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Abstract

Nowadays, smartphone cameras capture bursts of raw photographs whenever the trigger is
pressed. These photos are then fused to produce a single picture with higher quality. This paper
details the implementation of the method “Handheld Multi-Frame Super-Resolution algorithm”
by Wronski et al. (used in the Google Pixel 3 camera), which performs simultaneously multi-
image super-resolution demosaicking and denoising from a burst of images. Hand tremors
during exposure cause subpixel motions, which combined with the Bayer color filter array of
the sensor results in a collection of aliased and shifted raw photographs of the same scene. The
algorithm efficiently aligns and fuses these signals into a single high-resolution one by leveraging
the aliasing to reconstruct the high-frequencies of the signal up to the Nyquist rate of the sensor.
This approach yields digitally zoomed images up to a factor of 2, which is the limit naturally
set by the sensor pixel integration. We present an in-depth description of this algorithm, along
with numerous implementation details we have found to reproduce the results of the original
paper, whose code is not publicly available.

Source Code

The source code for reproducing the results presented in this paper, and an online demo, are
available at the associated web page1. The source code is also available in the first author’s
GitHub page2. It is implemented in Python with Numba support for fast GPU-based compu-
tations.

Keywords: burst processing; demosaicking; super-resolution; raw photographs

1 Introduction

The smartphone cameras are nowadays the preferred devices to take photographs, much more than
the traditional digital cameras [6]. Despite the difference in imaging sensor sizes smartphone cameras
attain comparable image quality on the resulting sRGB images. This is easily explained by the
growing performance of the embedded image processing algorithms that nowadays attain acceptable
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Algorithm 1: HandheldBurstSuperResolution

Data: Coarse raw frames {J1, . . . , JN}, zoom s, noise model (α, β)
Result: Fine RGB image I

1 H,W ← Shape(J1);
2 num← Zeros(sH, sW, 3);
3 den← Zeros(sH, sW, 3);
4 Rc ← Zeros(H/2,W/2);
// Aggregating all the frames but the reference one.

5 for n = 2, . . . , N do
// Registration

6 Vn ← Registration(J1, Jn);
// Robustness computation

7 rn ← ComputeRobustness(J1, Jn, Vn);
// Accumulated robustness update

8 Rc ← Rc + rn;
// kernel estimation

9 Ωn ← ComputeKernelCovariance(Jn, (α, β));
// Fusion

10 num, den← Accumulation (Jn,Ωn, rn, Vn, s, num, den) ;

11 end
// Aggregate the reference frame at the end, taking into the areas in single-frame mode.

12 Ω1 ← ComputeKernelCovariance(J1, (α, β));
13 num, den← AccumulationReference(J1,Ω1, s, num, den, Rc);

// Normalization of the predicted image.

14 I ← num/den;

running times and accuracy for in-the-wild photography, all that while running on devices that fit in
our pockets. These algorithms compensate for the poor lenses and very small sensors of smartphones
by using multi-image restoration algorithms that fully exploit the continuous acquisition capabilities
of these devices. In particular, manufacturers are increasingly looking for effective and lightweight
multi-frame super-resolution (SR) algorithms, for better zooms.

We present an implementation of the raw burst SR algorithm by [25], which is used for the digital
zoom of the Google Pixel 3 phone. This approach yields a high-resolution RGB image from a burst
of raw photographs taken with a handheld camera. The hand tremors cause camera pose changes
during the acquisition; What seems to be a bane at first glance is actually a boon. Because of the
integration on the sensor, each frame is most likely aliased–that is some of the high-frequency content
beyond the Nyquist rate is injected within the lower-frequency content [18, Sec. 3.1.2]. Pose changes
allow to sample different positions of the aliased image in each frame, and thus many missing high
frequencies may be accurately recovered from the combination of the coarse measurements [24] up
to a factor 2. Beyond this resolution gain, the problem is more ill-posed and requires image priors
to observe further resolution improvements [1]. This is however, beyond the scope of this paper.

Formally, the approach builds a sH× sW high resolution (HR) color image I from N raw aliased
low resolution (LR) frames J1, . . . , JN , each one of size H × W . The scalar s is the zoom factor
specified by the user in [1,+∞) (even though beyond 2, little improvements are to be expected). The
method follows a classical pipeline: (1) it aligns N−1 frames to a reference one, for instance the first
one J1, and (2) it merges the registered frames into I with respect to some signal-adaptive aggregation
weights computed on the fly. The global architecture of the method is shown in Algorithm 1.
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The particularity of this technique lies in how the frame fusion is achieved. The merging weights
have two distinct components that are equally important. The first one accounts for the geometric
features of the image by means of local structure tensors. This allows to adapt the aggregation
weights to account for flat areas, edges or corners, preventing blurring high-frequency details while
denoising the flatter regions. The second component is an improved deghosting mask designed to
filter out elements of the LR frames that are misaligned in a noise-aware fashion.

In what follows, we will present the alignment and fusion strategy of [25] with our implementation
details to fill the elements eluded in the presentation of the original paper.

2 Method

In this section we described the two main stages of the approach. In Section 2.1, we detail the
registration step that predicts the optical flows between the reference frame and the remaining
“moving” frames of the burst. In Section 2.2, we describe how the frames are merged with the help
of the previous flows into an HR image.

Algorithm 2: Registration

Data: Reference J1, Moving Jn, tile size T , reference radius R
Result: Patchwise flow Vn = {V (1)

n , V
(2)
n , . . . , V

(P )
n }

// Compute a high resolution version of the images

1 G1 ← ComputeGrayscaleImage(J1);
2 Gn ← ComputeGrayscaleImage(Jn);
// Decompose the reference image into a collection of P tiles. P1 refers to the non-overlapping

patches of size T × T that are a partition of J1.

3 P1 ← ToTiles(G1, T );
4 p← 1;
// For each tile, predict the local parametric flow

5 for p1 ∈ P1 do
// Predicts a patchwise subpixel translation with BM.

6 V
(p)
n ← MultiScaleBlockMatching(p1, Gn);

// Predicts a refined patchwise subpixel translation with 3 ICA iterations.

7 i← 0;
8 while i < 3 do

9 V
(p)
n ← ICA(p1, Gn, V

(p)
n );

10 i← i+ 1;

11 end
12 p← p+ 1;

13 end

2.1 Registration

The first stage consists in aligning all the coarse frames Jn (n = 2, . . . , N) over the reference one J1
with an accurate sub-pixel optical flow. This is crucial to leverage aliasing across the frames, and
thus achieving satisfactory SR. To do so, Wronski et al. [25] partition the reference frame J1 into

P patches and estimate an optical flow Vn = {V (1)
n , V

(2)
n , . . . , V

(P )
n } between each patch and each

“moving” frame Jn (n = 2, . . . , N). This is achieved in the original paper by a two-stage strategy.
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First, a coarse flow with a multi-scale block-matching (BM) algorithm is predicted. The coarse flow
is then used as initialization for “three iterations of the Lucas-Kanade (LK) algorithm”, to quote the
authors, which yields a refined flow with sub-pixel accuracy.

Note that in this section we will not detail any registration strategy as the BM algorithm is covered
in detail in [21] and the LK iterations are detailed in [22]. Algorithm 2 presents a pseudo-code for
the registration module assembling the two stages, which we now survey individually.

Coarse registration: multi-scale block matching. A coarse estimate of the flow is estimated
with a multi-scale BM algorithm [13] that finds discrete translation flows between patches of two
different frames. The BM prediction is computed using a coarse-to-fine strategy applied on a Gaussian
pyramid of 4 levels. At each level patchwise translations are estimated, then used to initialize the
next finer stage. To facilitate the flow upscaling between stages, the pyramid is built in such a way
that the tiles are split into an integer number of subtiles to reach a finer pyramid level.

Formally, for a given pixel location (x, y) in the reference image, at a given level of the pyramid,
we extract a T × T local reference patch p1 in J1 and a corresponding larger tile tn at the same
location in the secondary image Jn (n = 2, . . . , N). The second tile is necessarily made larger, with
size (T +2R)× (T +2R), where R is the search radius and whose center is (x, y) +U , to predict the
translation V . The 2D vector U = (Ux, Uy) is (0, 0) at the coarsest scale, and for all the other scales
it is initialized from the previous scale. For a given patch p1, the flow is initialized by considering the
3 closest tiles on the coarsest pyramid level. The patch p1 is, by construction, fully contained within
one of these tiles. The respective flows of the 3 tiles are separately applied to p1 and associated with
the ℓ1 error between p1 and the matching position in tn. The flow of p1 is the flow, among the 3
candidates, that minimizes the error. In this setting, the flow U comprises all the motions that were
estimated up to the current level of the pyramid, whereas V is the “innovation” brought by the new
level, found with

min
V ∈R

∑
(x,y)∈p1

∥p1(x, y)− tn ((x, y) + U + V )∥ℓℓ , (1)

for a given ℓ-norm and R = {−R,−R+ 1, . . . , R}2. In practice, at the three coarsest scales we set ℓ
to be 2, but for the finer one Hasinoff et al. [13] suggest using the ℓ1 norm to avoid smoothed results
favored by the ℓ2 norm. The implementation details of this BM scheme are presented in [21]. Unlike
Hasinoff et al. , our merging method is not sensitive to flow discontinuities: this is why we can split
the reference image into non-overlapping tiles, which yields an improved execution time.

Fine registration: ICA iterations. The flow computed in the previous BM step is precise up
to one pixel, whereas we need sub-pixel accuracy to achieve a satisfactory super-resolution. Yet,
the discrete flow predicted by BM is a fast initialization for a subsequent subpixel refinement. The
original paper by Wronski et al. only states that “three iterations of the Lucas-Kanade algorithm”
were applied, with no further details. It is thus hard to infer what the authors actually did, but we
posit that they used an inverse compositional algorithm (ICA), a cheaper, yet at least as accurate
variant of LK [2]. Starting from the BM initial guess of the translation for Vn, the ICA method [2]
solves the problem

min
dVn∈R2

∑
(x,y)∈p1

∥p1 (dVn(x, y))− Jn (Vn(x, y))∥22 , (2)

where Vn is the current estimate of the flow and dVn is the subpixel refinement predicted by ICA.
The new estimate of the flow becomes: Vn ← Vn + dVn. We estimate dVn for each tile returned by
the BM algorithm. After 3 ICA iterations on each one of the P patches, we have the final estimate
of the subpixel patchwise translation Vn between J1 and Jn (n = 2, . . . , N). The ICA algorithm is
detailed in [22].
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Note that in the original paper [25], the authors may have run ICA after block-matching at each
stage of the pyramid, the text in the paper is not very clear. Yet, our approach of using ICA only at
the finer level of the pyramid yields satisfactory-enough results in practice.

CFA images pre-processing. The registration approaches such as BM and ICA are valid on
grayscale images, and subpixel image registration methods are most accurate when applied to alias-
free images. However, since the inputs of the SR algorithm are aliased CFA frames, a pre-processing
stage is needed before registration. The manuscript by Wronski et al. is not really accurate on this
point, and we posit that a cheap and fast possibility that may have been actually considered by
the authors is to compute decimated grayscale images by averaging each 2 × 2 Bayer quad, as in a
previous work by the same team [13]. The resulting images are twice smaller but grayscale (thus
aligned with running a registration algorithm), de-aliased/denoised thanks to the averaging of the
pixels, and computations are faster by running on smaller images. This is a totally fine approach
for quick computing of optical flow on a flagship smartphone released on 2018. For a pseudo-code of
this approach, please refer to [21, Algorithm 1].

Yet, in this draft and for the sake of the companion demo that runs on a workstation, we explore
another option proposed in [4, Chapter 8] to convert the raw CFA images into grayscale images of
the same resolution as the raw ones, which should lead to superior results in the end. It consists of
filtering the frequencies of the Bayer images above π/2 with a perfect low-pass filter in the Fourier
domain. The associated cost is two fast Fourier transforms (FFT) per frame to be aligned. The
same processing is applied in the case of CFA images or to aliased grayscale images for the case
of monochromatic sensors. The corresponding preprocessing pseudo-code is shown in Algorithm 3.
Note that if required, the interested reader can replace our handling of CFA images for alignment
with the Bayer quad averaging strategy of [13] to be closer to the original implementation of Wronski
et al.

Algorithm 3: ComputeGrayscaleImage

Data: Grayscale or mosaicked H ×W image J
Result: Grayscale image G

1 if J is grayscale then
2 G← J ;
3 else

// Assuming the (0,0) frequency is in the center, sets to 0 the coefficients outside [−π/2, π/2]2.
4 H,W ← Shape(J);
5 G← FFT2(J);
6 G[: H/4, :]← 0;
7 G[3H/4 :, :]← 0;
8 G[:, : W/4]← 0;
9 G[:, 3W/4 :]← 0;

10 G← IFFT2(G);

11 end

Validation of the pre-processing. Both BM and ICA algorithms can separately be run on either
(i) FFT-filtered images [4, Chapter 8], (ii) demosaicked images [20], or (iii) the decimated grayscale
images obtained by averaging the 2×2 Bayer quads. To compare these approaches we have generated
a synthetic burst of images from which 2280 aligned patches were extracted, we then evaluate by
comparing the quadratic error of the predicted flows. To take into account the potential difference

231



Jamy Lafenetre, Gabriele Facciolo, Thomas Eboli

of resolution between gray images, we have adjusted the size T of the patches so that all the gray
images could be split into the same number of patches. Figure 1 shows registration results with
respect to the number of ICA iterations.

Figure 1: Comparison of the registration error for different methods. We compare the two stages of the presented alignment
pipeline for three different raw-to-grayscale image conversion strategies: Or the decimated quad Bayer image [13], or the full-
resolution images obtained via demosaicking or FFT perfect low-pass filtering [4]. Running the two algorithms sequentially
on the FFT-filtered images, with 3 ICA iterations, is the optimal strategy.

We first observe that the choice of the preprocessing for BM is crucial: the decimation method is
outperformed by the FFT-filtering and demosaicking variants, by a gap that cannot be compensated
using subsequent ICA iterations. Our second observation is that the asymptotic error of the ICA
algorithm nearly doubles when running on a decimated image, compared with the FFT-filtering and
demosaicking methods. Last but not least, demosaicking and FFT filtering achieve marginally the
same results with converging values reached after three iterations (about 0.1 pixel of error), which
validates the choice of the “three LK iterations” in [25]. The FFT-based strategy is however faster
than the demosaicking one in practice since applying a low-pass filter to an image is in general a
much easier problem than (well) interpolating the missing color components of a mosaicked image.
This concludes the justification of running BM and just three ICA iterations on the images filtered
via the FFT strategy in this context.

Limits on the registration pipeline. The registration strategy of Wronski et al. has the same
limitations as any local optical flow algorithm such as LK. Because of the aperture problem next to
the edges, the structure tensor is likely to be ill-conditioned or, even worse, not-invertible. This may
lead to unstable flow estimates in these regions [2]. On flat areas, the alignment problem becomes ill-
posed as both eigenvalues of the structure tensor approach 0. The flow may therefore be inaccurate.
Yet, since in that case we are matching roughly uniform patches, fusion artifacts are unlikely.

2.2 Fusion

Once the frames J2, . . . , JN are registered with J1 with sub-pixel accuracy, we may merge them to
predict an image I with resolution s times finer than that of J1. A first approach would be to splat
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Algorithm 4: Accumulation

Data: Frame Jn, kernels Ωn, robustness map rn, patch-wise flow Vn, zoom s, numerator image
num, denominator image den

Result: Updated numerator and denominator of the accumulator: num and den

// Main loop over the pixels of the fine grid

1 for (x, y) ∈ num do
// Corresponding location on J1’s coarse grid

2 (x1, y1)← (x, y)/s;
// Projection from J1’s to Jn’s coarse grid

3 (xn, yn)← Vn(x1, y1);
// Fetch the 4 closest pre-computed covariance matrices

4 for (x̂i
n, ŷ

i
n) ∈ N2(xn, yn) do

5 Ωi ← Fetch(Ωn, (x̂
i
n, ŷ

i
n));

6 end
// Interpolate to the desired position based on the known Omegas

7 Ω← BilinearInterpolation(Ω1,Ω2,Ω3,Ω4, xn, yn);
8 for (u, v) ∈ N3(xn, yn) do

// Build on-the-fly the merge kernel with (u, v) back-projection on I’s fine grid

9 d← (u, v)− (xn, yn);

10 w ← exp
(
−d⊤Ω−1d/2

)
;

// Look which color component will be added

11 c← GetLocalChannel((u, v));
// Do the aggregation in the image and accumulator

12 num(x, y, c)← num(x, y, c) + rwJn(u, v);
13 den(x, y, c)← den(x, y, c) + rw;

14 end

15 end

all the observations from the N images on a same continuous space via kernel regression, the samples
could then be resampled at the desired resolution as proposed by Takeda et al. [23]. This is however
prohibitive as a much larger intermediate image would be needed to store the splatted samples just
to estimate a smaller HR image. Another more effective option to filter irregularly sampled data is
the normalized convolution (NC) proposed in [14]. We invite the interested readers to also read the
portions of the thesis [4, Chapter 9], where the general principles and intuitions for applying the NC
to a collection of irregular samples in the context of image SR are explained.

However, in our setting the observations are organized as N collections of T × T regular grids,
whose positions are known relatively to one set as the reference. In this context, Wronski et al. [25]
use a memory-efficient variant of NC that sequentially aggregate the contributions in the final HR
image I with locally-adaptive weights. Formally, the merge they propose reads

I(x, y) =

∑N
n=1 rn(x, y)

∑
(u,v)∈N 3

n
wn (x, y, u, v) Jn (u, v)∑N

n=1 rn(x, y)
∑

(u,v)∈N 3
n
wn (x, y, u, v)

, (3)

where N 3
n is a neighborhood of size 3 × 3 around the (x, y) location projected on the grid of the

image Jn (more details in what follows). The notations are made concise for the sake of clarity. The
summation over N represents the accumulation through time. The summation over the coordinates
(u, v) in N 3

n aggregates the 3× 3 pixels in Jn that are spatially the closest to (x, y). All the sums are
weighted by robustness and fusion weights rn and wn. We will detail each weight in what follows.
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Figure 2: Logic of the accumulation for one frame. The optical flow is used to determine the queried position in the moving
frame, and to compute the distance with the 9 closest pixels.

In what follows we drop the reference to (x, y) in the notation N 3
n for the sake of clarity. Figure 2

illustrates the fusion scheme for a moving frame and the reference. The corresponding pseudo-code
is shown in Algorithm 4.

Note that Algorithm 1 features two fusion algorithms: Accumulation and AccumulationReference
(respectively Algorithm 4 and Algorithm 11), the latter being a variant of the former that we will
motivate and detail later in Section 2.3. We made this choice to focus in the current section on
the merging scheme, and dedicate Section 2.3 to describing a minor modification when merging the
reference frame.

Interpreting the merge equation. For each LR frame Jn, we look where the queried HR pixel
(x, y) falls and accumulate the closest 3× 3 neighborhood. Thus, each frame contributes 9 weighted
observations for generating the HR pixel at (x, y). This strategy allows to run the fusion algorithm
in a sequential manner ensuring that only one frame is loaded at the time, thus fixing the memory
footprint of the algorithm no matter the burst size N . This is optimal for mobile devices. On larger
devices, like a workstation, a fully parallel strategy where several frames are processed in parallel
may be preferred if the memory usage is not an issue.

2.2.1 Structural Weight

This fusion weight wn is defined as the exponential of a distance between the pixel locations (x, y)
on the final HR grid, and (u, v) on one of the N LR grids

wn(x, y, u, v) = exp

(
−1

2
d⊤Ω−1d

)
, (4)

where Ω is the covariance matrix defining the metric between the two locations, and d is the vector
of differences between the two locations. In the context of Equation (3), the latter quantity reads
generally

d =

[
x− u
y − v

]
=

[
x
y

]
− V −1

n

([
xn

yn

])
, (5)

where (u, v) is the location (xn, yn) in the coarse image Jn (n = 1, . . . , N) brought back to the fine
grid I with the patch-wise flow Vn computed in the previous section. Euclidean distances are left
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Figure 3: Computation of one structure tensor from a 6× 6 coarse neighborhood of Bayer pixels further grouped into 3× 3
grayscale quad pixels. The 9 gray pixels are used to compute 6 vertical and 6 horizontal intermediate gradients via finite
difference (center). These values are averaged into 4 more robust “full” gradient estimates that are finally used to estimate
the structure tensor on the central location of this neighborhood (right).

unchanged by rigid optical flows, allowing us to compute them directly within the moving frame,
thus saving the expense of projecting back every position on the reference frame. Formally, it reads

d =

[
x
y

]
− V −1

n

([
xn

yn

])
= Vn

([
x
y

])
−

[
xn

yn

]
. (6)

In Equation (4), the inverse of the matrix Ω defines a geodesic that indicates when we cannot integrate
through a line to preserve the edges [23]. Note that in the simple case where Ω is the identity matrix,
Thibaud Briand showed [4, Chapter 9] that Equation (4) corresponds to a fast approximation of an
accurate but expensive spline-based interpolation strategy for super-resolution. The definition of the
covariance matrix Ω is the core of this method. We now derive the different steps to compute it
locally by taking into account the geometry of the area via the structure tensor and the noise model.

Computing the local structure tensors. Besides the edge case corresponding to the identity,
to save computations, the matrices Ω are estimated from low-resolution grayscale versions of the
input images. Wronski et al. first compute a version of the Bayer image by averaging the 2 × 2
RGGB quads, thus resulting in a grayscale Gn version of Jn at half the resolution. We posit this is
done to speed-up the computations since in the original paper the authors must process a burst of
12 Megapixel frames as fast as possible. Assuming that the matrices Ω smoothly vary on the coarse
grids Jn, working on a 3 Megapixel image instead and estimating Ω on Jn via bilinear interpolation
of the coarser grid is indeed an acceptable fast strategy. The logic of the interpolation is illustrated
in Figure 6.

We use the structure tensors computed on 3 × 3 grayscale neighborhoods to shape the kernel
with respect to the image structure. We start by computing the vertical and horizontal gradients in
the grayscale image with the finite difference filters [1,−1] and [1,−1]⊤ at six possible locations for
each direction within the 3 × 3 coarse pixels neighborhood. This results in six horizontal gradients
and six vertical gradients, estimated at different positions. Figure 3 shows the locations where the
one-dimensional gradients are computed. By averaging the two closest vertical gradients and the two
closest horizontal gradients around each of the four corners of the central gray pixel, we obtain four
different more robust gradient vectors. From these four values, we build the local structure tensor
S(xn, yn) defined as

S(xn, yn) =
4∑

i=1

[
[∇xGn]i[∇xGn]i [∇xGn]i[∇yGn]i
[∇xGn]i[∇yGn]i [∇yGn]i[∇yGn]i

]
= B⊤

[
λ1 0
0 λ2

]
B. (7)

The summation over the four gradient estimates guarantees that S(xn, yn) is rank 2 except on de-
generated cases (constant image). In the previous equation for the gradients ∇xGn and ∇yGn, and
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in what follows for S, B, λ1 and λ2 we drop the dependency on (xn, yn) for conciseness. Since S is
symmetric, we only need to compute 3 entries for each pixel i (i = 1, . . . , 4).

We noticed after having implemented our code that the lead author of the original article had
further detailed in a blog3 that the gradients were computed diagonally using the Roberts cross
operator. Here we connect the Roberts cross with our approach. Let ∇0◦ and ∇90◦ denote the
vertical and horizontal gradient operators we use

∇0◦ =
1

4

[
−1 1
−1 1

]
and ∇90◦ =

1

4

[
1 1
−1 −1

]
. (8)

Similarly, let ∇45◦ and ∇135◦ denote the two diagonal gradient operators featured in the Robert cross
strategy

∇45◦ =
1

2
√
2

[
0 1
−1 0

]
and ∇135◦ =

1

2
√
2

[
1 0
0 −1

]
. (9)

Remark that ∇45◦ = (∇0◦ +∇90◦)/
√
2 and ∇135◦ = (∇90◦ − ∇0◦)/

√
2 are related by a 45◦ rotation

matrix. Our approach thus boils down exactly to the same eigenvalues for the structure tensor as if
they were computed with the Roberts cross as discussed in the blog, but the eigenbasis B is simply
rotated by 45◦. Our implementation thus ultimately steers the kernels as in [25].

The local geometry coefficients. The eigendecomposition of S yields the rotation matrix B
and the sorted non-negative eigenvalues λ1 and λ2 whose values are descriptors of the presence of
a corner, an edge or a flat region, featured for instance in the Harris corner detector [12]. Yet,
because the gradients are computed at a very low resolution from aliased and noisy images, these
eigenvalues are not totally reliable and should be regularized before being used in image processing
algorithms [23]. Wronski et al. perform regularization based on two intermediate quantities A and D
accounting respectively for the anisotropy of the local structure on a ratio of λ1 and λ2, i.e., are we
on an edge or corner/flat region, and the importance of noise over detail, that quantifies the presence
of noise based on a threshold set on λ1

A = 1 +

√
λ1 − λ2

λ1 + λ2

∈ [1, 2], (10a)

D = max

(
min

(
1−
√
λ1

Dtr

+Dth, 1

)
, 0

)
∈ [0, 1]. (10b)

In the previous equations, A measures the anisotropy of the local geometry described by λ1 and λ2.
It is 2 for pure edges and 1 for pure flat regions or corners. When D is 1, noise dominates over signal
whereas D set to 0 is the opposite situation. The importance of noise is carefully handcrafted in the
threshold and intercept values Dtr and Dth. We will use A and D later in this presentation to steer
the weighting kernels wn.

Variance stabilization transform. During the reimplementation of this algorithm, we noted that
the dependence on the brightness of the noise caused by the shot noise component was adversarial
with the computation of D. Indeed, computing D consists in thresholding the largest eigenvalue λ1

with two parameters handset to measure the ratio of the signal variations over the noise level. Yet,
λ1 is agnostic to the local brightness level, it only depends on its variations, whereas the noise level
is a direct function of the average local brightness. It is thus hard to set a general threshold for all
brightness levels. The original paper does not mention this point at all but we assume the authors
had to face at some point the issue of varying noise depending on the brightness level.

3www.bartwronski.com/2021/02/28/computing-gradients-on-grids-forward-central-and-diagonal-differences/
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(a) Isotropic kernels. (b) Anisotropic kernels.

Figure 4: Example of image demosaicking illustrating the advantage of using anisotropic stretched kernels in the case of
edges. Isotropic kernels with kshrink = kstretch = 1 in (a) cause zipper artifacts, that are less prominent when stretching
kernels along edges with kstretch = 4 and kshrink = 2 in (b).

Without any indication from the paper, we use the general Anscombe transform (GAT) for the
Poissonian-Gaussian noise [17, Equation (3)] prior to computing the images Gn (n = 1, . . . , N). The
GAT is usually used for adapting realistic noise distributions to a Gaussian denoising with tresholds
tuned for a single noise standard deviation, and reads

GAT(J) =
2

α

√
αJ +

3

8
α2 + β, (11)

where (α, β) is the noise curve provided by the EXIF metadata or computed with the protocol of [9],
for instance. After applying the GAT, we observe that setting a single value for Dth and Dtr is
enough to get homogeneously denoised flat regions everywhere in the image. Note that we do not
need the inverse of the GAT since the images Gn are only used for computing noise-corrected image
gradients.

Shaping the merge kernels. The formulation based on the structure tensor allows to reshape
the kernels based on the local geometry. The kernel should thus be isotropic when A is close to 1
(λ1 ≈ λ2), and the support depends on whether we should preserve details with as small standard
deviation kdetail or denoise with larger value kdetail × kdenoise, i.e., D is respectively 0 or 1. However
if A is close to 2 (λ1 ≫ λ2), we should accumulate only along the edge by stretching the kernel in
that direction and shrinking its support across the edge.

This choice is motivated by the need to attenuate zipper artifacts, which are prone to appear
on sharp edges of strong contrast as seen in Figure 4. We observe in practice that the aperture
problem drastically reduces the samples density on edges regions, therefore hindering the use of
narrow isotropic kernels. To compensate the absence of samples in the close radius of a queried
point, the kernel is stretched along the edge in order to fetch samples that are relevant although
distant.

To account for this last case, Wronski et al. magnify the anisotropic shape of the kernel by
introducing two scalars kstretch and kshrink whose roles are respectively to manually amplify and
reduce the standard deviation along and across the edges. To summarize, the desired kernel should
be:

237



Jamy Lafenetre, Gabriele Facciolo, Thomas Eboli

Figure 5: Illustration of three extreme cases of kernel shape. On the left, the reference image is demosaicked using [20]
and upscaled to a factor 2 using nearest neighbors interpolation. On the right, the image upscaled to a factor 2 using
the handheld pipeline. Kernels are isotropic with standard deviation kdetail × kdenoise in the case of a feature-less local
geometry like the sky, isotropic with standard deviation kdetail in the case of a punctual detail such as brick contour, or
non-isotropically stretched along an edge like the side of a chimney.

� isotropic with std kdetail when there is a clean corner (D ≈ 0 and A ≈ 1);

� isotropic with std kdetail × kdenoise when there is mostly noise (D ≈ 1 and regardless of A); and

� anisotropic with directional standard deviation values kdetail×kstretch and kdetail/kshrink respec-
tively along and across a noise-free edge (D ≈ 0 and A ≈ 2).

The different shapes taken by the averaging kernels are illustrated in Figure 5. The original paper
defines the directional standard deviation values (k1, k2) for the basis directions (e1, e2) associated to
the eigendecomposition in Equation (7)

k1 = kdetail

(
(1−D)

1

Akshrink
+Dkdenoise

)
, (12a)

k2 = kdetail ((1−D)Akstretch +Dkdenoise) . (12b)

However, it is easy to see that they do not fit the expected behavior described above, especially for
the definition of A given in the same article. We thus have to find a substitute strategy to compute
correct values of k1 and k2.

We remark that the isotropic behavior (where the size of the support varies between kdetail and
kdetail × kdenoise) is well captured by the formulas above when we set A, kstretch and kshrink all to 1.
Thus, in order to respect the design of the kernel two functions f1 and f2 must be found, such that

k1 = kdetail ((1−D)f1(kshrink, A) +Dkdenoise) , (13a)

k2 = kdetail ((1−D)f2(kstretch, A) +Dkdenoise) . (13b)

These functions simply have to model how we want to stretch and shrink the kernel when we are
next to an edge, based on A, kshrink and kstretch, with the following constraints:
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1. f1(kshrink, 1) = 1;

2. f1(kshrink, 2) = 1/kshrink;

3. f2(kstretch, 1) = 1;

4. f2(kstretch, 2) = kstretch.

Simple linear functions such as

f1(kshrink, A) =
1

kshrink
(A− 1) + (2− A), (14a)

f2(kstretch, A) = kstretch(A− 1) + (2− A), (14b)

are valid candidates that are the corrected versions of the linear expressions proposed by Wronski
et al. We however posit that non-linear functions, e.g., polynomials or clipping functions, may be
better candidates but we leave this tuning to the interested readers. Our implementation managed
to provide coherent results using the following threshold functions

f1(kshrink, A) =

{
1

kshrink
if A > 1.9,

1 otherwise;
(15a)

f2(kstretch, A) =

{
kstretch if A > 1.9,

1 otherwise.
(15b)

In this setting, we go from full isotropy, when A = 1, in the case of sharp detail or complete
absence of feature, to exaggerated anisotropy, when A = 2 in the case where an edge needs to be
dezippered.

Since our registration method is especially efficient in the case of sharp features, relying on a very
narrow kernel is not expected to cause artifacts in this case. On the contrary, we have to enlarge the
support of the kernel on edges, and we chose to stretch it along the edge to avoid further blurring
and zippering. The final matrix Ω in Equation (4) reads

Ω = B⊤
[
k2
1 0
0 k2

2

]
B. (16)

Lastly, because Ω is computed on the grayscale Bayer images that are at half the resolution of the
coarse images Jn (n = 1, . . . , N), we query the values of Ω at the fine image resolution through bilinear
interpolation as explained above. An example of such query is shown in Figure 6. In practice, we
precompute the matrices Ω at the coarser grids prior to starting the accumulation of Jn within I to
save some computations since a local matrix is shared between many pixels of Jn. The pseudo-code
for the whole computation of this weights is shown in Algorithm 5.

2.2.2 Robustness Weight

We detail in Algorithm 6 the strategy of [25] to discard the contributions of strongly-misaligned
frames or outlier values during fusion. In a nutshell, at each pixel location (x, y) a coefficient R
between 0 and 1 is first computed, the coefficient rn of (3) is later derived from it. The coefficient R
measures the ratio between the pixel difference d and the local standard deviation σ and is defined
as

R(x, y) = max

(
min

(
s× exp

(
−d2

σ2

)
− t, 1

)
, 0

)
, (17)
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Algorithm 5: ComputeKernelCovariance

Data: Image J , noise model (α, β)
Result: Covariance matrix of the kernels at coarse gray positions Ω

1 G← DecimateTogray(GAT(J ,α,β));
2 H,W ← Shape(G);
3 Gx ←Zeros(H, W-1);
4 Gy ←Zeros(H-1, W);
5 Jx ←Zeros(H-1, W-1);
6 Jy ←Zeros(H-1, W-1);
// Estimating gradients by finite forward differentiation.

7 for (i, j) ∈ [1, H]× [1,W ] do
8 if i < H then
9 Gy(i, j)← (G(i+ 1, j)−G(i, j))/2;

10 if j < W then
11 Gx(i, j)← (G(i, j + 1)−G(i, j))/2;
12

13 end
// Interpolating gradients on gray pixel corners (cf. text).

14 for (i, j) ∈ [1, H − 1]× [1,W − 1] do
15 Jx(i, j) = (Gx(i+ 1, j) +Gx(i, j))/2;
16 Jy(i, j) = (Gy(i, j + 1) +Gy(i, j))/2;

17 end
// One covariance is estimated at the center of each gray pixel

18 for (x, y) ∈ [1, H]× [1,W ] do
19 M(0, 0)← Zeros(2, 2);
20 for p ∈ N2(x, y) do
21 M(0, 0)←M(0, 0) + J2

x(p);
22 M(0, 1)←M(0, 1) + Jx(p)Jy(p);
23 M(1, 0)←M(1, 0) + Jx(p)Jy(p);
24 M(1, 1)←M(1, 1) + J2

y (p);

25 end
// Build the covariance matrix

26 λ1, λ2, B ← EigenDecomposition(M);

27 A← 1 +
√
(λ1 − λ2)/(λ1 + λ2);

28 D ← max
(
min

(
1−
√
λ1/Dtr +Dth, 1

)
, 0

)
;

29 k1 ← f1(kshrink, A);
30 k2 ← f2(kstretch, A);
31 k1 ← kdetail [(1−D)k1 +Dkdenoise];
32 k2 ← kdetail [(1−D)k2 +Dkdenoise];

33 Ω(x, y)← B⊤
[
k2
1 0
0 k2

2

]
B;

34 end

where the scalars s and t are calibrated beforehand. The pixel difference d and the local standard
deviation σ are computed on 3 × 3 neighborhoods. Wronski et al. claim that this ratio is sufficient
to detect if merging a pixel would increase the quality of the final frame, or may introduce visual
artifacts. If the accumulation is deemed too “risky”, d is expected to be much larger than σ and the

240



Implementing Handheld Burst Super-resolution

Figure 6: Superposition of the fine grid and the coarse grid of one image of the burst (not necessarily the reference).
The covariance matrices and the robustness coefficients are known at the same positions because both are obtained from
decimating Bayer quads. For a given queried pixel on the fine grid, the position of the 4 closest covariance matrices are
fetched to perform a bilinear interpolation, and the closest robustness coefficient is fetched and used as nearest neighbor
interpolation.

pixels will be discarded by enforcing R = 0. On the contrary, a d much lower than σ indicates a safe
aggregation, enforced by R = 1. When pixels are likely aliased, d and σ are comparable. By carefully
tuning the parameters s and t, R should allow the accumulation. In what follows, we first compute
from the patches only the local mean color difference dp and standard deviation σp, and second, we
include the noise model to these measurements via two thresholds dt and σt (whose derivations are
detailed in what follows). It ultimately yields the corrected values d and σ.

Initial estimates for σ and d. If we handle grayscale images, we simply compute the local mean
µp and standard deviation σp per 3×3 overlapping patches. If instead we have bursts of Bayer images,
Wronski et al. build “guide” frames G1, . . . , Gn to obtain the local statistics. These half-resolution
RGB images are obtained by averaging the two green Bayer green channels, from which we further
compute the RGB local statistics on the 3× 3 color patches. In that case µp is the color mean and
σp is the color standard deviation, they are vectors of size 3 computed as the ℓ2 norm of the vector
whose components are the standard deviation of each color channel. By using the patchwise flows
between J1 and Jn we find the corresponding local means on the two images and compute the ℓ2
norm of the difference to predict the local color difference dp.

Leveraging the noise model. A typical deghosting algorithm would simply predict a weight
based on dp, yet Wronski et al. go a step further and introduce the noise model [9] to correct the
measurement dp that may be too large due to noise and not misalignment. Indeed, dp and σp

are computed using too few samples to neglect the effect of noise. To compensate this effect, the
original paper introduces prior information using the noise model. The noise is expected to follow
the Poissonian-Gaussian model, commonly approximated as an heteroscedastic Gaussian noise with
a variance evolving linearly with brightness [9]. This model is used to determine, for any given
brightness level, the expected color variance σt and the expected color difference dt, both also of size
3, between two identical patches while considering the effect of noise.

Figure 7 shows an example of such curves. At a given pixel location, we query the local average
brightness level for each channel µp, the corresponding values σt and dt from the curves, and correct
the empirical values of σp and dp via two separate thresholding operators (note that these operations
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(a) Expected standard deviation σt. (b) Expected color difference dt.

Figure 7: Experimentally generated noise model for the Google Pixel 4a camera. Because of the sensor clipping around 0
and 1, the expected standard deviation (Figure 7a) is lower than when predicted using the heteroscedastic Gaussian model.

are with vector quantities) for all color channel c in {R,G,B}

σc = max(σp,c, σt,c), (18a)

dc =
d2p,c

d2p,c + d2t,c
dp,c. (18b)

Lastly, we compute the scalar quantities d and σ featured in Equation (17) by taking the norms

d =

 ∑
c∈{R,G,B}

d2c

1/2

and σ =

 ∑
c∈{R,G,B}

σ2
c

1/2

. (19)

Note that σt,c and dt,c are implicitly defined as functions of µp,c: σt,c = σt,c(µp,c) and dt,c = dt,c(µp,c)
where by abuse of notations we confound the curves µp,c 7→ σt,c(µp,c) and µp,c 7→ dt,c(µp,c) with the
queried values σt,c and dt,c. The first equation applies hard thresholding by below the value of σp.
This is because in the vanilla model, lower values of predicted noise variance would lead to very large
ratio values, and thus robustness of 0. As a result few frames are used, thus favoring zipper and
noise in the prediction. Since visually it is better to have a slightly blurry but noise-free image than
a noisy sharp one, clipping by below results in more samples being retained to indeed better denoise
at the cost marginal additional blur. The second equation is a Wiener shrinkage applied to dp,c that
undermines the impact of the noise that necessarily increases the mean color difference between to
constant patches, resulting in lower confidence values. Note that both operation make sure that the
corrected ratio d/σ is always smaller than the one featuring dp and σp, forcing R to be closer to 1
compared to the initial estimates, and thus being more likely to accumulate samples.

Upscaling and warping the local statistics. An important problem is to upscale and warp
the local statistics σp and µp to the resolution and pose of the LR reference frame since they are
computed on the guided images Gn that are twice smaller. Note that we must have the µp’s in the
same pose to compute the difference vectors d, further justifying the need to interpolate the local
statistics. We could virtually use any interpolator such nearest neighbor to go fast, but it may be
prone to aliasing on detailed areas, thus ultimately resulting in more rejection than wanted. It is thus
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crucial to resample the statistics with an efficient and fast anti-aliasing kernel. The paper does not
mention any strategy for doing so but the 3× 3 quadratic approximation of the cubic filter proposed
by Dodgson [5] is a good candidate since it is fast, does not introduce sub-pixel shift since its support
is odd, and is robust to aliasing. This stage yields robustness maps rn (n = 1, . . . , N) of size H×W ,
like the LR frames.

Penalizing the stronger motions. After correction with the noise model, we rescale and add an
intercept to exp(−d2/σ2) with the hyper-parameters t and s. The former is fixed after calibration to
0.12 whereas the latter is a patch-wise quantity that depends only on the magnitude of the motion
field and takes values of either s1 = 2 or s2 = 12. We now detail how to choose between s1 and s2
based on the optical flow measurements. Recall that we denote by V

(p)
n the local translation for the

p-th non-overlapping patch (p = 1, . . . , P ) in the n-th frame (n = 1, . . . , N). By calling Vx and Vy

the two translations of V
(p)
n for a given pair (p, n), the decision to select s among s1 and s2 reads

Mx = max
p′∈N 3

p

Vx(p
′)− min

p′∈N 3
p

Vx(p
′), (20a)

My = max
p′∈N 3

p

Vy(p
′)− min

p′∈N 3
p

Vy(p
′), (20b)

M =
√

M2
x +M2

y , (20c)

s(p) =

{
s1 if M > Mt,
s2 otherwise,

(20d)

where N 3
p is a 3 × 3 patch neighborhood around p. Put in words, it means that for each patch

location p, we find the largest and smallest patchwise flows in the local neighborhood to measure the
local motion variation M . The rationale is that the larger the motion, the less reliable is the patch
we want to aggregate and it may lead to unacceptable visual artifacts. Thus, we assign a smaller
coefficient value s1 if the motion variation is larger than the threshold Mt, otherwise we assign to
the patch a larger coefficient s2 that scales the local robustness weight R. Using s1 > 0 still enables
to aggregate patches whose textures are perfect matches, despite a strong alignment variation. This
is typical of sky crops for instance, where the estimated alignment may feature large local motion
because the alignment task is ill-posed, as mentioned earlier. Setting s1 = 2, six times smaller than
s2 for the favorable smooth motion case is a good compromise found in practice in [25].

Having selected s between s1 and s2, we have fully determined how to compute the local robustness
R in (x, y). In [25], a final step introduces more spatial coherence among the locally-computed
robustness coefficients solely by selecting the minimum of R in a 5×5 neighborhood centered in each
pixel location (x, y)

r(x, y) = min
(u,v)∈N 5

R(u, v). (21)

This final step favors the most pessimistic confidence scores to further prevent visual artifacts. Al-
gorithm 6 shows the pseudo-code for computing the robustness weight r, and Algorithms 7, 8 and 9
show the companion routines for computing the guide images, the local statistics, and local minima.
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Algorithm 6: ComputeRobustness

Data: Reference image J1, n-th moving image Jn, optical flow reference/n-th frame Vn, noise
curve µp 7→ σt, pixel difference curve µp 7→ dt, motion threshold Mt, spatial coefficients
(s1, s2), coefficient bias t

Result: Robustness map r
// Initialization

1 H,W ← Shape(J1);
2 r ← Zeros(H,W );
3 R← Zeros(H,W );
4 µp ← Zeros(H/2,W/2, 3);
5 µ̂p ← Zeros(H/2,W/2, 3);
6 σp ← Zeros(H/2,W/2, 3);
7 σ̂p ← Zeros(H/2,W/2, 3);
8 G1 ← ComputeGuideImage(J1);
9 Gn ← ComputeGuideImage(Jn);

10 s← ZerosLike(Vn);
// Initial estimate

11 for (x, y) ∈ G1 do
// Local statistics computation

12 µ̂p(x, y), σ̂p(x, y)← ComputeLocalStatistics(G1, (x, y), 3);
13 µp(x, y), σp(x, y)← ComputeLocalStatistics(Gn, (x, y), 3);

14 end
// We iterate on patches p in the image support to update the local value of s.

15 for p ∈ s do
// Computing threshold based on flow irregularities

16 Mx ← ComputeLocalMax(Vnx, p, 3)− ComputeLocalMin(Vnx, p, 3);
17 My ← ComputeLocalMax(Vny, p, 3)− ComputeLocalMin(Vny, p, 3);

18 if
√
M2

x +M2
y > Mt then

19 s(p)← s1;
20 else
21 s(p)← s2;
22 end

23 end
24 for (x, y) ∈ R do

// Dodgson ×2 upscaling and warping of the local statistics

25 σ ← DodgsonApproximateQuadratic(σ, 2, Vn);
26 µ̂← DodgsonApproximateQuadratic(µ̂, 2, Vn);

// Color distance

27 dp ← |µp − µ̂p|;
// Noise correction

28 σ ← ∥max(σt(µp), σp)∥2;
29 d← ∥

[
d2p/(d

2
p + dt(µp)

2)
]
dp∥2;

// Local robustness weight computation in [0, 1].

30 p← patchId(x, y);
31 R(x, y)← min(max(s(p)× exp(−d2/σ2)− t, 0), 1);

32 end
// Final refinement: neighbor-aware smoothing

33 for (x, y) ∈ r do
34 r(x, y)← ComputeLocalMin(R, (x, y), 5);
35 end
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Algorithm 7: ComputeGuideImage

Data: Raw image I
Result: Guide image G

1 H,W ← Shape(I);
2 G← Zeros(H/2,W/2, 3);
3 for (x, y) ∈ G do
4 G(x, y, 0)← I(2x, 2y);
5 G(x, y, 1)← (I(2x, 2y + 1) + I(2x+ 1, 2y)) /2;
6 G(x, y, 2)← I(2x+ 1, 2y + 1);

7 end

Algorithm 8: ComputeLocalStatistics

Data: Guide image G, pixel location (x, y), window size S
Result: Local RGB mean µ, local RGB standard deviation σ

1 µ← Zeros(3);
2 σ2

RGB ← Zeros(3);
// Compute local statistics per color channel

3 for c ∈ {0, 1, 2} do
4 for (u, v) ∈ NS(x, y) do
5 µ(c)← µ(c) +G(u, v, c);
6 σ2

RGB(c)← σ2
RGB(c) +G(u, v, c)2;

7 end

8 end
9 µ← µ/S2;

10 σ2
RGB ← σ2

RGB/S
2 − µ2;

// We aggregate the three color variances into a single scalar as our final estimate.

11 σ ←
√

σ2
RGB(0) + σ2

RGB(1) + σ2
RGB(2);

Algorithm 9: ComputeLocalMin

Data: Image I, pixel location (x, y), window size S
Result: Local minimum r

1 r ← R(x, y);
2 for (u, v) ∈ NS(x, y)− {(x, y)} do
3 if r > R(u, v) then
4 r ← R(u, v);
5 end

6 end
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2.3 Additional Implementation Details

Besides the main structure of the algorithm that is composed of the registration and fusion main
modules, there are additional implementation details to render better images that are barely evoked
in [25]. We also strove to reproduce them in this article.

Computing robustness noise model parameters. An important part of the robustness module
is including the noise model into the local measurements of the standard deviation and the color
differences. The original paper [25] refers to the calibration of the parameters σt and dt as the result
of “a series of Monte Carlo simulations for different brightness levels” that we have reimplemented.
Algorithm 10 details each stage of this simulation.

Algorithm 10: Monte Carlo simulation

Data: Brightness intervals B, number of trials N , noise model (α, β), ISO gain g

Result: Expected per-brightness standard deviation σ̂ and mean difference d̂
1 σ̂ ← zeros(B + 1);

2 d̂← zeros(B + 1);
3 for b = 0; b ≤ B; b← b+ 1 do
4 for n = 1; n ≤ N ; n← n+ 1 do

// Simulate two constant 3× 3 patches at brightness b/B in {0, 1/B, . . . , 1}
5 I1 ← b/B × ones(3, 3);
6 I2 ← b/B × ones(3, 3);

// Add noise and clip

7 I1 ← clip(I1 + g
√
αI1/g + β × randn(I1.shape), 0, 1);

8 I2 ← clip(I2 + g
√

αI2/g + β × randn(I2.shape), 0, 1);
// Compute the local statistics

9 σ ← (std(I1) + std(I2)) /2;
10 µ1 ← mean(I1);
11 µ2 ← mean(I2);
12 d← |µ1 − µ2|;

// Add these estimates to the buffers

13 σ̂(b)← σ̂(b) + σ/N ;

14 d̂(b)← d̂(b) + d/N ;

15 end

16 end

We generate uniform 3× 3 patches at a constant brightness in an interval {0, 1/L, . . . , 1} with L
a certain interval value, e.g, 1,000. For each patch, we generate from a given noise curve, i.e., the
Poissonian and Gaussian noise parameters proper to a camera sensor, two instances noises that we
apply to the patches, followed by clipping between 0 and 1 to simulate the sensor non-linearities.
From these two patches we compute the color standard deviation and the color mean. We add the
average of the standard deviation to the buffer of expected value of σt, and compute the Euclidean
distance between the color means of the two patches and add it to the buffer of the expected value of
dt. After an important amount of trials, e.g., 10,000 trials, we have the Monte Carlo expected values
for σt and dt. We do so for each brightness value in {0, 1/L, . . . , 1} to have a dense estimate of the
noise model over the whole range of values, including the non-linearities next to the black and white
points. An example of the curves can be seen in Figure 7.
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Noise level-aware parameters. The size kdetail and kdenoise, as well as the thresholds Dth and
Dtr in the computation of D, and the patch size T , are all functions of an estimated signal-to-noise
ratio (SNR). The rationale behind this design is to automatically tune these parameters to better
handle the adversarial effect of noise for alignment and detection of salient edges “based on perceptual
image quality assessment ensuring visual consistency for SNR values from 6 to 30 where the SNR was
measured from a single frame”, to quote Wronski et al. [25]. For instance, for stronger noise levels
the details in tiny patches may not be easily told apart from noise, whereas larger patches increase
the chances of finding a salient-enough edge for safely computing the optical flow. Two questions
arise for implementing this features: How do we compute the SNR, and what are the functions of
the SNR used to select a relevant value for each of these parameters?

In [25], the SNR is “computed based on the average image brightness and the noise model”. We
have observed that in practice using the noise model to compute

SNR =
b

σt(b)
with (22)

b =
1

HW

∑
x,y∈J1

J1(x, y) (23)

is a reliable and computationally efficient estimation of the SNR. Evaluating the noise curve σt

at b means that we query the clipped Poissonian-Gaussian model of the expected noise standard
deviation obtained with the Monte-Carlo simulator at the average brightness level in the image.
Hyper-parameters such as kdetail, kdenoise, Dth and Dtr are set to evolve linearly with the SNR clipped
in the range [6, 30]. For instance for kdetail, this model is implemented as follows

kdetail = (k+ − k−)× (SNR− 6)/(30− 6) + k−, (24)

where k− and k+ are predetermined extreme values correspond respectively to the lowest and highest
SNR. The resulting SNR-specific values for the lowest (resp. highest) SNR score are 0.33px (resp.
0.25px) for kdetail, 5.0 (resp. 3.0) for kdenoise, 0.81 (resp. 0.71) for Dth, and 1.24 (resp. 1) for Dtr. T
is 64 if the SNR is less than 14, 32 if the SNR is between 14 and 22, or 16 if the SNR is above 22.

Noise-agnostic parameters. In addition to T , kdetail, kdenoise, Dth, and Dtr, the following param-
eters are noise-agnostic: kstretch is 4, kshrink is 2, t is 0.12, s1 is 2, s2 is 12 and Mth is 0.8px.

Compensating for the lack of accumulated frames. In many situations, such as for occlusions,
the robustness retains only a few frames from the stack of N images to compute the local HR
entry I(x, y). To compensate the lack of samples that may lead to blatant artifacts and weaken
temporal denoising, Wronksi et al. mention an “additional spatial denoising with strength inversely
proportional to the merged frame count” to compensate for the aforementioned artifacts.

Automatically tuning a denoising threshold according to the number of frames to be merged was
already proposed by the same research team in [16] in the context of low-light photography. We may
reasonably posit that in [25] the authors implemented that solution to adapt spatial denoising to the
number of frames actually used during fusion (the ones not rejected by robustness). However it is
not crystal clear what they did in practice, and we instead came up with a substitute post-processing
strategy that also boils down to shaping a spatial denoising kernel inversely proportional to the value
of the accumulated robustness, i.e., an estimate of the number of frames fused.

The robustness maps rn (n = 1, . . . , N) are designed to quickly vary between 0 and 1. We use
them to build the accumulated robustness map defined for a pixel location (x, y) as

Rc(x, y) =
N∑

n=2

rn(x, y), (25)
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as a proxy for the number of frames actually retained for collaborating at this given location for inter-
polating the high-resolution image. Note that we do not take into account the reference frame since
r1(x, y) = 1 everywhere. During the sequential aggregation for computing the merge in Equation (3),
we thus start by accumulating the frames n = 2, . . . , N and compute the accumulated robustness on
the fly. When ultimately adding the reference frame as in Equation (3), we may expand the vanilla
3× 3 support of the merging kernel Ω for the locations (x, y) where Rc(x, y) is smaller than an arbi-
trary threshold Rmax controlling if enough frames are locally contributing. If Rc is larger than Rmax,
we compute the covariance matrix Ω as before. Otherwise, we may lack of samples, which leads to
artifacts. In that case, we need to collect more neighboring pixels with a wider covariance matrix
Ω′. Since Ω′ is designed to be larger than Ω, the integration support N should also be increased to
allow a wider aggregation than the original 3× 3 window. This can be summarized as

Ω′ = g1(Rc)× Ω, (26a)

N = g2(Rc), (26b)

where we handcraft the constraints on g1 and g2,

1. g1(Rc > Rmax) = 1;

2. g1(Rc ≤ Rmax) ≥ 1;

3. g2(Rc > Rmax) = N3;

4. N3 ⊂ g2(Rc ≤ Rmax).

We consider the simple yet illustrative example

g1(Rc) =

{
1 if Rc > Rmax,
C with C > 1 otherwise.

, (27a)

g2(Rc) =

{
N3 if Rc > Rmax,
N5 otherwise.

. (27b)

In the experiment section we will see that the empirical values C = 8 and Rmax = 8 provide
satisfactory results. A better filter may be obtained by tuning C to evolve smoothly with Rc.

Moreover, we have remarked that areas where Rc is low are generally prone to sharp fusion
artifacts, e.g., non-rigid moving objects or persons, despite the prior application of the robustness
mask. In practice, low Rc values correspond to retaining a couple frames over more than ten or
twenty, which is not enough to achieve correct image fusion. To avoid such scenarios, we switch
from a multi-frame SR approach to a single-frame upscaling strategy in these areas by completely
discarding values accumulated so far, and relying solely on the reference frame. This prevents blatant
artifacts in the case of important displacements and deformations across frames, for instance. Other
fusion strategies based on the value of Rc may also be as correct since the details on this module are
barely evoked in [25, Section 7.4].

This alternative accumulation logic is detailed in Algorithm 11, which is featured at the end of
the main Algorithm 1. Note that one may use the same accumulation algorithm (Algorithm 4) as
for the other frames, but with the risk of unacceptable visual artifacts in the final HR image.

We have also compared this method with an alternate post-processing strategy applying a Gaus-
sian or median filter on the final HR image I obtained from Equation (3), whose support is inversely
proportional to Rc. Not only this second approach is less computationally efficient, but we have also
observed that the resulting image appears more blurry and retains more fusion artifacts.
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Algorithm 11: AccumulationReference

Data: Frame J1, kernels Ω1, zoom s, numerator image num, denominator image den,
accumulated robustness Rc

Result: Updated numerator and denominator of the accumulator: num and den

// Main loop over the pixels of the fine grid

1 for (x, y) ∈ num do
// Corresponding location on J1’s coarse grid

2 (x1, y1)← (x, y)/s;
// Fetch the 4 closest pre-computed covariance matrices

3 for (x̂i
1, ŷ

i
1) ∈ N2(x1, y1) do

4 Ωi ← Fetch(Ω1, (x̂
i
1, ŷ

i
1));

5 end
// Interpolate to the desired position based on the known Omegas

6 Ω← BilinearInterpolation(Ω1,Ω2,Ω3,Ω4, x1, y1);
7 rc ← NearestInterpolation(Rc, (x1, y1));

// Expanding Omega’s support and the integration neighborhood

8 Ω← g1(rc)× Ω;
9 N ← g2(rc);

10 if rc < Rmax then
// Discarding the aggregation prone to artifacts to switch to a single-frame strategy

11 num(x, y)← Zeros(3);
12 den(x, y)← Zeros(3);

13

14 for (u, v) ∈ N (x1, y1) do
// Build on-the-fly the merge kernel with (u, v) back-projection on I’s fine grid

15 d← (u, v)− (x1, y1);

16 w ← exp
(
−d⊤Ω−1d/2

)
;

// Look which color component will be added

17 c← GetLocalChannel((u, v));
// Do the aggregation in the image and accumulator

18 num(x, y, c)← num(x, y, c) + rwJ1(u, v);
19 den(x, y, c)← den(x, y, c) + rw;

20 end

21 end

Postprocessing in the demo. In the companion demo shipped with this paper, we have to
postprocess the fused image to display it side-by-side with the reference LR frame demosaicked
with [19] and upsampled (if s is not set to 1) with bilinear interpolation. Starting from RGB images
in the camera’s color space, we use gamma compression with value of 2.2, the pixelwise S-curve
x 7→ 3x2 − 2x3 in guise of tone mapping, and lastly use the implementation of Polyblur from [7] to
sharpen the image. The images are saved as 8-bit JPEG files with compression quality set to 95%.

3 Experiments

This section presents experiments validating our implementation, highlighting the demosaicking and
super-resolution abilities of the handheld super-resolution algorithm. We process bursts of raw
photographs after setting the black and white points, and correcting the white balance with the
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coefficients specified by the EXIF metadata. The technique replaces the subsequent denoising and
demosaicking modules in a typical ISP pipeline. After having merged the frames into a single image,
we convert the colors to the sRGB format by applying the color matrix found in the EXIF meta-
data, sharpen the image and remove chromatic aberrations with the state-of-the-art approach of [8].
Lastly, we apply a 1/2.2 gamma compression curve as a simple global tone mapping operator. Final
operations such as 8 or 10-bit quantization and dithering are not considered. In the high-resolution
version of this paper, the illustrations of this section are taken from 16-bit TIFF uncompressed
images.

3.1 Demosaicking

Since the handheld burst super-resolution algorithm is a drop-in replacement of the demosaicking
block in the ISP pipeline, we first measure its ability to compete with the classical handcrafted
interpolation algorithm of Menon et al. [20], and the deep learning approach of Gharbi et al. [10].
Demosaicking corresponds to set the zoom factor s to 1. The result in Figure 8 shows that our
pipeline is able to demosaick and denoise raw images while conserving sharp details.

(a) Menon et al. [20]. (b) Gharbi et al. [10]. (c) Ours (N = 13).

Figure 8: Quantitative demosaicking comparison. Our methods generates a sharp and noise free image. The licence plate
is better demosaicked in our case, revealing all the numbers.

UsingN images instead of a single one also prevents hallucinated details. The proposed algorithm,
when s = 1, is thus a drop-in replacement of any demosaicking approach in a typical ISP pipeline,
but at the cost of taking several photographs instead of a single one. This is particularly adapted to
smartphones that have fully electronic shutters that do not break after a certain amount of clicks.

3.2 Super-resolution

We now evaluate super-resolution with a factor s = 2. We compare our approach to the classical
bicubic interpolation and the recent deep learning-based video SR approach of [11], which predicts
in a recursive manner high-resolution frames from a RGB sequence. Note that [11] is a neural
network with a large memory footprint, preventing the restoration of large images on a single GPU.
In contrast, our method can process a burst of 12 megapixels (about 4000 × 3000 pixels) on a
single GPU in 3 seconds for zooming with a factor 2, making it far more amenable for real-world
applications. Since these two baseline methods only operate on RGB frames, before applying them
we demosaick the input frames with demosaicnet [10].

Figures 9 and 10 are images from the bursts of N = 20 raw images in [15] and N = 13 raw
images in [3]. Our method successfully manages to separate details from noise, and the resulting
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image appears both sharp and denoised.

(a) Reference. (b) Bicubic. (c) Haris et al. [11]. (d) Ours (N = 13).

Figure 9: Comparison of different methods for ×2 zoom on a real burst from [3]. The images are demosaicked using [10],
upscaled using several methods, then postprocessed using [8]. Our pipeline manages to recover sharp details such as
registration plates, while denoising even the darkest areas. Better seen by zooming on a computer screen.

(a) Reference. (b) Bicubic. (c) Haris et al. [11]. (d) Ours (N = 20).

Figure 10: Comparison of different methods for ×2 zoom on a real burst from [15]. The images are demosaicked using [10]
and upscaled using several methods. Our pipeline manages to accurately recover the shape of the letters while removing
the image noise. Better seen by zooming on a computer screen.
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3.3 Computation Details

To highlight the efficiency of the algorithm, we share in this section the run time and peak memory
usage of our early “naive” implementation. Our Python implementation uses Numba’s just in time
compilation (JIT), and relies on PyTorch’s convolution and FFT functions. Our BM module does
not use the fast ℓ2 residual computation trick mentioned in [13]; we represent floating numbers with
32 bits, and do not use fast math approximation for operators such square roots or exponentials.
The memory deallocation is also naively left in the hands of the interpreter.

The complexity of the algorithm can be split in two parts. During the initialization, the reference
frame is processed, by computing the Hessian matrices and the gradients necessary for the ICA
algorithm. This represents a fixed temporal and memory cost.

During the second part, all the remaining frames are processed sequentially: the memory cost is
therefore fixed and the temporal cost evolves linearly with the burst size.

We therefore split the following measures into a fixed cost associated with the reference frame,
and an additional cost associated to each supplementary frame of the burst. We have run all the
experiments on a workstation with a NVIDIA RTX 3090 GPU with 24GB of RAM. The demosaicking
of a raw burst of N = 20 12Mp photographs is processed in 300ms, with an additional 110ms for
each non reference frame and the GPU memory reaches a maximum of 3.8GB. The processing of a
×2 SR for a raw burst of N = 20 12Mp photographs takes 500ms and an additional 190ms per non
reference frame, for a peak GPU memory usage of 4.7GB.

We are aware that our running times on a NVIDIA RTX 3090 GPU are slower than that in [25] for
a smartphone Snapdragon processor. Our goal is not to reproduce the performance but to provide
an easy-to-read code useful to reproduce the visual results. To accelerate the code, one should
implement Algorithm 1 with a lower-level optimized language such as Vulkan, OpenCL, or pure
CUDA to avoid the intermediate calls to the Python interpreter. Yet, even without a fully optimized
implementation, our pipeline runs considerably faster than state-of-the-art approaches such as [11]
or [10]. Note that the memory usage of [11] is so high that processing a 12MP image is impossible,
even for the higher-end consumer grade GPUs.

3.4 Impact of the Robustness Term

Wronski et al. [25] run many ablation studies to evaluate the impact of the numerous parameters.
In this paper, we focus on the role of the robustness weight R since it is one of the most important
components of the pipeline that is a pure innovation of the original paper. Figure 11 shows an
example result obtained without robustness and with it.

When the robustness is deactivated, we observe unacceptable artifacts caused by the non-overlapping
model of the optical flow. Activating the robustness, as described in Section 2.2, removes most ar-
tifacts. However, in this context we merge a varying number of pixels per location as shown in
the aggregation map (Figure 12d). Black tiles correspond to areas where SR was performed using
contributions from a single frame, i.e., where there is motion, and white tiles correspond to areas
where the N = 20 images are used for fusion, i.e., where the scene is static. Note that areas with a
single-frame contribution are prone to demosaicking artifacts.

To prevent this issue we follow [25] and apply a frame-count aware filter to the image. We locally
enlarge the merging kernel of the reference frame when the frame count is low following the protocol
of Section 2.3. Figure 12c shows the outcome of this strategy. The moving cyclist appears slightly
blurrier, but it is not that important for a moving element of the scene, but the unacceptable fusion
artifacts are less pronounced, which is a more important criterion for the customers.
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(a) Reference. (b) Robustness off. (c) Robustness on.

Figure 11: Example of the robustness for a ×2 zoom of a real burst from [15]. The scene exhibits a moving cyclist moving
forward throughout the sequence. Without robustness, the output of the pipeline suffers from heavy ghosting artifacts
on moving objects (Figure 11b). Using the robustness weights to reject ill-aligned frames removes this type of artifacts
(Figure 11c). Note that static objects such as road signs are left unchanged by the robustness.

(a) Reference. (b) Robustness on. (c) Corrected robustness on. (d) Accumulated robustness.

Figure 12: Illustration of the additional frame-count aware spatial denoising for a ×2 zoom of a real 20 images burst. With
the mere robustness logic, patches with a low accumulated robustness (black pixels in Figure 12d) are mostly obtained
using single-frame SR and are therefore exceptionally prone to demosaicking artifacts and noise (Figure 12b). By adapting
the merge kernel of the reference frame to the accumulated robustness (Figure 12c), fine details such as the bicycle frame
remain visible and merge artifacts disappear. Note that for illustration purposes the images are not post-processed using [8],
which would completely remove the color flutter of the artifacts.

3.5 Impact of the Adaptive Fusion Kernel

In this paper, we have introduced the method under the scope of the local-means approach of
Equation (3). We have then detailed the steerable kernels of [25] in the subsequent section, explaining
how to leverage the 2D local structure tensors to shape the support of the merging kernels. Yet, in
Equation (3) we can use any kernel. We compare in Figure 13 the steerable kernels of [25] with the
ones proposed by Thibaud Briand in his thesis [4, Chapter 9]. In our formalism, it corresponds to
take the 2× 2 identity matrix scaled by 1/2 for Ω. It is thus a structure-agnostic kernel. Figure 13
shows that the approach of Briand [4] leads to blurry results, whereas the steerable kernels gracefully
adapt to the local geometry, preventing the blurrying of the edges, thus yielding a much sharper
image. This validates the endeavor of shaping more complex merging kernels for efficient image
super-resolution.
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(a) Reference. (b) Briand [4]. (c) Ours.

Figure 13: Comparison of locally adaptive anisotropic kernel and the general isotropic kernel from [4] for ×2 zoom from a
burst of N = 20 raw images. Our kernel is narrower than the isotropic counterpart for punctual details like the chimneys,
allowing for sharper details. For texture-free areas like the sky, our kernel gets wider than that of [4], allowing for a more
efficient denoising. By stretching on edges, our kernel is less prone to create blue and red stripes artifacts on edges. The
images are not sharpened for better highlighting the disparity of the remaining blur straight after image fusion.

4 Conclusion

In this paper, we presented a detailed implementation of the raw burst super-resolution algorithm
used in the Google Pixel 3 camera. It consists of two successive stages: registration of mosaicked
images followed by fusion on a fine RGB grid.

The registration adopts a translation model on non-overlapping patches and is done in two steps.
A first pyramid block-matching algorithm predicts a coarse patchwise flow with pixel accuracy. This
flow is further refined with three iterations of the inverse compositional algorithm. A qualitative
analysis suggests that running these two algorithms on grayscale low-pass filtered variants of the
input raw images enhances the accuracy of the flow estimates.

The fusion takes the form a normalized convolution where each frame is sequentially included
in both the numerator and the denominator. Each frame’s contribution is weighted with respect to
structural and robustness coefficients that may reject ill-aligned frames to prevent fusion artifacts.
The algorithm returns a single RGB high-resolution version of the reference low-resolution frame in
the input raw photograph burst.

Throughout this presentation, we have strove to interpret and propose a coherent algorithm with
all possible details to reproduce the results of the original paper. In particular, we filled the blanks for
many missing implementation details. Concerning registration, we have robustly aligned raw images
via FFT low-pass filtering [4, Chapter 8], have successfully modeled the optical flow with local
translations on non-overlapped patches, and have estimated its parameters with ICA iterations [2].
For merging the images, we have handled the brightness-dependent noise level with a generalized
Anscombe transform [17] for computing accurate merging kernels, we have corrected the computation
of the directional standard deviation coefficients shaping the local merging kernels that were incorrect
in the original paper, and have adapted on-the-fly the merging kernels to the case where only the
reference frame actually contributes to the merging scheme. We have finally connected the work
of Wronski et al. [25] with that of Thibaud Briand in his thesis [4, Chapter 9], showing that his
general isotropic kernel and the structure-aware merging kernels presented in our article are two
particular instances of the same super-resolution algorithm via normalized convolution. We have
empirically shown that the data-adaptive approach of Wronski et al. is better, as expected, and that
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it competes with recent state-of-the-art CNNs while being as fast and much more computationally
efficient, despite our non-optimized implementation.

We believe that this publicly available implementation of the acclaimed paper by Wronski et
al. , the first to do so to our knowledge, and the many implementation details we have disclosed in
this IPOL article, will benefit the image processing and computational photography communities for
deriving new lightweight and fast image and video super-resolution algorithms.
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