
Published in Image Processing On Line on 2023�06�07.
Submitted on 2022�11�24, accepted on 2022�11�25.
ISSN 2105�1232© 2023 IPOL & the authors CC�BY�NC�SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2023.447

2
0
2
1
/
1
1
/
2
1
v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Semantic Segmentation: A Zoology of Deep Architectures

Aitor Artola

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France

aitor.artola@ens-paris-saclay.fr

Communicated by Gabriele Facciolo Demo edited by Aitor Artola

Abstract

In this paper we review the evolution of deep architectures for semantic segmentation. The
�rst successful model was fully convolutional network (FCN) published in CVPR in 2015. Since
then, the subject has become very popular and many methods have been published, mainly
proposing improvements of FCN. We describe in detail the Pyramid Scene Parsing Network
(PSPnet) and DeepLabV3, in addition to FCN, which provide a multi-scale description and
increase the resolution of segmentation. In recent years, convolutional architectures have reached
a bottleneck and have been surpassed by transformers from natural language processing (NLP),
even though these models are generally larger and slower. We have chosen to discuss about
the Segmentation Transformer (SETR), a �rst architecture with a transformer backbone. We
also discuss SegFormer, that includes a multi-scale interpretation and tricks to decrease the size
and inference time of the network. The networks presented in the demo come from the MM-
Segmentation library, an open source semantic segmentation toolbox based on PyTorch. We
propose to compare these methods qualitatively on individual images, and not on global metrics
on databases as is usually the case. We compare these architectures on images outside of their
training set. We also invite the readers to make their own comparison and derive their own
conclusions.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README �le of the archive. The original versions
of the source codes used by the online demo are available here2.

This is an MLBriefs article, the source code has not been reviewed!
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2https://github.com/open-mmlab/mmsegmentation
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1 Introduction

Semantic segmentation consists in a classi�cation at the pixel level of what composes the scene of an
image. Since a mathematical modeling of these semantic classes is an arduous task, a solution is to
learn on a training base �lters that capture the meaning of the image and that are able to reproduce
this segmentation on new data outside this training set. This domain has been growing rapidly in
the last few years due to the progress in deep learning and the emergence of databases with rich and
varied annotations.

The �rst successful architectures for semantic segmentation derived from image classi�cation
architectures. These are convolutional neural networks (CNN) that convolve the image with learned
kernels and activation layers. These convolutions create a feature image that describes an area of
the input image. The deep layers usually describe areas larger than the input layers and are often
downsampled for e�ciency. In classi�cation, this descriptor image is then processed and produces
probabilities for each class at an image level. In segmentation, this descriptor image is upsampled so
that the prediction is performed at a pixel level.

CNN-based methods often use a classi�cation backbone like Resnet [5]. This backbone produces
the concentrated descriptors of the image to be processed to assign each area to a class. These
methods, such as FCN [8], PSPNet [11] or DeepLabV3 [1], were until recently, the state of the art
in semantic segmentation.

The problem with most classic CNNs is that the scale of analysis is proportional to the number
of layers, thus leading to heavy networks. A solution to this problem is downsampling. However,
this solution decreases the resolution of the analysis. Other solutions such as atrous convolutions
can also mitigate this problem.

The self-attention mechanism [9] used in transformer blocks, inherited from natural language
processing (NLP), allows for a global analysis of the image in a single layer. Transformer based
methods now dominate the state of the art in semantic segmentation. Evolution in the architecture
of the transformer block enabled to reach a new level of performance. We can mention the SWin
Transformer [7], which applies the attention mechanics on sliding windows instead of the whole image,
leading to performance gains in detection quality and in computation time.

2 Convolutional Neural Networks (CNN)

2.1 Fully Convolutional Network (FCN)[8]

A backbone �rst produces dense semantic descriptors of the image. These descriptors are then
convolved to predict scores per classes and then upsampled to the pixel level. FCN [8], described in
Figure 1, uses a Resnet [5] backbone.
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Figure 1: Description of FCN [8]. An image is given to a backbone (in green) to generate semantic features of lower spatial
resolution. These features are then convolved to predict a score per class and upsampled to the pixel level.
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2.2 Pyramid Scene Parsing Network (PSPnet) [11]

The main problem with FCN is that the output features of Resnet represent a single scale of the
image. This can cause problems in getting a global context. PSPnet [11] proposes an additional
head to re�ne its features.

The idea is to make several pooling of these output features to merge them locally. These
merged features form a pooling pyramid as shown in red in Figure 2. Pooling allows to aggregate a
patch of features by average or max, therefore increasing the network's receptive �eld and improving
robustness to translation. Each pooled feature of the pyramid is convolved and upsampled to be
stacked and merged with the backbone features. The goal of this stack of features is to aggregate
local information of the resnet output and a multi-scale information of the scene.

Pyramid Pooling
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Figure 2: PSPnet [11] principle. The improvement compared to FCN [8] is the pyramid pooling (in red) performing a
multi-scale analysis. Each shade of red corresponds to a di�erent pooling size and therefore a di�erent scale. These scales
are then upsampled and stacked with the features to compute the class score. See Figure 1 for the signi�cation of the
di�erent arrows.

2.3 DeepLabV3 and DeepLabV3+ [1]

Deeplabv3 [1] adapts backbones used in segmentation methods in a way that avoids the resolution
loss caused by striding. Convolutions with a large striding are replaced by dilated convolutions with
an atrous rate equal to the striding it replaces. Following convolutions are modi�ed to take into
account the removal of the striding. This means that the receptive �eld of the network stays the
same.

Dilated convolutions are convolutions with holes in their kernel. They are de�ned as

f(x, y) =
∑
k

∑
l

∑
m

I(x+ rk, y + rl,m)W (k, l,m) +B(m), (1)

where I is the image, (x, y) is the spatial position where the convolution is evaluated, (W,B) is the
weights of the kernel and r is the atrous rate. The case r = 1 corresponds to a normal convolution.

Similarly to PSPnet, a pyramid head, Atrous Spatial Pyramid Pooling (ASPP) in red in Figure
3, is used to perform a multi-scale analysis. This module is composed of several parallel convolutions
with di�erent atrous rates that act as a multi-scale analysis of the features. The use of atrous
convolutions to replace the pooling of PSPnet allows the network to have a pyramid that does not
decrease the spatial dimension. These features are then concatenated and merged with another
convolution to give a compact multi-scale feature map.

The improvement of deeplabv3+ over deeplabv3 comes from the use of intermediate backbone
features. Intermediate features with higher resolution are extracted from the backbone, in blue in
Figure 3. They are set to the same size, concatenated and merged, and then concatenated with the
features from the ASPP module and merged again. This �nal descriptor map is upsampled to be used
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Figure 3: Description of Deeplabv3+ [1]. The atrous pyramid pooling (in red) allows for a multi-scale analysis without loss
of resolution. Each shade of red corresponds to a di�erent atrous rate. These scales are then upsampled and stacked with
the intermediate features (in blue) of the backbone to give a segmentation with a better resolution. See Figure 1 for the
signi�cation of the di�erent arrows.

for segmentation. The use of these intermediate layers allows to increase the quality of segmentation
on the details.

3 Transformers

The problem with CNNs is that a convolution is a local analysis layer. This means that in order to
have a global description of the image, it is necessary to increase the number of convolutions or use
striding so that the receptive �lter of the network is at the scale of the image.

Inherited from NLP, the transformer block [9] allows for a global analysis of the image in one
single layer, i.e. all pixels of the input image are involved in the creation of a feature.

3.1 The Visual Transformer (ViT) Block [3]

We �rst describe the ViT [3] encoder block before presenting possible modi�cations. In the context
of NLP, words of a text are vectorized and then given to the transformer. In image processing, the
concept of words is replaced by image patches. An image I ∈ RH×W×3 is cut into several patches
of dimension d × d × 3 = D. Before being used in transformers blocks, patches go through several
embedding steps. The �rst one is patch embedding: the patches x ∈ RD are �attened and projected
onto another space with a linear layer We ∈ RD×D. Then a trainable embedding patch zclass ∈ RD is
concatenated at the beginning of the patch sequence. The last embedding is a position embedding:
a learnable position vector bpos ∈ R(N+1)×D is added to the patches sequence. These steps form the
initial vectors sequence z0 as described below

z0 = (zclass,Wex1, . . . ,WexN) + bpos. (2)

ViT aggregates several transformer blocks in a sequential manner with the kth transformer encoding
zk−1 into zk. A Transformer block is composed of a multi-head self-attention layer (MSA) and a feed
forward network (FFN) with normalization layers (NL), and residual connection such that

ẑk = MSAk(NL(zk−1)) + zk−1,
zk = FFNk(NL(ẑk)) + ẑk.

(3)
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In a self-attention layer (SA), each patch is �rst transformed into a query, a key and a value
(q, k, v) ∈ RN×3CSA thanks to a linear operation of weight Uqkv ∈ RC×3CSA . The keys and queries
of all patches are then compared one by one and given to a softmax to produce an attention array
A ∈ RN×N , which is used as a weighting to merge the values v. This corresponds to

(q, k, v) = zUqkv,

A = softmax( qkT√
CSA

),

SA(z) = Av.

(4)

Equation (4) describes the operation for a single head. This operation is performed in parallel on nh

independent heads and aggregated by a linear operation with the weight UMH ∈ RnhCSA×C .

MSA(z) = [SA1(z), . . . , SAnh
(z)]UMH . (5)

The FFN is composed of series of linear layers followed by activation layers. In practice, it is
often two linear layers with an activation layer in between like Equation (6), where W1 ∈ RC×γC and
b1 ∈ RγC are the weights and bias of the �rst linear layer and W2 ∈ RγC×C and b2 ∈ RC are those of
the second one. The parameter γ > 1 is the expansion rate of the FFN. That is,

FFN(z) = max(0, zW1 + b1)W2 + b2 (6)

The �rst advantage of ViT compared to CNN is the non-local analysis mechanism, that requires
only one block. However, it is often more expensive in parameters and computation time because it
implies using the entire image to produce the features of each patch. While this architecture avoids
downsampling to be global, it does not bene�t from the computational cost reduction induced by
the downsampling.

3.2 Segmentation Transformer (SETR) [12]

SETR [12] is one of the �rst segmentation architectures to use mainly transformers. Previously,
transformers were mostly used as heads in CNN/transformer hybrid methods. SETR, presented in
Figure 4, uses ViT as backbone.
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Figure 4: Description of SETR [12]. A ViT backbone [3] (in purple) is composed of several transformer blocks. Features (in
blue) are extracted from several intermediate blocks, stacked and convolved to get the scores of each class. See Figure 1
for the signi�cation of the di�erent arrows.

3.3 Segformer [10]

SegFormer [10], shown in Figure 5, proposes a modi�cation of the backbone of SETR to address
various issues. It includes a hierarchical mechanism and downsampling like in CNNs. Patch embed-
ding is done by convolutions with overlap. The passage from one scale to another is done by a new
embedding with a new convolution that decreases the spatial size of the features map.
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The �rst embedding of the image I ∈ RH×W×3 is performed using a convolution layer with kernels
of size 7 × 7 and striding of 4. This gives an embedding z0 ∈ RH/4×W/4×C1 of overlapping patches,
with c1 the number of channels. The next embedding works in the same way as the initial embedding.
The following embeddings are done with a 3 × 3 convolution and a downsampling with a stride of
2. This convolution reduces the spatial resolution but increases the number of features, similarly to
CNN encoders.
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Figure 5: Description of SegFormer [10]. In Segformer, the transformer backbone is multi-scale. Features (in blue) are
extracted from several intermediate blocks, stacked and convolved to get the scores of each class. See Figure 1 for the
signi�cation of the di�erent arrows.

Absolute position encoding is problematic because images do not have a �xed size for inference.
It is better to use the relative patches position. This is done here by modifying FFN and by merging
neighboring patches with a 3× 3 convolution before the non linearity..

The MSA operation is computationally expensive. For q, k, v ∈ RH×W×3CSA the complexity is in
O((HW )2). To reduce the complexity, MSA is modi�ed so that the keys and values are downsampled
by a factor R by applying a convolution of size R×R with a striding of R while keeping the number
of channels unchanged. At the output, as the query stays the same and the resolution remains
unchanged, the complexity becomes O((HW/R)2).

At each scale k, the modi�ed transformer block is applied nk times before re-embedding. Each
scale returns an encoding of the image that is then upsampled and merged using a �nal convolution
with a 1 × 1 kernel size to produce features of dimension C. These features are then provided to a
softmax layer to generate class scores.

4 Demo's Architecture Details

Implementations of these architectures is available in the demo. It comes from the MM-Segmentation
library [2], which is an open source semantic segmentation toolbox based on PyTorch. It is a part of
the OpenMMLab project. Implementation details are given in Table 1.

All the models are trained on the same dataset with the same classes. The dataset that was used
is ADE20K [13], a regular image dataset for semantic segmentation. These images are fully annotated
with 150 classes and split into 20K training images and 2K images for validation. Training images
are randomly cropped to 512 × 512 to create batches. The objective of the training is to minimize
the cross-entropy between the per-pixel model prediction and the ground truth.
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All CNNs presented in the demo use Resnet-101 as backbone, with an output stride of 8. SETR
uses ViT-L as a backbone and SegFormer a MiT-B4 backbone [4].

Models Backbone
BackBone
Out Stride

mIoU
Mem
(GB)

Param
Mem(MB)

fps

FCN Resnet-101 8 39.91 12 268 14.78
PSPnet Resnet-101 8 44.39 12 266 15.3
DeepLabV3+ Resnet-101 8 45.47 14.1 333 14.16
SETR ViT-L 1 48.28 18.4 1193 4.72
SegFormer MiT-B4 32 48.46 6.1 240 15.45

Table 1: Segmentation models implementation details and training results. The mIoU are also given by the documentation
of the library of MM-Segmentation [2].

Table 1 evaluates the models according to their mean Intersection over Union (mIoU) whose
formula for one class i is IoUi =

TPi

TPi+FPi+FNi
. The IoU of a class is de�ned as the number of true

positives (intersection of detected and actual positives) over the number of true positives plus the
number of false positives, plus the number of false negatives (union of detected and actual positives).
This metric is one of the most popular to measure the quality of semantic segmentation.

Transformer methods have a better mIoU than CNN methods explaining why they have replaced
them. Table 1 also presents other indicators than the detection quality: it gives the fps of the model,
the memory used during inference and the number of parameters.

5 Experiments

The overall statistical results on the test base show that transformers perform better. In this part of
the experimentation we analyze some qualitative example. We encourage the users to do the same
using the demo and derive their own conclusions.

We also show the entropy of predictions alongside the segmentation results. Since the prediction
of the network is probabilities for each class, the entropy of the prediction can be estimated

H(X) = E[− log(p(X))] =
C∑
c=1

p(xc), log(p(xc)), (7)

with X = (xc)c∈{1,...,C} the prediction of the network and C the number of classes. The entropy
represents the con�dence of the network: a low entropy means that the model has chosen a class with
a high con�dence. This is particularly interesting to analyze failures, since it allows to discriminate
between low con�dence error and high con�dence errors that might be problematic.

5.1 Architectures Comparison

We �rst evaluate the di�erent methods on an example from the ADE20K test base. Figures 6 and 7
show an image of a house and the segmentation by the �ve methods alongside their entropy. We
notice at �rst that the entropy is always high at the edge between two classes. This is to be expected
because they are transition zones, and thus are di�cult to assign.

All the architectures classify well the sky and grass with low entropy. There are however other
areas that are more problematic: the house has a high entropy for all three CNN based networks.
Moreover FCN has classi�ed half of it as a �building� while Transformers classi�es it as a �house�
with high con�dence. This show that FCN can confuse semantically close classes.
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Figure 6: Image of a house from ADE20K use to evaluate the �ve networks in the Figure 7.

All methods seem to also struggle with the small path in the bottom right of the image. Networks
are uncertain whether it is a path, a road or a sidewalk. While these are still semantically similar
classes and thus are not major mistakes, we can note that CNNs are more likely to predict many small
areas with similar classes whereas transformers are more likely to produce a single large prediction.
This can also be seen in the middle-left region of the image with the trees and bushes: CNNs struggle
to delimit the tree from the plants.

It seems that transformers make a more global decision, leading to more uniform predictions.
However, they might miss some more important local details. For example, only the CNNs manage
to see the staircase at the entrance of the house. This staircase being of the same material and
texture than the path, it might have in�uenced the transformers to think that both are the same
objects.

Overall, all methods work well despite some confusion between similar concepts. On the resolution
of the segmentation, the chimneys of the house are detected as sky, which is probably due to the low
spatial resolution of these architectures. We notice however that DeeplabV3+, one of the methods
that gives more importance to the resolution and details, delimits the transition between the bushes
and the wall in the center left better than the other methods.

5.2 Training Biases

Regardless the architecture, these methods are very dependent on the training database. We tested
images from COCO [6], another natural image dataset to verify the generalization capabilities of the
networks.

First, it is di�cult to fool the network on classes that it has seen in large quantities during its
training. It generalizes rather well to people, vehicles, buildings and landscapes. So we chose the
class animals of which there are only 533 examples in ADE20K. They are often a small part of a
landscape with a wide angle of view. We can �nd many examples of various animals in the COCO
database which are often the main element of the image.
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Figure 7: Segmentation predictions using the �ve architectures on a house image from the ADE20K validation set. The
input image is shown in Figure 6. Each row represents a di�erent network. The left column gives the entropy of the
detection (a white pixel representing a high entropy), while the right column corresponds to the segmentation alongside the
name and color of the detected classes.
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Figure 8 shows two di�erent images of sheeps from COCO. The �rst one shows them from
far away in a landscape, while in the second one they are much closer. The results of semantic
segmentation for the �ve networks are shown in Figures 10 and 11. In both cases, the networks
seem to segment the background and the landscape well. The transitions between classes are less
successful in these examples, where we see that some of them overstep. The results are more mixed
with the sheeps, that the CNNs confuse with people in the �rst image and with water in the second.
Segformer also makes mistakes on the animals in the second image. The results on SETR are more
impressive because it detects the animals well, without making big mistakes, while it has seen a small
number of sheeps in training and rarely zoomed in so much.

Figure 8: Two Images of sheeps from COCO, the one on the left is used in Figure 10, and the one on the right is used in
Figure 11.

Figure 9: Two Images of animals from COCO, the one on the left is a cat used in Figure 12, and the one on the right is a
bird used in Figure 13.

The errors become much more extreme when we take rarer animals in ADE20K, photographed
from very close. Figures 9, 12 and 13 show a cat head and a bird from COCO dataset, and the
results of their segmentation with the �ve networks. The transformers manage to detect a part of
the bird as an animal, where the CNNs see mainly a mountain. The cat is much more complicated,
probably because it is not entirely in the picture. Only SETR shows animal label on a few pixels,
no network can really �nd the animal.

Entropy is rarely low where there are errors. The exception is FCN, which gives high con�dence
to bad labels where it should detect animals. In general the networks are less con�dent on COCO
images, even on good classi�cations, which shows a di�culty to generalize. Transformers are more
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Figure 10: Segmentation predictions using the �ve architectures on a landscape with sheeps from the COCO validation set.
The input image is shown in Figure 8-left. Each row represents a di�erent network. The left column gives the entropy of
the detection (a white pixel representing a high entropy), while the right column corresponds to the segmentation alongside
the name and color of the detected classes.
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Figure 11: Segmentation predictions using the �ve architectures on an image of two sheeps from the COCO validation set.
The input image is shown in Figure 8-right. Each line represents a di�erent network. The left column gives the entropy of
the detection (a white pixel representing a high entropy), while the right column corresponds to the segmentation alongside
the name and color of the detected classes.
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Figure 12: Segmentation predictions using the �ve architectures on a cat image from the ADE20K validation set. The input
image is shown in Figure 9. Each row represents a di�erent network. The left column gives the entropy of the detection (a
white pixel representing a high entropy), while the right column corresponds to the segmentation alongside the name and
color of the detected classes.
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Figure 13: Segmentation predictions using the �ve architectures on a bird image from the ADE20K validation set. The input
image is shown in Figure 9. Each row represents a di�erent network. The left column gives the entropy of the detection (a
white pixel representing a high entropy), while the right column corresponds to the segmentation alongside the name and
color of the detected classes.
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likely to be con�dent on their good answers and uncon�dent on the bad ones. They also make less
errors on these new images which show, on these examples, a better robustness to variability.

Image Credits

ADE20K dataset [13]

COCO dataset [6]
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