
Published in Image Processing On Line on 2023–01–27.
Submitted on 2023–01–10, accepted on 2023–01–10.
ISSN 2105–1232 ➞ 2023 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2023.459

2
0
2
1
/
1
1
/
2
1

v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

Monocular Depth Estimation: a Review of the 2022 State

of the Art

Thibaud Ehret
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Abstract

We compare five monocular depth estimation methods based on deep learning. This comparison
focuses on how well methods generalize rather than a quantitative comparison on a specific
dataset. This study shows that while monocular depth estimation methods work well on images
similar to training images, they often show artifacts when applied on images out of the training
distribution. We evaluate the different methods with images similar to training data and images
with unusual point of views (e.g. top-down) or paintings. The readers are invited to judge by
themselves about the advantages and drawbacks of all methods by submitting their own images
to the online demo associated with the present paper.

Source Code

The source codes and documentation for the algorithms presented in this paper are available
from the web page of this article1. Usage instructions are included in the README.md file of
each archive. The original implementations of the methods are available at the following links:
MiDaS and DPT methods2, Adabins method3, GLPDepth method4, 3DShape method5.

This is an MLBriefs article, the source codes have not been reviewed!

Keywords: depth; monocular depth estimation; deep learning; comparison; cutdepth; adabins;
3d; midas; dpt

1https://doi.org/10.5201/ipol.2023.459
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Monocular Depth Estimation: a Review of the 2022 State of the Art

1 Introduction

The goal of monocular depth estimation is to predict the distance to the scene using only a single RGB
image as input. This is particularly important in setups where other 3D acquisition modes such as
LiDaR or stereo vision, are not possible or too costly such as automatic driving [23] or robotic [18]. It
can also be useful to generate realistic training data for other applications, such as optical flow [30].
In this paper, we compare five recent deep-learning based monocular depth estimation methods:
GPLDepth [15] (2022), Adabins [1] (2021), 3DShape [34] (2021), MiDaS [22] (2020) and DPT [21]
(2021). The authors of all these methods made their code and pretrained network freely available
allowing to reproduce their results. In Sections 2 to 6, we briefly describe the five methods compared
in this paper. In Section 7 we compare visually the results of the methods. The comparison is
performed using the inferno colormap (see Figure 1). All these methods are parameters free allowing
for a simpler comparison between all methods.

max min
Distance

Figure 1: Colormap used for the comparison. Dark purple corresponds to the furthest distances and bright yellow to the
closest distances.

2 GLPDepth [15]

GLPDepth uses a transformer based encoder-decoder (see Figure 2) to predict the pixel wise depth
from the embedded patches of the input image. The main improvement over previous methods is
the use of a newly proposed data augmentation trick called vertical cutdepth. This is an extension
of the data augmentation method presented in [14]. The main idea of [14] is to replace parts of the
input image by the ground truth depth. While [14] proposes to select the replaced regions completely
at random, vertical cutdepth suggests that it is better to replace vertical bands of the image since
monocular depth estimation methods use mainly the vertical information for the prediction [6]. An
example of augmentation is shown in Figure 3.

GLPDepth is trained on the NYU depth V2 dataset using the scale invariant log-scale loss [7]

L =
1

n

∑

i

(log(di)− log(d̂i))
2 −

1

2n2

(

∑

i

(log(di)− log(d̂i))

)2

, (1)

with n the number of pixels in the batch, d the ground truth depth and d̂ the depth predicted by
the neural network.
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Figure 2: Architecture of GLPDepth [15].

Figure 3: From top left to bottom right: reference image, ground truth depth (black corresponds to unknown data),
augmentation as proposed in [14] and augmentation as proposed in [15].

3 Adabins [1]

Instead of predicting directly the distance to the scene, Adabins considers the problem of depth
estimation as a classification problem as proposed in [9]. The idea is that it is easier to predict a bin
rather than directly the depth. The main difference with [9] is how the bins are computed. In the
original work, each bin had a predetermined width while in the proposed work this width is adaptive
and depends on the image.

Adabins is based on an encoder-decoder architecture using EfficientNet B5 [28] as a backbone.
It is then followed by the proposed adaptive bin estimator called Adabin based on a transformer
that predicts both the bin widths and the probability of each pixel to belong to a given bin (see
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Figure 4: Architecture of Adabins [1].

Figure 4). Instead of returning the center of the most likely bin (thus creating a quantized output),
the expected depth is instead returned. The expected depth corresponds to

d̂ =
K
∑

k=1

c(bk)pk, (2)

with K the number of bins, c(b) the center of bin b and pk the output probability that the pixel
should be located in bin bk.

The network is trained on either NYU depth V2 [25], KITTI [10] or SUN-RGBD [26]. The loss
used is a combination of two losses:

❼ The scale invariant log-scale loss [7]

Lpixel = α

√

√

√

√

1

n

∑

i

(log(di)− log(d̂i))2 −
λ

2n2

(

∑

i

(log(di)− log(d̂i))

)2

, (3)

with n the number of pixels in the batch, λ = 0.85 and α = 10, d the ground truth depth and
d̂ the depth predicted by the neural network;

❼ The bin center density loss that encourages the distribution of the predicted bin centers to follow
the distribution of the ground truth. This is done using a bi-directional Chamfer distance [8]

Lbins =
∑

i

min
j

∥di − c(bj)∥
2

2
+
∑

j

min
i

∥di − c(bj)∥
2

2
, (4)

with c(b) corresponding to the center of bin b.

The final loss is then L = Lpixel + 0.1Lbins.

4 MiDaS [22]

Contrary to the previous methods, MiDaS does not propose a new architecture or a new loss but
instead shows that combining multiple training datasets enables better performance and better gen-
eralization. In fact, most of the work focuses on uniformizing the training and test pipelines across
the different datasets (DIML [16], MegaDepth [17], ReDWeb [31], WSVD [29], 3D movies, DIW [3],
ETH3D [24], Sintel [2], KITTI [10, 19], NYU Depth V2 [25], TUM-RGBD [27]).

They also compare different encoder-decoder architectures based on either ResNet-50 [11], ResNeXt-
101 [33] or DenseNet-161 [13] (see Figure 7 for the architecture). The authors observed that using
a base network that performs better on a classification task (such as Imagenet [5]) leads to better
monocular depth estimation performance.
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Figure 5: Architecture of MiDaS [22].

5 DPT [21]

DPT extends MiDaS by changing the base architecture to a transformer based encoder-decoder
architecture (see Figure 6).

Figure 6: Architecture of DPT [21].

6 3DShape [34]

3DShape also studies the problem of creating a 3D model from the estimated depth map. This part is,
however, not of interest for this review. The 3D model predicted is nonetheless used during training
to regularize the monocular depth prediction module using the surface normals of the estimated 3D
shape. Therefore, three different losses are combined during training:

❼ An image-level normalized regression loss

LILNR =
1

N

N
∑

i=1

∣

∣

∣
d̂i − d∗i

∣

∣

∣
+
∣

∣

∣
tanh(d̂i/100)− tanh(d∗i /100)

∣

∣

∣
, (5)

with d̂ the depth predicted by the network and d∗ the mean and variance normalized ground
truth (10% of outliers are discarded during the estimation of these two parameters).

❼ A pairwise normal loss similar to [32]

LPWN =
1

N

N
∑

i=1

∣

∣nAi
.nBi

− n∗

Ai
.n∗

Bi

∣

∣ , (6)

42



Monocular Depth Estimation: a Review of the 2022 State of the Art

with A and B two sets of paired points sampled on edges and planes of the 3D structure, n
(respectively n∗) is the normal estimated on the predicted 3D point cloud (respectively ground
truth point cloud).

❼ A multiscale gradient loss similar to [17]

LMSG =
1

N

K
∑

k=1

N
∑

i=1

∣

∣

∣
∇xd̂

k
i −∇xd

k,∗
i

∣

∣

∣
+
∣

∣

∣
∇yd̂

k
i −∇yd

k,∗
i

∣

∣

∣
, (7)

with dk the depth at scale k.

The final loss is then L = LILNR + LPWN + 0.5LMSG.
The architecture of 3DShape is an encoder-decoder with ResNeXt-101 [33] as backbone (see

Figure 7). Similarly to MiDaS [22] or DPT [21], the network is trained using multiple datasets at
the same time (Taskonomy [35], 3D Ken Burns [20], DIML [16], Holopix50K [12] and HRWSI [32]).

Figure 7: Architecture of 3DShape [34].

7 Comparative Experiments

The different experiments can be classified into three main categories: natural images similar to
the training data, synthetic or clearly-non natural images with depth cues and, finally, voluntarily
ambiguous images such as trompe l’œil. The goal is to drive all methods into a corner and try to find
out what their limit and generalization capabilities are.

Natural images. The first set of experiments consists in testing natural images similar to the
training images. We start by comparing the results on a photo of a bookstore from the NYU depth

V2 dataset [25] (Figure 8), which is one of the training datasets used by monocular depth estimation
methods, with a similar photo of classroom that is not part of the training dataset (Figure 9).
As expected, all methods perform well on these examples. There are nonetheless several major
differences between the methods. GPLDepth [15], Adabins [1] and 3DShape have a much deeper
field of view than MiDaS [22] and DPT [21]. Indeed, far away objects (such as the bookcase on the
opposite wall in Figure 8) are visible in the first three methods but not in the last two. Moreover,
Adabins [1] seems to have some ghosting (or transparency effects). The center of a solid object is
sometimes shown as further away than the boundaries of the same object.

We then look at two natural images that are out of the training dataset distribution. The first,
Figure 10, has a large reflective structure in the middle of it and the other, Figure 11, is a photo
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from inside a cave and looking out. We can already see that some methods, namely GPLDeth [15]
and Adabins [1], start breaking down. The other methods produce reasonable results even though
DPT [21] seems to struggle a bit with the reflective structure in Figure 10. However, DPT [21]
produces the most precise cutout of the ceiling of the cave in Figure 11.

Figure 8: Comparison of five monocular depth estimation methods on a bookstore image from the NYU depth V2

dataset [25]: the input, results of GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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Figure 9: Comparison of five monocular depth estimation methods on a classroom photo similar to the training data: the
input, results of GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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Figure 10: Comparison of five monocular depth estimation methods on a photo of La Geode in parc de la Villette, Paris:
the input, results of GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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Figure 11: Comparison of five monocular depth estimation methods on an inside cave photo: the input, results of
GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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We finally test the methods on an overhead view of a city (Figure 12). While the image is natural,
it has a much different point of view than the regular training data. Only DPT [21] seems to produce
reasonable results. 3DShape [34] and MiDaS [22] seem to present a bias: objects near the bottom of
the image should be closer than those at the top. This is likely because most natural outdoor images
verify this bias (ground on the bottom and sky on the top).

Figure 12: Comparison of five monocular depth estimation methods on an overhead view photo: the input, results of
GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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Synthetic and non-natural images. The second set of experiments is performed on non-natural
images. The first example is a synthetic image created by stacking rectangles on top of one another
(Figure 13). The relative distance to each rectangle can nonetheless be estimated using the relative
ordering and cues such as T-junctions (see [4] for more details). On this example, all methods perform
badly. Most of the time, the distance to a given rectangle is not constant and the borders are not
well defined. We can also observe a similar bias to the one presented for Figure 12.

Figure 13: Comparison of five monocular depth estimation methods on a synthetic image showing stacks of rectangles: the
input, results of GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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The second example is using a famous abstract painting, Starry Night by Van Gogh (Figure 14).
Even though this example is completely different than the training data, some methods, such as
3DShape [34], MiDaS [22] and DPT [21], produce reasonable results: the large structure is said to
be in front of the scene and the bottom, with the village, closer than the sky.

Figure 14: Comparison of five monocular depth estimation methods on the Starry Night painting by Van Gogh: the input,
results of GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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Ambiguous images. The last set of experiments is performed on voluntarily ambiguous images,
namely trompe l’œil. Therefore there is no right or wrong answer since the goal of these images is
to find out whether the different methods can also be tricked into seeing a different depth than in
reality. The first example is a park in Paris that was made to appear as a sphere when looked from
a specific point of view (Figure 15). While most methods see a sphere in the location of the park,
DPT [21] seems to see a flat structure that rises above the ground.

Figure 15: Comparison of five monocular depth estimation methods on a photo of a park in Paris: the input, results of
GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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The second example is of a hallway with a tiling that makes it appear not flat (Figure 16).
Surprisingly, most methods see the hallway as flat and are not fooled by this visual trick. A slight
change of depth is nonetheless visible for GPLDepth [15] and Adabins [1].

Figure 16: Comparison of five monocular depth estimation methods on a photo of a hallway: the input, results of
GPLDepth [15], Adabins [1], 3DShape [34], MiDaS [22], DPT [21].
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The last example is a photo of a wall with a realistic painting creating a depth illusion (Figure 17).
In this case, all methods are tricked by the realistic painting and predict a hallway where only a wall
exists.

Figure 17: Comparison of five monocular depth estimation methods on a photo of a wall: the input, results of GPLDepth [15],
Adabins [1], 3DShape [34], MiDaS [22], DPT [21].

Computation time. We also compare the computation times for the different methods on a
Intel(R) Core(TM) i7-7820HQ CPU in Table 1.

Table 1: Computation time for the different methods presented. Computation times (in seconds) were estimated using the
image shown in Figure 9.

GPLDepth [15] Adabins [1] 3DShape [34] MiDaS [22] DPT [21]

12.99 6.88 13.77 5.81 12.22
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Image Credits

NYU depth V2 dataset [25]

Wikipedia

Robert Bye

Adrien Courtois et al. [4]

François Abélanet
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