(i)+1, . . . , Pj(i+1) = Oi+1} ⊂ Σλ∗

23: for i = 1, . . . ,#H do

24: Obtain the right tangent T+
i at Oi and

left tangent T−
i+1 at Oi+1 according to (5).

25: if | 〈T+
i
,T−

i
〉

||T+
i
|| ||T−

i
||
+ 1| < ε then

26: Remove Oi from H.
27: if #H = 0 then

28: Run Algorithm 2 for Σλ∗ .
29: else

30: for i = 1, . . . ,#H do

31: Set OL = Oi and OR = Oi+1.
32: while true do

33: Run Algorithm 3 for [OL, OR] and
obtain the approximation error e.

34: if e > τe then
35: Find the point O∗ ∈ [OL, OR] fur-

thest from the fitting Bézier curve
that satisfies (7).

36: Update OR = O∗.
37: else

38: if OR 6= Oi+1 then

39: Insert OR into H.
40: Update OL = OR and OR =

Oi+1.
41: else

42: break

IV. SVG formatting

43: if Σλ∗ is a circle then

44: Provide the center and radius obtained
from Algorithm 2.

45: else

46: Provide the sequence of control points for
the Bézier segments.

47: Select evenodd fill-rule to fill the shape.

30

Binary Shape Vectorization by Affine Scale-space

Figure 2: General performance. (a) Cat and (b) its vectorized outline (42 control points). (c) Butterfly and (d) its vectorized
outline (158 control points). (e) Text design and its vectorized outline (2683 control points). Each red dot signifies the
location of a control point. (g) Two letters exerted from (e) scaled up with the same magnitude. (h) Zoom-in of the
vectorization (f) on the two letters in (g).

31

Yuchen He, Sung Ha Kang, Jean-Michel Morel

Silhouette Data Set

Table 1: Silhouette dataset used in the experiments. These silhouettes are chosen from https://svgsilh.com, and are
released under Creative Commons CC0.

3.2 Qualitative Comparison with Feature Point Detectors

In Figure 3, we compare the distribution of these points with the results of some extensively applied
feature point detectors: the Harris-Stephens corner detector [10], the features from Accelerated
Segment Test (FAST) detector [25], the Speeded Up Robust Features (SURF) detector [2], and the
Scale-Invariant Feature Transform (SIFT) [13]. The Harris-Stephens corner detector is a local auto-
correlation based method. It locally filters the image with spatial difference operators and identifies
corners based on the response. The FAST detector only considers the local configurations of pixel
intensities; hence it is widely applied in real-time applications. From (b), we see that FAST identifies
all the prominent corners the same as our method. Similarly to (a), there are no FAST points
identified around the balloon. The SURF detector combines a fast Hessian measure computed via
integral images and the distribution of local Haar-wavelet responses to identify feature points that
are scale and translation invariant. The SURF points are marked over scales; hence we see most of
the green crosses in (c) form sequences converging toward the outline. SIFT detects scale-invariant
features of a given image. As shown in (d), SIFT successfully indicates the presence of corners and
marks the balloon’s centers as well as the label, which are visually robust features of the silhouette.

3.3 Comparison with State-of-the-art Software

There are many software tools available for image vectorization, e.g., Vector Magic5, Inkspace6, and
Adobe Illustrator 2020 (AI)7. We compare our method with these software tools using the number
of control points generated for given silhouettes as a criterion. This quantity is equal to the number
of curve segments used for approximating the outline, and a smaller value indicates a more compact
silhouette representation.

For comparison, after acquiring SVG files of various silhouettes, we rasterized them and used the
PNG images as inputs. Table 2 summarizes the results. For Vector Magic, we tested three available
settings: high, medium, and low for the vectorization quality. For AI, we chose the setting “Black

5https://vectormagic.com
6https://inkscape.org
7https://www.adobe.com/products/illustrator.html

32

https://svgsilh.com
https://vectormagic.com
https://inkscape.org
https://www.adobe.com/products/illustrator.html

Binary Shape Vectorization by Affine Scale-space

Figure 3: Comparison between the control points (red dots) plus the centers of circles (blue dots) produced by the proposed
algorithm and other point feature detectors (green crosses). (a) Compared with the Harris corner detector [10]. (b)
Compared with the FAST feature detector [25]. (c) Compared with the SURF detector [2]. (d) Compared with the SIFT
detector [13]

and White Logo”, as it is suitable for the style of our inputs. We also include the results when the
automatic simplification was used, which are marked by daggers. For Inkspace, we used the default
parameter settings. As shown by the mean relative reduction values on the number of control points
in the last row, our method produces the most compact vectorization results.

With such an effective reduction in the number of control points, it remains to verify that our
method does not over-simplify the representation. We show a detailed comparison in Figure 4
between our proposed method and AI. In particular, we used AI without simplification and our
method with two sets of parameters: σ0 = 1, τe = 1 and σ0 = 0.1, τe = 0.5. We note that σ0

specifies the smoothness of the recovered outline, and τe controls the accuracy. Notice that our
method gives fewer control points under these settings, and our results preserve more details of the
given silhouettes.

4 Conclusion

We described an efficient and effective algorithm for silhouette vectorization. The outline of the
silhouette is interpolated bilinearly and uniformly sampled at a sub-pixel level. To reduce the oscil-
lation due to pixelization, we apply the affine shortening to the bilinear outline. We then identify
a set of candidate control points by tracing the curvature extrema across different scales along the
well-defined inverse affine shortening flow. This set is then refined by deleting sub-pixel extrema that
do not reflect salient corners, and inserting new points to guarantee any user-specified accuracy. We
also designed special procedures to address the degenerate cases, such as disks, so that our algorithm
adapts to arbitrary resolutions and offers better information compression. Our method provides a
superior compression ratio by vectorizing the outlines. As shown in [11], this method is competi-
tive compared to some well-established image vectorization software. It produces results with fewer
control points for equally high accuracy.

33

Yuchen He, Sung Ha Kang, Jean-Michel Morel

Number of Control Points (#C)

Test Image Original VM IS AI Proposed

405 248/256/245 330 280 (193†) 168

611 359/343/325 383 340 (293†) 222

682 296/294/263 272 211 (128†) 120

1434 915/828/715 932 698 (462†) 379

4434 2789/2582/2370 3292 2120 (1431†) 1407

6664 5470/5218/4955 6493 4870 (3441†) 2810

MRR — 37.97%/40.55%/45.01% 29.88% 45.79% (61.58%†) 67.38%

Table 2: Comparison with image vectorization software in terms of the number of control points. We compared with
Vector Magic (VM), Inkspace (IS), and Adobe Illustrator 2020 (AI). For VM, we report the number of control points using
three settings: High/Medium/Low. For AI, the values with dagger† indicate the numbers of control points produced by
the automatic simplification. The input image dimensions are 581 × 564, 625 × 598, 400 × 390, 903 × 499, 515 × 529,
and 1356 × 716 from top to bottom. We also report the mean relative reduction (MRR) of the number of control points
computed for the results above.

Figure 4: Comparison among the given raster image (red boxes), AI (orange boxes), the proposed with σ0 = 1, τe = 1
(green boxes), and the proposed with σ0 = 0.1, τe = 0.5 (blue boxes). With smaller numbers of control points (#C), our
method preserves better the geometric details of the given silhouette.

34

Binary Shape Vectorization by Affine Scale-space

Image Credits

All silhouettes are from https://svgsilh.com, and are released under Creative Commons CC0.

References

[1] A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Informa-
tion Processing Letters, 9 (1979), pp. 216–219. https://doi.org/10.1016/0020-0190(79)

90072-3.

[2] H. Bay, T. Tuytelaars, and L. Van Gool, SURF: Speeded up robust features, in European
Conference on Computer Vision (ECCV), Springer, 2006, pp. 404–417. https://doi.org/10.
1007/11744023_32.

[3] F. Cao, Geometric curve evolution and image processing, Springer Science & Business Media,
2003. ISBN 9783540004028.

[4] V. Caselles and P. Monasse, Geometric description of images as topographic maps,
Springer, 2009. ISBN 9783642046117.

[5] H.-H. Chang and H. Yan, Vectorization of hand-drawn image using piecewise cubic Bézier

curves fitting, Pattern Recognition, 31 (1998), pp. 1747–1755. https://doi.org/10.1016/

S0031-3203(98)00045-4.

[6] D. Chetverikov, A simple and efficient algorithm for detection of high curvature points in pla-

nar curves, in International Conference on Computer Analysis of Images and Patterns, Springer,
2003, pp. 746–753. https://doi.org/10.1007/978-3-540-45179-2_91.

[7] L. Cinque, S. Levialdi, and A. Malizia, Shape description using cubic polynomial Bézier

curves, Pattern Recognition Letters, 19 (1998), pp. 821–828. https://doi.org/10.1016/

S0167-8655(98)00069-5.

[8] A. Ciomaga, P. Monasse, and J.-M. Morel, Level lines shortening yields an image curva-

ture microscope, in International Conference on Image Processing (ICIP), IEEE, 2010, pp. 4129–
4132. https://doi.org/10.1109/ICIP.2010.5649850.

[9] , The image curvature microscope: Accurate curvature computation at subpixel resolution,
Image Processing On Line, 7 (2017), pp. 197–217. https://doi.org/10.5201/ipol.2017.212.

[10] C. G. Harris and M. Stephens, A combined corner and edge detector, in Alvey Vision
Conference, vol. 15, Citeseer, 1988, pp. 10–5244. https://doi.org/10.5244/C.2.23.

[11] Y. He, S.-H. Kang, and J.-M. Morel, Silhouette vectorization by affine scale-space,
Journal of Mathematical Imaging and Vision, (2021), pp. 1–16. https://doi.org/10.1007/

s10851-021-01053-z.

[12] A. Kirsanov, A. Vavilin, and K. H. Jo, Contour-based algorithm for vectorization of

satellite images, in International Forum on Strategic Technology, IEEE, 2010, pp. 241–245.
https://doi.org/10.1109/IFOST.2010.5668109.

[13] D. Lowe, Object recognition from local scale-invariant features, in IEEE International Confer-
ence on Computer Vision (ICCV), vol. 2, IEEE, 1999, pp. 1150–1157. https://doi.org/10.

1109/ICCV.1999.790410.

35

https://svgsilh.com
https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1016/0020-0190(79)90072-3
https://doi.org/10.1007/11744023_32
https://doi.org/10.1007/11744023_32
https://doi.org/10.1016/S0031-3203(98)00045-4
https://doi.org/10.1016/S0031-3203(98)00045-4
https://doi.org/10.1007/978-3-540-45179-2_91
https://doi.org/10.1016/S0167-8655(98)00069-5
https://doi.org/10.1016/S0167-8655(98)00069-5
https://doi.org/10.1109/ICIP.2010.5649850
https://doi.org/10.5201/ipol.2017.212
https://doi.org/10.5244/C.2.23
https://doi.org/10.1007/s10851-021-01053-z
https://doi.org/10.1007/s10851-021-01053-z
https://doi.org/10.1109/IFOST.2010.5668109
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICCV.1999.790410

Yuchen He, Sung Ha Kang, Jean-Michel Morel

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline stereo from

maximally stable extremal regions, Image and Vision Computing, 22 (2004), pp. 761–767.
https://doi.org/10.1016/j.imavis.2004.02.006.

[15] L. Moisan, Affine plane curve evolution: A fully consistent scheme, IEEE Transactions on
Image Processing, 7 (1998), pp. 411–420. https://doi.org/10.1109/83.661191.

[16] A. S. Montero and J. Lang, Skeleton pruning by contour approximation and the integer

medial axis transform, Computers & Graphics, 36 (2012), pp. 477–487. https://doi.org/10.
1016/j.cag.2012.03.029.

[17] J.-M. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image compar-

ison, SIAM Journal on Imaging Sciences, 2 (2009), pp. 438–469. https://doi.org/10.1137/

080732730.

[18] M. Mortenson, Mathematics for computer graphics applications, Industrial Press Inc., 1999.
ISBN 9780831131111.

[19] C. Nadal, R. Legault, and C. Y. Suen, Complementary algorithms for the recognition of

totally unconstrained handwritten numerals, in International Conference on Pattern Recognition
(ICPR), vol. 1, IEEE, 1990, pp. 443–449. https://doi.org/10.1109/ICPR.1990.118143.

[20] S. Pal, P. Ganguly, and P. K. Biswas, Cubic Bézier approximation of a digitized curve,
Pattern Recognition, 40 (2007), pp. 2730–2741. http://dx.doi.org/10.1016/j.patcog.2007.
01.019.

[21] W. Pan, Z. Lian, Y. Tang, and J. Xiao, Skeleton-guided vectorization of Chinese calligraphy

images, in International Workshop on Multimedia Signal Processing (MMSP), IEEE, 2014,
pp. 1–6. https://doi.org/10.1109/MMSP.2014.6958805.

[22] M. Plass and M. Stone, Curve-fitting with piecewise parametric cubics, in Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH), 1983, pp. 229–239. https:

//doi.org/10.1145/800059.801153.

[23] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction, Springer
Science & Business Media, 2012. ISBN 9781461210986.

[24] U. Ramer, An iterative procedure for the polygonal approximation of plane curves, Com-
puter Graphics and Image Processing, 1 (1972), pp. 244–256. https://doi.org/10.1016/

S0146-664X(72)80017-0.

[25] E. Rosten and T. Drummond, Fusing points and lines for high performance tracking, in
International Conference on Computer Vision (ICCV), vol. 2, Ieee, 2005, pp. 1508–1515. https:
//doi.org/10.1109/ICCV.2005.104.

[26] G. Sapiro and A. Tannenbaum, Affine invariant scale-space, International Journal of Com-
puter Vision, 11 (1993), pp. 25–44. https://doi.org/10.1007/BF01420591.

[27] M. Sarfraz, Vectorizing outlines of generic shapes by cubic spline using simulated annealing,
International Journal of Computer Mathematics, 87 (2010), pp. 1736–1751. http://dx.doi.

org/10.1080/00207160802452519.

36

https://doi.org/10.1016/j.imavis.2004.02.006
https://doi.org/10.1109/83.661191
https://doi.org/10.1016/j.cag.2012.03.029
https://doi.org/10.1016/j.cag.2012.03.029
https://doi.org/10.1137/080732730
https://doi.org/10.1137/080732730
https://doi.org/10.1109/ICPR.1990.118143
http://dx.doi.org/10.1016/j.patcog.2007.01.019
http://dx.doi.org/10.1016/j.patcog.2007.01.019
https://doi.org/10.1109/MMSP.2014.6958805
https://doi.org/10.1145/800059.801153
https://doi.org/10.1145/800059.801153
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1109/ICCV.2005.104
https://doi.org/10.1109/ICCV.2005.104
https://doi.org/10.1007/BF01420591
http://dx.doi.org/10.1080/00207160802452519
http://dx.doi.org/10.1080/00207160802452519

Binary Shape Vectorization by Affine Scale-space

[28] K. Tombre and S. Tabbone, Vectorization in graphics recognition: to thin or not to thin,
in International Conference on Pattern Recognition (ICPR), vol. 2, IEEE, 2000, pp. 91–96.
https://doi.org/10.1109/ICPR.2000.906024.

[29] H.-M. Yang, J.-J. Lu, and H.-J. Lee, A Bézier curve-based approach to shape descrip-

tion for Chinese calligraphy characters, in International Conference on Document Analysis and
Recognition, IEEE, 2001, pp. 276–280. https://doi.org/10.1109/ICDAR.2001.953798.

[30] J. Zou and H. Yan, Cartoon image vectorization based on shape subdivision, in Com-
puter Graphics International, IEEE, 2001, pp. 225–231. https://doi.org/10.1109/CGI.2001.
934678.

37

https://doi.org/10.1109/ICPR.2000.906024
https://doi.org/10.1109/ICDAR.2001.953798
https://doi.org/10.1109/CGI.2001.934678
https://doi.org/10.1109/CGI.2001.934678

	Introduction
	Silhouette Vectorization by Affine Scale-space
	Sub-pixel Curvature Extrema Localization
	Affine Scale-space Control Points Identification
	Adaptive Cubic Bézier Polygon Approximation
	Control Point Refinement: Deletion of Sub-pixel Extrema
	Control Point Refinement: Insertion for Accuracy

	Summary of the Algorithm

	Numerical Experiments
	General Performance
	Qualitative Comparison with Feature Point Detectors
	Comparison with State-of-the-art Software

	Conclusion

