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Abstract

This paper details the first publicly available implementation of the progressive mesh compres-
sion algorithm described in the paper entitled “Compressed Progressive Meshes” [R. Pajarola
and J. Rossignac, IEEE Transactions on Visualization and Computer Graphics, 6 (2000), pp.
79-93]. Our implementation is generic, modular, and includes several improvements in the
stopping criteria and final encoding. Given an input 2-manifold triangle mesh, an iterative
simplification is performed, involving batches of edge collapse operations guided by an error
metric. During this compression step, all the information necessary for the reconstruction (at
the decompression step) is recorded and compressed using several key features: geometric quan-
tization, prediction, and spanning tree encoding. Our implementation allowed us to carry out
an experimental comparison of several settings for the key parameters of the algorithm: the
local error metric, the position type of the resulting vertex (after collapse), and the geometric
predictor.

Source Code

The proposed implementation is publicly available through the MEPP2 platform [20]. The
algorithm can be used either as a command-line executable or integrated into the MEPP2 GUI.
The source code is written in C++ and is accessible on the IPOL web page of this article1, as
well as on the GitHub page of MEPP2 (MEPP-team/MEPP2 project2).
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1 Introduction

The development of computer graphics technologies and scanning devices has lead to a global increase
in the complexity and quality of 3D models being created, manipulated, stored, and transmitted
over networks. This increase in complexity and quality translates into an augmentation of the
number of elements describing these models (mostly represented by surface meshes). For instance,
3D meshes generated by photogrammetric reconstruction now commonly attain several millions of
vertices. With the development of Web3D technologies, an increasing number of 3D applications
consider data stored on remote servers. As a concrete illustration of this fact, many companies
are now proposing VR web browsers since they envision the explosion of online VR applications
(video games, virtual museums, virtual courses). Similarly, dire needs of remote data apply to
mixed reality (MR), for which an important intrinsically online application is telepresence. For
these online applications, strong latency and frame-rate problems may be encountered, mostly due
to the constraint of delivering the 3D content from the server to the end-user, and to the imperfect
management of heterogeneous transmission networks and heterogeneous visualization devices.

The performance issues raised above can be resolved by the use of compressed multi-scale rep-
resentations (often referred to as progressive compression techniques [13]). Indeed, progressive com-
pression yields a high compression ratio (and thus fast transmission) and produces different Levels
of Detail (LoD), enabling the complexity of the data to adapt to the remote device by stopping the
transmission when a sufficient LoD is reached. These functionalities can reduce the time latency
even for huge data and enable real-time visualization and interactions (i.e. high frame rate) even for
low-end devices (e.g. autonomous HMD, smartphones). With these techniques, users instantly get a
coarse version of the mesh which is then progressively refined as more data are decompressed until
the initial model has been restored (or an intermediate model according to the device constraints).

Many progressive compression methods for static surface meshes have already been introduced
for 20 years. An exhaustive literature review can be found in [13]. Most of the existing approaches
only deal with manifold triangle meshes and few can compress either polygonal or non-manifold
meshes. There are two main kinds of progressive approaches: connectivity-based approaches [10,
15, 1, 12, 3, 17] consider the mesh connectivity to guide the simplification, while geometry-based
approaches [7, 16] operate on the geometry using a spatial tree structure (octree or kd-tree) to
conduct the simplification. In this paper, we describe an implementation of “Compressed Progressive
Meshes” [15] (CPM for short) with several improvements in the stopping criteria and final encoding,
as proposed in recent approaches [3, 17].

Before going into further details, we outline below several benefits of the CPM method concerning
its counterparts:

• Granularity control : the size of each simplification batch can be freely parameterized.

• Geometric predictor control : any geometric predictor can be integrated into the algorithm. We
implemented three predictors that can be freely selected.

• Local error control : any error metric can be integrated into the algorithm, e.g. according to the
final application (geometric or perceptual metric). We implemented three error metrics that
can be freely selected.

• Efficient encoding of vertex splits : the encoding has been optimized; e.g. there is no need to
store costly indices.

The rest of this paper is organized as follows. An overview of the implemented algorithm is given
in Section 2, while Section 3 provides details of algorithms and implementation. Experimental results
are detailed in Section 4 with a performance comparison of several combinations of local error metric,
position type, and geometric predictor. Finally, Section 5 presents possible extensions.
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2 Overview

2.1 Input Data, Data Structures, and Library

The input of the algorithm presented in this paper is a 2-manifold triangulated surface mesh. A
2-manifold surface is characterized by the fact that each point of the surface admits a neighborhood
homeomorphic to a disc and each border point admits a neighborhood homeomorphic to a half-disc.
A triangle mesh is a type of polygon mesh commonly used in computer graphics. It is defined as a
collection of vertices, edges, and triangular faces over which incidence and adjacency relationships
are defined. Manipulating a 2-manifold triangle mesh, with reasonable time complexity, requires a
dedicated data structure such as halfedge. This is particularly true for topological modifications.
Our source code is based on the MEPP2 platform3, a C++ software development kit and GUI for
processing and visualizing 3D surface meshes and point clouds. It offers an application programming
interface (API) for creating new processing filters and a graphical user interface (GUI) to integrate
filters as plugins. This API integrates several halfedge-like data structure implementations (e.g.
OpenMesh [2], CGAL Surface Mesh [19], CGAL Polyhedral Surface [19], CGAL Linear Cell Com-
plex [19]) and it offers generic-programming abstraction layers, allowing to invoke any data structure
with the same source code. The core of the platform is the central layer: the FEVV template li-
brary (FEVV holds for Face Edge Vertex Volume). It relies on a set of concepts [9], which provide
an abstraction layer over several third-party mesh data structures. Generic filters can then be cre-
ated based on this template library. Here are the main concepts used in the proposed compression
algorithm implementation:

• the 2-manifold mesh concept (CGAL HalfedgeGraph and FaceGraph concepts), which deals
with browsing of the mesh elements (vertices, edges, and faces); note that halfedge is a data
structure commonly used to represent 2-manifold oriented polygon meshes;

• the (FEVV) geometry concept, which deals with the Point, Vector, and Scalar operations;

• the (FEVV) property map concept, which deals with the generic management of vertex, edge,
face, and mesh attributes associated with a mesh.

The proposed source code is generic and can run with the following data structures: CGAL Poly-
hedral Surface, CGAL Surface Mesh, CGAL Linear Cell Complex, and OpenMesh. However, some
CGAL restrictions occur currently on the geometric distance (e.g. Hausdorff or RMSE) computa-
tion between two meshes as this currently requires the CGAL 3D Fast Intersection and Distance
Computation (AABB Tree) package which is not yet compatible with OpenMesh.

2.2 Compression Pipeline Overview

CPM is a progressive compression algorithm, meaning that the compressed bitstream can be pro-
gressively decoded to allow for the progressive transmission of the encoded triangle mesh through
a series of mesh refinements. The compression algorithm comprises the following main steps (see
Figure 1):

• The input triangle mesh is pre-processed to ensure that it is 2-manifold, then a uniform quanti-
zation of XYZ coordinates (on nb q bits bits) and a duplicate vertex removal step are applied.
The latter is performed to ensure a unique vertex spanning tree traversal.

3https://github.com/MEPP-team/MEPP2
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Figure 1: Overview of the progressive encoding process.

• The mesh is iteratively simplified, using batches of edge collapse operators (see Section 3.1.3).
This simplification is guided by a local error metric and is repeated for a given number of
batches (nb max batches) or until the mesh reaches a given minimum number of vertices
(nb min vertices).

• At each simplification step, the corresponding batch of vertex-split operations (which will refine
the mesh during decompression) is encoded efficiently using geometric predictors.

• At the end of the simplification, the base mesh (i.e. the coarsest level of detail) is encoded via
a state-of-the-art single-rate compression algorithm (see Section 3.2.4).

The compressed bitstream is thus composed of (1) a few parameters with the encoded base
model and (2) several chunks of compressed data, where each chunk contains the encoded refinement
information (connectivity+geometry) that allows the next level of detail to be reconstructed. Each
refinement step corresponds to a batch of vertex-split operations that increase the number of vertices
by up to 50% while keeping the model 2-manifold and triangular. This decompression process
terminates either when the last chunk has been decoded or when a sufficient LoD is reached.

2.3 Relevant Parameters

During the compression stage to generate the successive levels of detail (LoD), the CPM method
selects a subset of edges to collapse, with the following rules:

• topological constraints decrease the set of candidates to guarantee either their decoding (edge
collapse transformations are invertible – the associated vertex splits are independent) or the
topology preservation. The restrictions are as follows: (1) if an edge e=(v1,v2) is contracted
into a vertex v, then all incident edges to v cannot be contracted in the same batch (the grey
edges in Figure 2); (2) only edges satisfying the link condition [4] can be collapsed; and (3)
forbid edges that are incident to pivot vertices and whose opposite vertex is adjacent to v (the
blue edges in Figure 2); consequently, no cut-edge is used for more than one vertex split;
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• an error metric calculated per edge is used to select first the edges that introduce minimal
error and that do not violate the aforementioned topological constraints.

Collapse

Split

v₁ v₂ v

p₁

p₂

Figure 2: Edge collapse and vertex split operators: the edge (v1,v2) is contracted into a vertex v and two pivot vertices (p1
and p2) are required to retrieve the right topology during the decoding. In this example, there are 2 cut-edges (v,p1) and
(v,p2). Gray and blue edges are forbidden from the remaining edges to collapse in the current batch.

We now list all parameters that impact the CPM results:

• the single-rate encoding method of the base mesh (the coarsest model);

• the restrictions on the edge candidates to collapse, which can also include stopping criteria
such as the minimal number of vertices in the base mesh or the maximal number of different
LoDs to generate;

• the selected error metric whose results depend on the position of the remaining vertex upon
edge contraction;

• the connectivity coding of a batch of refinements;

• and the geometry coding of a batch of refinements whose result depends on the selected geom-
etry predictor.

Note that geometry coding performance depends on the chosen coordinates quantization. Therefore,
the number of bits for uniform quantization is also an important parameter. Moreover, the selected
entropy coding method further impacts the connectivity and geometry coding performance.

3 Algorithms and Implementation Details

In this section, the progressive simplification and the associated encoding are detailed. Then, we
present the main parameters of our compression framework. Afterward, the progressive refinement
achieved by the decoder is summarized. Finally, we point out the correspondence between algorithms
and source codes.

3.1 Progressive Simplification

Figure 1 gives an overview of the encoding process and Algorithm 1 details the progressive encoder.
Let g be an input triangle mesh composed of vertices, edges, and faces (triangles). Let pm be the
point map that associates a floating-point precision position to each vertex from g. Let gt be a
geometry trait that enables applying operations to points, vectors, and scalars.

In what follows, we describe the preprocessing and uniform quantization step, the edge cost
computation, as well as the batch decimation.
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3.1.1 Preprocessing and Uniform Quantization

In the current implementation, there are 2 preprocesses. The first one ensures that the mesh g will
be 2-manifold afterward: isolated vertices and edges are removed. At this stage, the mesh g cannot
have other local non-manifold configurations: cut vertices, i.e. vertices with at least four incident
border edges, and complex edges, i.e. edges with at least three incident triangles, have been managed
during the mesh file reading by throwing an exception; dangling edges are impossible as the mesh
reader cannot handle them.

Then, the vertex positions of the obtained 2-manifold triangle mesh are uniformly quantized, and
the point map pm is updated consequently. The uniform quantization needs to select the number of
bits to represent each coordinate of a 3D point. This number of bits is usually set to 10, 12 or 16.
Alternately, the optimal number of bits can be set accordingly to the JND profile [14].

The second preprocessing is applied after uniform quantization to eliminate the initial tie-breaks
(for the spanning tree construction, see Section 3.2.1). In the current implementation, all duplicate
vertices are instead relocated by increasing their Z quantized coordinated (and pm is updated).
Therefore, more vertex positions are modified than strictly needed.

3.1.2 Edge Costs

In Algorithm 1, at the beginning of a simplification batch, edge costs are computed to carry a greedy
simplification of edges (via edge collapses). A common approach [8] is the use of a mutable priority
queue (working with a heap) where the pair (edge, cost) with the minimum cost is popped at the top
of the queue to achieve the next local simplification. Then, the edges whose cost has changed due to
the last edge collapse have their cost updated. Note, however, that in our decimation scenario, it is
not necessary to update the cost of edges and in particular of

1. incident edges to a vertex to split (which results from a terminated edge collapse),

2. and incident edges to an adjacent vertex to a vertex to split.

Indeed, these edges are forbidden at the time of the collapse (see Section 3.1.3 for more details on
constraints). Moreover, only local error metrics are proposed in this work to compute the edge costs
(see Section 3.3.1). Therefore, the priority queue of Algorithm 1 can be replaced by a sequence
container of (edge, cost) pairs that are sorted by increasing cost. During the selection of the first
pair, we only check whether the edge is forbidden and take the next pair in the positive.

3.1.3 Batch Decimation

For a given simplification batch with fixed local error metric, position type, and geometric predictor,
there are two key ingredients: the simplification operator which is the edge collapse, and the predicate
function which tells us whether a given edge is collapsible.

The edge collapse [10] is the local simplification operator of our pipeline used to remove one vertex,
two or three edges, and one or two triangles (depending on the collapsed edge being a boundary or an
interior edge). Conversely, its reverse operator is the vertex split which is a local refinement operator
that permits the addition of one vertex, two or three edges and one or two triangles. Figure 2
illustrates the edge collapse and vertex split operators.

The is collapsible predicate function indicates whether a given edge is collapsible. Topology con-
straints play a crucial role as they ensure that the mesh topology is preserved (link condition [4]), and
they monitor edge collapse operations to guarantee the possibility to decode the associated vertex
splits during the decompression, that is, if the collapse of an edge breaks the invertibility of one
previous collapse, then this edge is not collapsible. Encoding constraints are also taken into account,
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Algorithm 1: Progressive encoder

Inputs : A triangle mesh g, positions map pm, a geometry trait gt, metric type,
position type, prediction type, nb q bits, nb max batches, nb min vertices,
use mean th

Output: An encoded buffer (that can be written into a binary file)
1 preprocess(g, pm, gt, nb q bits); // 2-manifold,uniform quantiz.,remove vertex

dupli.

2 nb v ← nb vertices(g);
3 refinement list← ∅;
4 for i← 0 to nb max batches− 1 do
5 list info← ∅; // collapse info: psource,ptarget,pivot vertices,vkept,pkept

6 forbidden edges set← ∅;
/* compute all edge costs and associated kept vertex position */

7 edge pq ← ∅; // sort edges by increasing cost, here using a priority queue

8 forall e in edges(g) do
9 pkept← get kept position(e, g, pm, gt, position type);

10 edge pq.insert(e, cost(e, g, pm, gt, pkept,metric type), pkept);

11 end
/* start a new simplification batch */

12 while not edge pq.empty() and (nb min vertices < nb vertices(g)) and ( not
use mean th or edge pq.get top cost() ≤ edge pq.get mean threshold() ) do

13 (e, pkept)← edge pq.pop(); // get the edge with lowest cost and its

position

14 if is collapsible(e, g, pm, gt, forbidden edges set) then
15 info← {psource, ptarget, pivot vertices};
16 forbidden edges set.insert(incident edges(adjacent vertices(source(e, g), g), g));
17 forbidden edges set.insert(incident edges(adjacent vertices(target(e, g), g), g));
18 vkept← collapse(e, g); // update pq after collapse when needed

19 put(pm, vkept, pkept); // update vkept position

20 info← info ∪ {vkept, pkept};
21 list info.push(info);

22 end

23 end
/* generate refinement info in the spanning tree vertex traversal order */

24 st← compute vertex spanning tree(g, pm);
25 sort(list info, st); // sort tuples using vkept according to st traversal

26 (vertex bitmask, one ring bitmask, reverse bitmask)← get topology info(list info, st);
27 residuals← get geometry info(list info, prediction type, g, pm);
28 refinement list.push({vertex bitmask, one ring bitmask, residuals, reverse bitmask});
29 nb v current← nb vertices(g);
30 if nb v = nb v current or nb v current ≤ nb min vertices then
31 break; // did not remove any vertex or the nb min vertices is reached

32 end
33 nb v ← nb v current;

34 end
35 buffer ← ∅;

/* encode file header */

36 encode param(position type, prediction type, nb q bits, AABB, buffer);
37 encode base mesh draco(g, pm, gt, buffer);
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/* encode refinement information - from coarser to finer LoDs */

38 for i← refinement list.size()− 1 to 0 do
39 {vertex bitmask, one ring bitmask, residuals, reverse bitmask} ← refinement list[i];
40 encode bits draco(vertex bitmask, buffer);
41 encode bits draco(one ring bitmask, buffer);
42 if position type = target then

/* pivot vertices based on st traversal order need to be reversed? */

43 encode bits draco(reverse bitmask, buffer);

44 encode symbols draco(residuals, buffer);

45 return buffer;

we follow the strategy which consists in prohibiting the presence of two adjacent vertices to split
during the decoding of the current LoD [3]. Even if this constraint is more restrictive than the
original CPM method’ constraints, it enables saving about 50% of zero codes in the vertex bitmask
(see Section 3.2.2). Geometric constraints are taken into account as well: if an edge collapse has a
resulting vertex associated with at least one incident triangle normal flip, then this edge collapse is
discarded. Note that geometric predictions that use several neighboring vertex positions to predict
a position could add many constraints (forbid the collapse of many edges), especially when vertex
positions in the k-ring neighborhood are used with k ≥ 2. To avoid these superfluous constraints, we
generate geometric predictions at the end of a batch of edge collapses during the compression and
before a batch of vertex splits during the decompression.

3.2 Encoding

The encoding of the refinement information is composed of three to four bitstream chunks. There
are, in the vertex spanning tree traversal order, the vertex-to-split locations (the vertex bitmask),
the cut-edge locations of the vertex to split (the one-ring bitmask), the reverse bitmask only for the
target position type (allows the reversal of cut-edge order), and the residuals (geometry prediction
errors for the new vertices). These chunks are computed at the end of a decimation batch.

In this section, the algorithm for vertex spanning tree traversal is detailed. Then, the encoding
of the connectivity bitmasks and geometry residuals are described. Finally, the encoding of the file
header is presented.

3.2.1 Vertex Spanning Tree Traversal

The algorithm for the spanning tree construction is an acyclic traversal of the vertices of each con-
nected component, which sorts all vertices and edges of the input mesh by traversal order. It assumes
that no tie-breaks are present, which means that the spanning tree construction is deterministic. For
each connected component, a pair of a root vertex r with its minimum incident edge miner is found
(see Figure 3). The root vertex is the minimum vertex. We, therefore, need a vertex comparator
< defined as follows: v1 < v2 if the coordinates of v1 are strictly smaller than the coordinates of
v2, in the lexicographic order. If v1 and v2 have the same coordinates, then v1 < v2 if degree(v1)
< degree(v2). In the case of equality, three other conditions are successively tested: v1 < v2 if the
sum (resp. min, max) of the degree of adjacent vertices to v1 is lower than the sum (resp. min, max)
of the degree of adjacent vertices to v2. The minimum edge miner is the edge incident to the root
vertex r and the minimum adjacent vertex to r.
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r=v0

v1

v2

v3

v4 v5

v6

v7v8

miner

Figure 3: Vertex spanning tree traversal. The vertex indices correspond to their traversal order.

Once a root vertex and its associated minimum edge are set for a given connected component,
a region growing occurs through all vertices of the connected component using the orientation of
the mesh triangles (usually counter-clockwise). To order several connected components, their root
vertices are sorted according to the vertex comparator < defined above. Therefore, to guarantee the
absence of tie-break, a sufficient condition is that all root vertices have a different position and their
associated minimum incident edge is unique. No constraint applies to other vertices in a 2-manifold
mesh.

3.2.2 Connectivity

The encoding of the mesh connectivity enables, during the decoding, the retrieval of the mesh
connectivity of the next refined LoD. It consists of the encoding of the vertex to split locations and
their associated cut-edge locations. Two to three bitmasks are encoded:

• the vertex bitmask identifies the vertices to split during the decoding (one means vertex split and
zero doing nothing). Bits are given in the spanning tree traversal order. A direct optimization
is to not encode the remaining zero bits once we have no more vertex to split. Because all
adjacent vertices to the vertex to split cannot be split (a constraint that is set during the
encoding), then most of the 0 codes of the vertex bitmask can be predicted and do not need
to be encoded [3] (see Figure 4).

0

1

0

0

0 1

0

01

Start

Figure 4: Encoding of vertex-to-split locations (vertex bitmask): Vertex spanning tree traversal is defined in Figure 3. The
associated vertex bitmask is 010001001. Ones (black) are generated for vertices to split. Zeros (red) can be predicted and
are thus not generated.

• the one-ring bitmask specifies either one (border case) or two cut-edges around each vertex
to split. Bits are given in the clockwise order (if the triangles are counter-clockwise ordered),
starting from the min edge (given by the spanning tree). A direct optimization is to not encode
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the zeros after we met two ones. Note that our coding solution is different from the CPM
method [15].

• the reverse bitmask states whether the order of cut-edges must be reversed for a vertex to
split before the geometric prediction of the new vertex position (one means reversal and zero
no-reversal). This bitmask is needed only for the target position type (see Section 3.3.2).

Bitmasks are entropy coded using the Draco RAns bit encoder [5, 6].

3.2.3 Geometry

Encoding the mesh geometry enables retrieving the v1 and v2 vertex positions computed for each
vertex v that is split during the decoding of the connectivity (see Figure 2). Residuals are the error
vectors between the true positions and the predicted positions. They are entropy encoded using the
Draco symbol encoder [6].

3.2.4 File Header

After all decimation batches have been computed, the file header is encoded. The header is composed
of a few parameters (position type, geometric predictor, quantization bits, and mesh Axis-Aligned
Bounding-Box) and of the base mesh. The base mesh is encoded via a state-of-the-art single-rate
compression algorithm from the Draco library [6, 17] based on the Edgebreaker coding method [18]
(as in the original CPM method).

3.3 Parameter Choice

In this section, we present the main parameters of our compression framework.

3.3.1 Local Error Metric

The metric type sets the priority of simplification operations (apply first the operation that introduces
the minimal error according to the selected metric). Three geometric error metrics are implemented:
the edge length (shortest edges first), the local absolute volume error (part of the metric used in [21]),
and the memoryless variant of QEM error (Quadric Error Metric) [11]. The metric type impacts the
LoD quality in terms of global geometric error and triangle regularity (see Figure 5). For instance,
the edge length tends to produce more uniform meshes with higher geometric error, while the two
other metrics better preserve the shape with less uniform mesh. Note that the original CPM method
uses a variation of QEM [8] using a normalization factor for every error quadric – the number of
planes.

(a) (b) (c) (d)

Figure 5: Capsule model: from left to right (a) the original model, the simplified model respectively with (b) edge length,
(c) local absolute volume error [21], and (d) QEM [11].
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3.3.2 Position Type

The position type for the edge collapse sets the location of the remaining vertex after a collapse.
Two position types are available in our approach: the edges target position (v2 in Figure 2) and the
midpoint position v1+v2

2
. For experimental results, the target position is the only position considered

among the source (v1 in Figure 2) and target positions, as we expect similar performances for both.
We do not consider the optimized position (available for QEM, but needs two residuals per collapse).
Note that the original CPM method uses the midpoint position.

3.3.3 Geometric Predictor

The predictor type sets the geometric prediction for the two point positions v1 and v2 of the resulting
vertex split (see Figure 6). Three predictors are available: no-prediction (encode the two positions
v1 and v2), delta prediction (encode the vector D = v1 − v2), and butterfly prediction (encode one
error residual D −D′, D′ = v′1 − v′2 where v′i is estimated using the butterfly prediction). Note that
the original CPM method uses butterfly prediction.

v1

v2

O x
y

v
ṽ

(a)

ṽ1

v2

O x
y

ṽ

v1
(b)

Figure 6: Geometric prediction with quantized coordinates and midpoint position type: (a) during compression the midpoint
v is approximated by ṽ by rounding coordinates towards positive infinity and (b) during decompression for delta and butterfly
prediction types (that enable retrieving the vector D = v1 − v2) the reconstructed v1 is obtained by rounding the ṽ1
coordinates towards negative infinity; then v2 is obtained using the v2 = v1−D equation. Green (resp. red and black) color
means exact (resp. approximation and original).

3.3.4 Quantization Bits

The number of quantization bits is used to apply a uniform quantization on the input mesh during
the preprocessing step.

3.3.5 Global Termination Criteria

The maximum number of LoDs/batches and the minimum number of vertices in the base mesh are
two global stopping parameters. Note that the condition “minimum number of vertices” is currently
tested after a batch decimation, and the final mesh has thus a number of vertices smaller or equal
to the desired minimum.

3.3.6 Stopping Condition per Batch

A stopping condition parameter decides, for a decimation batch, to collapse either all candidate edges
that fulfill the is collapsible predicate function or only those edges up to a given threshold. This
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threshold is set to the averaged metric distortion associated with edges present in the current mesh
LoD (see Section 3.3.1 for available metric types).

3.4 Progressive Decoder

Algorithm 2 details the progressive decoder. It starts with the decoding of a few parameters (position
type, geometric predictor, quantization bits, and mesh Axis-Aligned Bounding-Box), followed by the
decoding of the base mesh. Then, batches of refinements occur until the input buffer is entirely
decoded. Eventually, the decoded mesh is uniformly dequantized.

Algorithm 2: Progressive decoder

Input : A buffer to decode (that can be read from a binary file)
Outputs: A 2-manifold triangle mesh g, positions map pm
/* decode file header */

1 pos← 0; // parsing position, updated at each decoding step

2 (position type, prediction type, nb q bits, AABB)← decode param(buffer, pos);
3 (g, pm)← decode base mesh draco(buffer, pos);
4 while buffer.size() > pos do

/* decode refinement information */

5 vertex bitmask ← decode bits draco(buffer, pos);
6 one ring bitmask ← decode bits draco(buffer, pos);
7 if position type = target then

/* pivot vertices based on st traversal order need to be reversed? */

8 reverse bitmask ← decode bits draco(buffer, pos);

9 end
10 residuals← decode symbols draco(buffer, pos);

/* generate vertex split info in the spanning tree vertex traversal order

*/

11 st← compute vertex spanning tree(g, pm);
12 list cut edges← get topology info(st, vertex bitmask, one ring bitmask); // list of

cut-edges pointing towards their vertex to split (for each vertex to

split: 1 edge duplicated if 1 pivot, 2 otherwise)

13 pair new positions list←
get geometry info(residuals, reverse bitmask, list cut edges, prediction type, g, pm);
/* apply vertex splits of the decoded refinement batch */

14 forall (e1, e2) in list cut edges do
15 enew ← vertex split(e1, e2, g); // new edge whose target is the new vertex

16 pair new positions← pair new positions list.pop front();
17 put(pm, target(enew, g), pair new positions.first());
18 put(pm, source(enew, g), pair new positions.second());

19 end

20 end
21 postprocess(g, pm, gt, AABB); // uniform dequantiz

22 return (g, pm);
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3.5 Correspondence Between Algorithms and Source Codes

In this section, we point to the associated source files and functions that correspond to the two
algorithms. Source files related to the progressive compression and decompression are located in the
src/FEVV/Filters/CGAL/Progressive Compression folder. These source files are processing filters
that work with the CGAL data structures: CGAL Polyhedral Surface, CGAL Surface Mesh, and
CGAL Linear Cell Complex.

3.5.1 Algorithm 1 (Progressive Encoder)

Algorithm 1 corresponds to the function progressive compression filter line 126 of file progressive com-
pression filter.hpp.

• The preprocess function at line 1 (see Section 3.1.1 for description) corresponds to the prepro-
cess mesh function given at line 59 of the file progressive compression filter.hpp.

• The main iteration loop at line 4 appears at lines 215 to 236 of file progressive compression filter-
.hpp.

• Lines 5 to 28 (inside the main iteration loop) are located in the collapse batch function line
236 of file Compression/Batch collapser.h. This function is called on line 217 of file progres-
sive compression filter.hpp. Lines 29 to 33 (end of the main iteration loop) correspond to lines
226 to 235 of file progressive compression filter.hpp.

• The computation of edge costs and their sorting at lines 7 to 11 correspond to the function com-
pute error called on line 242 of file Compression/Batch collapser.h. This (virtual) function is
declared in the class Error metric from Metrics/Error metric.h file, and three implementations
are proposed from the derived classes Edge length metric, QEM 3D, and Volume preserving.

• The simplification batch of lines 12 to 23 is given at lines 250 to 258 in the collapse batch
function of file Compression/Batch collapser.h.

• The generation of the refinement information at lines 24 to 28 corresponds to lines 272 to 300
in the collapse batch function of file Compression/Batch collapser.h.

• The encoding of the file header at lines 36 to 37 is located at lines 258 to 263 of file progres-
sive compression filter.hpp.

• The encoding of refinement information at lines 38 to 44 is associated with lines 279 to 337 of
file progressive compression filter.hpp.

3.5.2 Algorithm 2 (Progressive Decoder)

Algorithm 2 corresponds to the function progressive decompression filter line 67 of file progres-
sive decompression filter.hpp.

• The decoding of the file header at lines 2 to 3 is located at lines 80 to 140 of file progres-
sive decompression filter.hpp.

• The main iteration loop at line 4 appears at lines 162 to 166 of file progressive decompression fil-
ter.hpp.
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• Lines 5 to 19 (inside the main iteration loop) are located in the decompress binary batch
function line 207 of file Decompression/Batch decompressor.h. This function is called on line
164 of file progressive decompression filter.hpp.

• The decoding of the refinement information at lines 5 to 10 is associated with lines 210 to 225
of file Decompression/Batch decompressor.h.

• The generation of vertex split information at lines 11 to 12 corresponds to lines 231 to 241 in the
decompress binary batch function of file Decompression/Batch decompressor.h. The decoding
of new vertex positions at line 13 is done at the beginning of the split vertices function of file
Decompression/Batch decompressor.h.

• The refinement batch of lines 14 to 19 is given at lines 291 to 343 in the split vertices function
of file Decompression/Batch decompressor.h.

• The postprocess function at line 21 corresponds to the uniform dequantization at lines 170 to
172 of file progressive decompression filter.hpp.

4 Experimental Results and Demonstration

In this section, we describe our data set and analyze the compression performances using several
combinations of local error metric (three), position type (two), and geometric predictor (two).

4.1 Data Set

On the one hand, we may expect that the regularity of the edges and triangles may affect the
performance of the geometry predictor. On the other hand, the local error metric will modify the
regularity of the mesh as mentioned in Section 3.3.1. The data set is, therefore, composed of four
regular mesh models and four irregular mesh models (see Figure 7). The selected meshes represent
smooth surfaces and are expected to work well with the butterfly geometry prediction (especially
when the mesh is sufficiently regular). A uniform quantization of XYZ coordinates is applied as a
preprocess. See Table 1 for model details.

We set the minimum number of vertices (nb min vertices) to 5% of the number of vertices
present in the full resolution mesh (as in CPM), and we set the maximum number of batches
(nb max batches) to a value large enough to ensure that the minimum number of vertices is reached
for the base mesh. We performed this experiment with 10, 12, and 16 quantization bits.

4.2 Compression Performances

4.2.1 Bit Allocation

In Table 1, we carried out an experiment with the local absolute volume error metric, the midpoint
position, and the butterfly prediction. The obtained results show that the header information is about
1.23 bpv (bits per vertex) per model. The connectivity information takes about 7.26 bpv and can be
reduced by about 1.5 bpv for regular meshes (less improvement is expected for irregular meshes) by
following the extension proposed in the next section to optimize the connectivity bitmask. Depending
on the chosen quantization, the geometry information varies between 5.91 and 23.35 bpv for regular
meshes and between 6.46 and 23.86 bpv for irregular meshes. The CPM original implementation [15]
yields about 3.5 bpt (bits per triangle) ≈ 7 bpv for the connectivity information and about 8.1 bpt ≈
16.2 bpv for the geometry information quantized with 10 bits. Our CPM implementation is therefore
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Data set: the first row is composed of regular mesh models while the second row is made of irregular models: (a)
drum, (b) blade, (c) dragon, (d) bimba, (e) ari, (f) artec, (g) dragon, and (h) happy.

a little bit less effective for the connectivity information (but we can apply a connectivity bitmask
optimization as already mentioned) and more efficient than the original CPM for the geometry
information. As we noticed that the geometry information bpv of our implementation improves
with the size of the input mesh (the more there are residuals, the more the entropy coders are
efficient), we compare the geometry bpv for the fandisk model presented in [15] (only 6475 vertices)
and our method improves about 1.67 bpv for the geometry information. Table 1 shows, for regular
meshes, results between 17.74 and 19.99 bpv for 12 bits quantization which are of the same order
as results obtained for state-of-the-art progressive mesh compression algorithms [13] when including
the connectivity optimization of about 1.5 bpv.

4.2.2 Rate-Distortion (R-D) Curves

Figures 8 and 9 present Rate-Distortion (RD) curves. A RD curve represents the amount of time
(proportional to the number of bits per vertex to be transmitted) necessary to approximately re-
construct an input signal without exceeding a specified distortion. We observe that the butterfly
prediction and the midpoint position are consistently better in terms of bpv than, respectively, the
delta prediction and the target position. As expected, the midpoint position introduces a little bit
more distortion than the target position, because the midpoint position is not necessarily onto the
original surface, while the target position is. We also notice that the edge metric usually provides the
highest distortion with the smallest bpv and that the local absolute volume error is the best metric
for the 12 bits quantized data set.
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Model #vertices Header Conn. Geom Total Comp. Decomp. #LoD
bpv bpv bpv bpv time in s time in s

drum reg. Q16 1.55 7.21 20.59 29.35 27
Q12 218294 1.05 7.27 9.42 17.74 27 7 18
Q10 0.85 7.35 5.91 14.11 26

blade reg. Q16 1.78 7.22 23.35 32.35 5
Q12 169730 1.26 7.26 11.47 19.99 20 5 18
Q10 1.02 7.34 7.09 15.45 6

dragon reg. Q16 1.63 7.20 22.69 31.52 7
Q12 203575 1.13 7.23 10.90 19.26 24 7 18
Q10 0.90 7.29 6.51 14.70 8

bimba reg. Q16 1.64 7.28 21.74 30.66 26
Q12 192135 1.14 7.32 10.39 18.85 26 6 18
Q10 0.89 7.32 6.19 14.40 27

ari irr. Q16 1.61 7.23 22.60 31.44 26
Q12 202502 1.09 7.26 10.92 19.27 25 6 18
Q10 0.83 7.28 6.46 14.57 25

artec irr. Q16 1.85 7.12 23.09 32.06 19 5 17
Q12 165621 1.11 7.22 11.42 19.75 18 6 18
Q10 0.90 7.32 7.21 15.43 19 5 18

dragon irr. Q16 1.66 7.20 23.86 32.72 6
Q12 202502 1.13 7.22 11.96 20.31 25 6 18
Q10 0.87 7.25 7.11 15.23 7

happy irr. Q16 1.62 7.22 23.07 31.91 24
Q12 199925 1.09 7.25 11.29 19.63 26 6 18
Q10 0.85 7.27 6.64 14.76 25

Table 1: Data set and compression results were obtained with the local absolute volume error metric, the midpoint position,
and the butterfly prediction. bpv denotes the number of bits per vertex. Running times are given for the CGAL Surface
Mesh data structure. See Figure 7 for model screenshots.

4.2.3 Timings

We ran our experiments on a laptop with an Intel Core i7 clocked at 2.8Ghz, with 32GBytes of
memory. Table 1 shows that compression is more computation intensive than decompression. That
is due to the computation of all edge costs for each batch but also to the is collapsible predicate
checks. To avoid exceeding 20 seconds during compression, meshes with less than 165k vertices are
necessary.

During the decompression for the presented data set in Table 1, the first ten LoDs are usually
decoded in less than 2 seconds. We focused on writing generic code. Hence our implementation is
not as fast as a specific data structure implementation could be. We have not taken into account the
possibilities of parallelizing certain parts of code. However, we expect that our code will enable fast
prototyping of new ideas for the community.

4.3 Online Demonstration

The online demonstration illustrates the algorithm described in the paper entitled “Compressed
Progressive Meshes” initially proposed in [15]. The idea of this demonstration is to show how a
2-manifold triangle mesh can be compressed and decompressed, as well as how the partial decom-
pression feature works. First, the selected 2-manifold triangle mesh is taken as input and compressed
into a file using a set of input parameters (see Section 3.3 for description). Then, the compressed
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Figure 8: Median degree 2 polynomial fit of Rate-Distortion data for a set of 4 regular models. The distortion is the RMSE
normalized by the diagonal length of the mesh AABB. The chosen quantization is 12 bits.

file is decompressed, allowing us to see the full decompression of the mesh. Next, the partial decom-
pression of the mesh is demonstrated. Finally, the input mesh and the resulting full and partially
decompressed meshes are displayed in the 3D viewer, allowing for comparison. This allows us to see
the progressive reconstruction features of the algorithm.

In the following section, we discuss possible extensions of this work.

5 Possible Extensions

5.1 Remove Only Tie-breaks

For 2-manifold meshes, the uniqueness of the spanning tree construction is guaranteed when all root
vertices have a different position and their associated minimum incident edge is unique. Therefore,
the remove duplicates preprocessing step should be replaced by a remove root tie-breaks step. This
limits the number of relocated vertices to only a few and restrain the visual artifacts observed when
a relocated vertex creates a geometric fold, especially when the number of quantization bits is low.
Also, the vertex relocation strategy needs to be improved to avoid visual artifacts.

17



Vincent Vidal, Lucas Dubouchet, Guillaume Lavoué, Pierre Alliez

Figure 9: Median degree 2 polynomial fit of Rate-Distortion data for a set of 4 irregular models. The distortion is the RMSE
normalized by the diagonal length of the mesh AABB. The chosen quantization is 12 bits.

5.2 Connectivity Bitmask Optimizations

In the current implementation, we do not apply all possible bit optimization techniques. For instance,
an optimization of the one-ring bitmask required to retrieve the topology information (the cut-edges)
can be performed as follows. To improve the encoding of the cut-edge symbols for each vertex to
split, the idea is to sort adjacent vertices (stable sort) in descending order of probability of being a
pivot vertex (a pivot vertex is incident to a cut-edge as can be seen in Figure 2). If the probability
estimation is large enough, then instead of having the two activated bits at a random position, they
should be rather located at the beginning of the cut-edge symbol to code, which improves in our
initial experiments entropy coding performance. See [16, 17] for two illustrating examples.

There are other avenues to explore, for example, it seems that the entropy coding of the con-
nectivity buffers can be optimized according to the batch information size. During our experiments,
we obtained that, for small batches/LoDs, 8 bits packing seems to be more efficient than the Draco
RAns encoder. Conversely, for large batches, the Draco symbol encoder is more efficient than the
Draco RAns encoder.

5.3 Entropy Coding of Geometry Residuals

Experimentally, another way to improve the entropy coding performance, especially for geometrical
residuals of finer LoDs, is to group the encoding of two or three successive LoDs, namely the same
entropy coder is shared for two or three successive LoDs instead of one LoD. We can also see such an
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approach as a way to compensate for a low vertex removal rate during compression due to selected
edge constraints, which results in a high number of LoDs. For instance, in the CPM approach [15]
we expect an average vertex removal rate for all decimation batches of about 25 percent. If our
average vertex removal rate τv is smaller, then we can group the encoding of bln(1− 0, 25)/ln(1− τv)c
successive LoDs.

5.4 Adaptive Quantization

Noticing that at very low mesh resolution, the geometric error introduced by quantization is insignif-
icant compared to that caused by the reduced number of mesh elements, several authors [12, 17]
propose the adaptive quantization of attributes. It improves coding performances, especially at low
bit rates. Moreover, the number of bits for the initial quantization can be set sufficiently high (e.g.
≥ 16) and the adaptive quantization will adjust it.

5.5 Local Frenet Frame

Alliez et al. [1] showed the interest of projecting the residual vectors into a local Frenet frame when
the displacement is rather concentrated in a direction (e.g. normal direction). However, even if
there is a benefit in our case [3], the displacements are rather localized in the tangent plane and the
expected gain is smaller than in [1].

5.6 Mesh Attributes

Any other vertex/edge/face attribute can be compressed the same way we encode the vertex loca-
tions, namely, we need to set an initial number of quantization bits, an error metric to monitor the
degradation during the decimation, and a predictor to decrease the magnitude of the error residuals.
The attribute order can be set according to the spanning tree traversal order. Then, the attribute’
bitstream chunk can be added to its LoD refinement chunk.

Note that mesh texture coordinates require particular attention, as texture seams (when two or
more regions meet at a vertex) must be dealt with properly during encoding, especially if region
destruction is authorized during the simplification (which results in a region creation during the
decoding). Eventually, note that for a textured mesh, an initial texture re-atlasing and an optimal
multiplexing between mesh and textures data must be set up [3, 17].

5.7 Polygonal and Non-Manifold Meshes

Polygonal or non-manifold meshes require using additional symbols to describe the topological modi-
fications to apply [3]. To avoid such costly symbols for non-manifold triangular meshes, non-manifold
edges (complex edges) and vertices (cut vertices) can be duplicated before encoding and merged after
decoding.

6 Conclusion

We presented an implementation of the Compressed Progressive Meshes (CPM) method and exten-
sions. This progressive compression method allows for the transmission of several Levels of Detail.
We show that the combination of the local absolute volume error metric, the midpoint position,
and the butterfly prediction parameters yields the best results in terms of rate-distortion for our
selection of several meshes, with 12 bits uniform XYZ quantization. We proposed a few avenues for
improvement. This contribution can be seen as a baseline for the community.
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The code for this implementation is available through the MEPP2 platform.

Image Credits

All images copyright Vincent Vidal, license CC BY-SA.

Acknowledgment

This work was supported by French National Research Agency as part of ANR-PISCo project (ANR-
17-CE33-0005).

References

[1] P. Alliez and M. Desbrun, Progressive compression for lossless transmission of triangle
meshes, in Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 2001,
pp. 195–202. https://doi.org/10.1145/383259.383281.

[2] M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt, OpenMesh - a generic and
efficient polygon mesh data structure, 2002.

[3] F. Caillaud, V. Vidal, F. Dupont, and G. Lavoué, Progressive compression of arbitrary
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