
Published in Image Processing On Line on 2023�11�01.
Submitted on 2023�04�03, accepted on 2023�09�10.
ISSN 2105�1232© 2023 IPOL & the authors CC�BY�NC�SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2023.477

2
0
2
1
/
1
1
/
2
1
v
0
.6

IP
O
L

a
rt
ic
le

c
la
ss

OpenCCO: An Implementation of Constrained Constructive

Optimization for Generating 2D and 3D Vascular Trees

Bertrand Kerautret1, Phuc Ngo2, Nicolas Passat3, Hugues Talbot4, Clara Jaquet5

1 Univ Lyon, Univ Lyon 2, CNRS, INSA Lyon, UCBL, LIRIS, UMR5205, F-69676 Bron, France
(bertrand.kerautret@univ-lyon2.fr)

2 Université de Lorraine, CNRS, LORIA, Nancy, France (hoai-diem-phuc.ngo@loria.fr)
3 Université de Reims Champagne Ardenne, CReSTIC EA 3804, Reims, France (nicolas.passat@univ-reims.fr)

4 CentraleSupelec, Inria, Université Paris-Saclay, 9 Rue Joliot-Curie, Gif-sur-Yvette, France
(hugues.talbot@centralesupelec.fr)

5 Université Gustave Ei�el, CNRS, ESIEE Paris, Marne-la-Valle, France

Communicated by Jean-Michel Morel and Luis Álvarez Demo edited by Bertrand Kerautret

Abstract

In this article, we focus on the algorithm called CCO (Constrained Constructive Optimization),
initially proposed by Schreiner and Buxbaum [Computer-Optimization of Vascular Trees, IEEE
Transactions on Biomedical Engineering, 40, 1993] and further extended by Karch et al. [A
Three-Dimensional Model for Arterial Tree Representation, Generated by Constrained Con-
structive Optimization, Computers in Biology and Medicine, 29, 1999]. This algorithm can be
considered as one of the gold standards for vascular tree structure generation. Modeling and/or
simulating the morphology of vascular networks is a challenging but crucial task that can have a
strong impact on di�erent applications such as �uid simulation or learning processes related to
image segmentation. Various implementations of CCO were proposed over the last years. How-
ever, to the best of our knowledge, there does not exist any open-source version that faithfully
follows the native CCO algorithm. Our purpose is to propose such an implementation both in
2D and 3D.

Source Code

The reviewed source code and documentation associated to the proposed algorithms are avail-
able from the web page of this article1, as well as the on the GitHub repository (OpenCCO-
team/OpenCCO2). The correspondences between algorithms and source codes are mutually
given and compilation with usage instructions are included in the README.md �le of the archive.
The archives also contains the scripts allowing to reproduce the experiments included in various
�gures.

Keywords: constrained constructive; optimisation; implementation; simulation; tubular struc-
ture; vasculature; bifurcation; 3D images

1https://doi.org/10.5201/ipol.2023.477
2https://github.com/OpenCCO-team/OpenCCO

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet , OpenCCO: An Implementation of Con-

strained Constructive Optimization for Generating 2D and 3D Vascular Trees, Image Processing On Line, 13 (2023), pp. 258�279.
https://doi.org/10.5201/ipol.2023.477

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2023.477
https://doi.org/10.5201/ipol.2023.477
https://github.com/OpenCCO-team/OpenCCO
https://github.com/OpenCCO-team/OpenCCO
https://doi.org/10.5201/ipol.2023.477
https://github.com/OpenCCO-team/OpenCCO

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

1 Introduction

In image processing and analysis, thin structures are among the most di�cult to handle. This is
especially true for line-like structures in 2-dimensional images or tube-like structures in 3-dimensional
images. Such structures are particularly present in the context of (bio)medical imaging. A wide
literature has been dedicated to the preprocessing (e.g. �ltering), processing (e.g. segmentation) and
analysis (e.g. quanti�cation) of vascular structures in so-called angiographic images, which are typical
examples of 1-dimensional structures in 2- and 3-dimensional images. Recent surveys on such image
processing / analysis approaches [10, 14] summarize the investigation of a wide range of methods for
tackling the issues related to blood vessel processing and analysis (from classical image processing
to more recent deep learning paradigms).

By contrast with this rich literature, little e�ort has been dedicated to the generation of tree
structures as geometrical objects which could fairly model vascular trees. Being able to build ex
nihilo such objects is, however, a crucial research issue. Indeed, the availability of vascular models
that present realistic properties with respect to actual vascular trees would open the way to the
design of e�cient benchmarks for comparing image processing / analysis methods [9], for modeling
vascular structures that cannot be easily observed (e.g. at the microvascularization level) [16], for
carrying out e�cient experiments in computational �uid dynamics [13], or for generating realistic
virtual medical images natively endowed with ground-truth [2].

In 1993, Schreiner and Buxbaum [17] proposed an algorithm for building tree structures in R2 with
the purpose of endowing them with correct properties related to vascular networks. In 1999, Karch et
al. [7] extended this algorithm to the construction of tree structures in R3. In 2010, VascuSynth3 [3]
was proposed as an open-source software building upon CCO. Although VascuSynth data are fre-
quently used in the angiographic image analysis literature, the underlying software presents various
limitations compared to the native version of CCO (e.g. regarding spatial domain de�nition, opti-
mization strategy for bifurcation geometry computation). In 2019, Jaquet et al. revisited the CCO
algorithm [5] with the purpose of using it for cardiovascular modeling. Unfortunately, the associated
software was not made available to the scienti�c community. A couple of years ago, we decided to
provide an open-source version of this algorithm. Doing so, we also carefully revisited the algorithm,
in order to e�ciently deal with some tricky aspects, computationally expensive steps, and to try to
simplify its formulation, especially by discriminating its algorithmic and physiology-guided layers.

In this article, we describe our own interpretation of the CCO algorithm, that we aim to make
completely clear and as close as possible to the original one, and the details of its implementation.
The rest of this article is organized as follows. In Section 2, we propose a synthetic summary of
the proposed algorithm. Section 3 explains the principal key points of the algorithm. Section 4
describes one representative iteration of the construction algorithm. Section 5 describes the main
parameters of the algorithm. Details related to our implementation of the algorithm are given in
Section 6. Experimental results are proposed in Section 7. Section 8 provides concluding remarks
and perspectives.

2 Overview of the Method

2.1 Description of the Constructed Tree

The proposed method builds a tree T in Rd (d = 2 or 3) inside a bounded, closed connected domain
Ω ⊂ Rd.

3https://vascusynth.cs.sfu.ca

259

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

From a topological point of view, T is composed by a set V of n = 2k vertices (k ≥ 2), including
one vertex called the starting vertex, k ≥ 1 vertices called ending vertices, and k − 1 vertices called
inside vertices; and a set E of n− 1 edges linking two distinct vertices. Each ending / starting vertex
is incident to exactly one edge. Each inside vertex is incident to exactly three edges. Each edge is
incident to at least one inside vertex and at most one ending / starting vertex. The induced graph
(V , E) is connected and acyclic, i.e. it is a tree.

The path between any vertex v ∈ V and the starting vertex being unique, we can non-ambiguously
de�ne a �parenthood� function φ : V → V such that φ(v) ∈ V is the successor of the vertex v in the
path between v and the root (which is the only vertex where φ is not de�ned). In particular, for any
v ∈ V except the starting vertex, (v, φ(v)) is an edge of E , and this speci�c edge will also be noted
e(v). Conversely, we note Φ(v) = {u ∈ V | φ(u) = v}.

Let vi ∈ V (i ∈ [[0, n− 1]]) be a vertex of the tree T. From a geometrical point of view, the vertex
vi is embedded as a point pi ∈ Rd, whereas the (putative) edge e(vi) ∈ E�also noted ei for the sake
of concision�is embedded as a straight segment Si ⊂ Rd. In particular, if the edge ei is incident to
the two vertices vi, vj ∈ V , then the segment Si is de�ned as Si = [pi, pj] = {α · pi + (1 − α) · pj ∈
Rd | α ∈ [0, 1]}.

From a morphological point of view, each segment Si has a given thickness de�ned by a radius
parameter ri ∈ R∗

+ associated to the edge ei. In practice, the 1-dimensional segment Si is then
modeled as a d-dimensional �tubular� object Ci that can be seen as the dilation Ci = Si ⊕ Bri of Si

by the Euclidean ball of radius ri, namely Bri = {x ∈ Rd | ∥x∥2 ≤ ri}. The whole tree T is then
de�ned as the union of these tubular shapes, i.e. T =

⋃n−1
i=0 Ci. This tree T lies inside Ω, i.e. T ⊆ Ω.

If two edges ej and ek are not incident to a same vertex vi, then we should have Cj ∩Ck = ∅, so that
the acyclicity of the graph (V , E) remains valid in the tree T ⊂ Rd.

From now on, for the sake of readability, we will sometimes make no distinction between the
notions of vertex (vi) vs. points (pi) and the notions of edges (ej) vs. segments (Sj). In other words,
we will make no distinction of notation between the tree T considered as a graph and as an embedded
volume.

2.2 Input / Output

The method has the following inputs:

� Ω ⊂ Rd: the domain where the tree has to lie;

� p0 ∈ Ω: the position of the starting point / vertex;

� k ∈ N+: the number of ending points / vertices;

and provides the following outputs:

� V = {pi}n−1
i=0 , the set of the n = 2k points / vertices of the tree T;

� E = {Si}n−1
i=1 , the set of the n − 1 edges / segments Si together with their respective radii

ri ∈ R∗
+.

2.3 Sketch of the Algorithm from a Topological Perspective

The tree T is incrementally constructed from a trivial tree�composed by two vertices and one edge�
by iteratively adding new edges composed of two new vertices. At each iteration, each new edge is
connected to the current tree by �breaking� a current edge of the tree into two parts. From the only
topological point of view�i.e. if we consider the vertices vi and the edges ei, without dealing with

260

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

Algorithm 1: Tree construction (sketch: topological point of view).
Input: k ∈ N∗

+

Output: (V, E) with V = {vi}n−1
i=0 and E = {ei}n−1

i=1 (n = 2k)
// Initialization of the tree

1 Let v0, v1 be two vertices
2 Let e1 = (v1, v0)
3 Let (V, E) = ({v0, v1}, {e1})
// Incremental addition of new vertices and edges

4 foreach i ∈ [[1, k − 1]] do
5 Let v2i, v2i+1 be two vertices
6 Set V = V ∪ {v2i, v2i+1}
7 Choose ej = (vj , vk) ∈ E
8 Set ej = (vj , v2i)
9 Let e2i = (v2i, vk)
10 Let e2i+1 = (v2i+1, v2i)
11 Set E = E ∪ {e2i, e2i+1}

vk

vj

ej

(a) Initial

vk

vj

v2i

v2i+1

ej

e2i

e2i+1

(b) Final (c) Global tree structure

Figure 1: Addition of a new edge in the tree (a,b) (see Algorithm 1) and illustration of the structure used in the CCO
algorithm (c). The red disk area associated to each terminal point represents the neighboring region receiving Qout �ow at
pressure Pout.

their spatial embeddings, namely the points pi and the segments Si of radii ri�then the algorithmic
sketch of CCO is given in Algorithm 1 (with an illustration of edge updating and the global tree
structure in Figure 1).

This algorithm is basically the construction of a (nearly) binary tree. The relevance and the main
di�culty of CCO lie in the additional handling of the spatial embedding of this tree. It is indeed
required to generate this tree by associating to each vertex vi a point pi and to each edge ei a segment
Si associated with a radius ri, while satisfying geometrical and morphological constraints related to
the domain Ω and various parameters. These constraints are brie�y summarized hereafter. Their
algorithmic handling will be explained in detail in the next section.

2.4 Geometrical and Morphological Constraints

The construction of the tree T is enriched / constrained by various factors.

(1) Each edge ei = (vi, vj) is associated to a segment Si with a radius ri that depends on its spatial
embedding (i.e. the distance between the positions of pi and pj in Ω) but also on the positioning
of the edge into the tree and the radii associated to the other segments. This radius handling
is discussed in Section 3.1.

261

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

(2) For each edge ei = (vi, vj) associated to two new vertices vi, vj and associated points pi, pj,
one of these points, say pi, which is an ending point, has a position randomly chosen under
constraining criteria. The position of the second point, say pj which is an inside point, is
computed by an optimization process. This optimization process is guided by parameters
which allow one to model physiological priors. This optimization procedure is discussed in
Section 3.2.

(3) During the construction of the tree, it is forbidden for (i) the segment associated to a new edge
to be too short and (ii) for the two ending points to be too close. It is also forbidden that (iii)
two segments intersect. (Here, the segments are viewed as volumes.) This requires a segment
intersection checking at various stages of the process. These checking procedures are discussed
in Section 3.3.

3 Main Key Points

3.1 Radius Computation

In the tree T induced by (V , E), each vertex vi (i ∈ [[0, n− 1]]) is associated to a point pi ∈ Rd, and
each edge ei ∈ E (i ∈ [[1, n − 1]]) is associated to a segment Si = [pi, pj] ⊂ Rd (with vj = φ(vi)) of
length ℓi = ∥Si∥2 = ∥pi−pj∥2. In order to complete this spatial embedding, we also aim to determine
a radius ri ∈ R⋆

+ (i ∈ [[1, n− 1]]) for each segment Si.

3.1.1 Relative Radii

In a �rst time, we do not focus on absolute but on relative radii. More precisely, we de�ne for each
segment Si (i ∈ [[1, n − 1]]) a value ρi ∈ R⋆

+ which is the ratio between the radius ri of the segment
Si and the radius r1 of the segment S1 which is de�ned as the only segment containing the starting
point p0. In particular, for any segment Si we have

ri = ρi · r1. (1)

These values ρi are de�ned recursively in a bottom-up fashion by

ρi =

{
1 if i = 1,
βi · ρφ(i) if i > 1,

(2)

where, by abuse of notation, j = φ(i) means vj = φ(vi). For any vertex vi ∈ V (i ∈ [[2, n − 1]]), we
set

βi =
(
1 + αγ

i

)− 1
γ , (3)

αi =
(Lb(i)

Li

·
Rb(i)

Ri

) 1
4
, (4)

with b(i) ̸= i being the unique index such that φ(b(i)) = φ(i), and

Li =
(
1− |Φ(vi)|

2

)
+

∑
vj∈Φ(vi)

Lj, (5)

Ri = κ · ℓi +
(∑

vj∈Φ(vi)

β4
j

Rj

)−1

. (6)

262

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

In particular, these equations involve only two (hyper)parameters, namely γ and κ, that are discussed
in Section 5.

It is important to notice that despite the mutually recursive links that exist between some of
the values (R, β, α), there is no deadlock due to a putative circular de�nition. More precisely, in
Equations (3�4), the values of β and α depend on the value of R at the same level, whereas in
Equation (6), the value of R at the current level depends on the values of R and β (and thus α) at
the lower level of the children nodes (Φ). The computation of these values is then non-ambiguous
and can be carried out in a bottom-up fashion, from the leaves of the tree to its root.

The meaning of the computed values is the following:

� ρi is the radius ratio between segments Si and S1;

� βi is the radius ratio between the segments Si and the �parent� Sφ(i);

� αi is a parametric ratio between the �brother� segments Si and Sb(i);

� Li is the number of ending points in the subtree starting at segment Si;

� Ri is a value that models the hydraulic resistance in the segment Si, viewed as a vascular
structure.

3.1.2 Absolute Radii

The radius of the segment S1 evolves during the iterative part of Algorithm 1. In particular at
iteration i ∈ [[1, k − 1]] (i.e. at a stage where i + 1 terminal vertices have been set), the radius r1 is
de�ned as

r1 =
(
ξ ·R1 · (i+ 1)

) 1
4 , (7)

where ξ is a parameter that will be discussed in Section 5. The radii of the other edges are then
obtained recursively in a top-down fashion from Equations (1�6).

3.1.3 Iterative Computation and Computational Cost

Let us suppose that an intermediate tree T has been built at iteration i−1 ∈ [[1, k−1]] of Algorithm 1
and that the values R⋆, L⋆, α⋆, β⋆ and ρ⋆ have been computed for this tree T.

Now, let us suppose that at the iteration i, we incrementally update this intermediate tree T.
Since R⋆, L⋆, α⋆ and β⋆ are de�ned in a bottom-up fashion, they only need to be updated for the
new two vertices v2i and v2i+1 added at iteration i, the two vertices vj and vk incident to the edge
ej that is split at this iteration, and all the vertices located in the unique path between v2i and the
starting vertex v0. For a tree T correctly balanced, these updates present a time complexity Θ(log i).
However, all the values ρ⋆, de�ned in a top-down fashion, have to be updated, which leads to a time
complexity Θ(i).

As a consequence, the computation of the radii of the �nal tree T ex nihilo presents a time
complexity Θ(k2).

3.2 Segment Construction

Let us now discuss the way to de�ne a new segment in the tree being constructed. At step i of
Algorithm 1, an intermediate tree (V , E) has been built and we now want to de�ne and add two new
points p2i and p2i+1 in Rd, and the induced segment S2i+1. One of these points, say p2i+1, is chosen
randomly (but under certain constraints to be ful�lled, see Section 3.3). The other point, say p2i,

263

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

is de�ned from the knowledge of p2i+1 and from the position of two points pj and pk that form the
segment Sj in the current tree.

In practice, we have as input three points, namely p2i+1, pj, pk such that the last two points
already form a segment of the current tree. We aim to compute a fourth point p2i that will allow
us to de�ne three segments: one segment between p2i and p2i+1 (i.e. the �new� segment) and two
segments between p2i and pj (resp. pk). These segments will derive from the splitting of the existing
segment Sj between pj and pk and its �bending� to allow the connection with the �new� segment, see
Figure 1 for an illustration.

The point p2i must lie in the triangle formed by p2i+1, pj and pk. Its position is de�ned as the
result of an optimization process based on the Kamyia algorithm [6], summarized as follows.

For the sake of concision, in the sequel, we note x0 = pk, x1 = pj, x2 = p2i+1 and x = p2i. The
expected solution x lies in the plane de�ned by the three points xi (i ∈ [[0, 2]]), assumed non-colinear.
We can then consider this optimization problem as a 2-dimensional problem expressed in this plane
isomorphic to R2. From now on, we then assume without loss of generality that we have xi ∈ R2.

Next, we describe one step of the (iterative) Kamyia optimization algorithm.
At the beginning of the step, we know the current position of x, obtained from the previous step,

or initialized at the �rst step as

x =
x0 + x1

2
. (8)

For each i ∈ [[1, 2]], we de�ne the length li of the segment between xi and x as li = ∥xi − x∥2 and we
set

∆i =
f0 · l0
r40

+
fi · li
r4i

, (9)

where fi corresponds to the �ow
4 in the segment between xi and x, and ri is the radius of this segment

(de�ned in the previous sections, see Equation (1)). This formula derives from Hagen-Poiseuille's
law; in particular, ∆i represents a drop of pressure. When computing the ∆i, both the �ows fi and
the lengths li are known (the li are derived from the current position of the points xi). The radii
ri are obtained from the previous step (see below), except at the initial step of the process, where
r0 = r1 = r2 are set from the current tree.

We assume [15] that
fi ∝ r3i , (10)

and [6]

r60 = f0 ·
(r61
f1

+
r62
f2

)
. (11)

Equations (9) and (11) lead to a two-equation non-linear system ∆1r
4
1

(
f0
(r61
f1

+
r62
f2

)) 2
3 − f0l0r

4
1 − f1l1

(
f0
(r61
f1

+
r62
f2

)) 2
3
= 0,

∆2r
4
2

(
f0
(r61
f1

+
r62
f2

)) 2
3 − f0l0r

4
2 − f1l1

(
f0
(r61
f1

+
r62
f2

)) 2
3
= 0,

(12)

where the two unknowns are r21 and r22 (the system is then of degree 4). To solve this system, we can
use a non-linear solver such as the C++ library Ceres Solver [1], considered in our implementation.

One may then derive the coordinates of x [6] as

x =

∑2
i=0

r2i
li
· xi∑2

i=0
r2i
li

. (13)

4In this algorithm, we assume that the �ow at each ending points is the same. Then, the values of fi considered
here are proportional to the number of ending points in the subtrees starting at xi. In particular, we have f0 = f1+f2,
and f1

f2
= Lj .

264

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

This process allows to compute, at each step, the values li from the current position of x, then ri
(Equation (12)) and �nally the new position of x (Equation (13)). This iterative procedure terminates
when the convergence tolerance of the gradient is reached. (In our implementation this tolerance is
set to 10−10.)

3.3 Constraints

3.3.1 Preliminary Remark: Evolution of the Size of the Domain

The domain Ω ⊂ Rd has a given size |Ω| (area for d = 2 and volume for d = 3). If we consider that

the tree has k ending points, then the in�uence area of each ending point is de�ned as A = |Ω|
k
. Since

these ending points are added incrementally (one per iteration), we assume that the domain grows
at the same rate, i.e. at iteration i ∈ [[0, k − 1]] the domain Ωi is de�ned as

Ωi =
{i+ 1

k
· q | q ∈ Ω

}
, (14)

where i+1
k

is a scale factor between Ωi and the targeted �nal domain Ω. Note that the iteration 0
corresponds to the initialization step whereas the last iteration i = k − 1 corresponds to the end of
the process, with Ωk−1 = Ω. In this context, the in�uence area of an ending point p can be seen as a
Euclidean ball of size A. If d = 2 (resp. d = 3), this ball has a radius equal to (A

π
)
1
2 (resp. (3A

4π
)
1
3). It

is important to note that when going from iteration i to iteration i+1, this radius remains constant;
however, the positions of the points evolve from p at iteration i to (1 + 1

i+1
) · p at iteration i+ 1, at

the same rate as the evolution of Ωi to Ωi+1. This growing rate impacts the length ℓi of the segments
Si, but also their radius ri.

3.3.2 Distance Constraints

At each iteration i of the process, two new points p2i, p2i+1 are de�ned. One of them, say p2i+1, is an
ending point and is de�ned quasi randomly. More precisely, it is chosen randomly but under various
constraints:

� p2i+1 must be chosen within the domain Ω;

� p2i+1 must be su�ciently far from the current tree (and a fortiori not in the tree).

In order to satisfy the �rst constraint, it is su�cient to check that p2i+1 ∈ Ω. If Ω is a convex
domain de�ned by m hyperplanes, this can be checked in Θ(m). If Ω is an arbitrary (convex or
non-convex) domain, then a su�cient condition is to check that p2i+1 belongs to a cover of convex
sets that lies inside Ω. It is of course relevant to choose a cover that �ts as much as possible Ω. These
convex sets can be e.g. a cover of spheres or a partition of cubes (e.g. voxels). (This last strategy
was chosen in our implementation.)

In order to satisfy the second constraint, we compute the distance δ of p2i+1 to the tree, i.e. to
each segment S of the tree (considering its radius r(S)). This distance δ must be greater that δmax

with

δmax =
(1

i+ 1

|Ω|
k

) 1
d
. (15)

Note that, at step i, this test requires to compute i+1 point-to-segment distances (to this end, we will
use the same constant-time algorithm as for segment-to-segment distance [11], see below), leading
to a time cost Θ(i). If no random choice ful�lls this constraint after a certain number of attempts
(set to 100 in our implementation), then the distance δmax is decreased as α · δmax with 0 < α < 1
(α = 0.9 in our implementation), and this process is then iterated as many times as required.

265

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

3.3.3 Non-intersection Constraints

Once a new ending point p2i+1 has been de�ned in Ω, three segments have to be computed: one in
order to connect p2i+1 to the remainder of the tree, and two by splitting a segment already present
in the tree (see Section 3.2). The optimization process leading to the determination of these three
segments does not check their validity with respect to the domain Ω and to the current tree T.

To tackle the issue of the domain, a solution is to build a distance map of the border ∂Ω into the
domain Ω. Such a distance map can be built in a discrete way on the Cartesian grid Zd associated
to the part of the Euclidean space Rd where Ω lies. Once computed, it is then possible to determine
the (�nite) set of pixels / voxels where the considered segment lies. If the distance map value at each
of these pixels / voxels is greater than the radius of the segment plus

√
d, then one can guarantee

that the segment does not intersect the border ∂Ω of the domain, i.e. it is actually inside Ω.
It is also mandatory that a new (or updated) segment S does not intersect the other segments, i.e.

that there is no self-intersection within the tree. This can be done by computing, for each segment
S ′ in the tree (except the segments incident to S) the distance D between S and S ′, namely

D(S, S ′) = min{∥x− x′∥2 | (x, x′) ∈ S × S ′}. (16)

Such a distance can be computed in constant time Θ(1) [11], leading to a checking in linear time cost
Θ(2i) with respect to the number of segments within the tree. In particular, if for all the segments
S ′, the distance D(S, S ′) is greater that the sum of the radii of S and S ′, then we can guarantee that
the new (or updated) segment S does not intersect the remainder of the tree.

Figure 2 shows the whole process of vascular tree construction.

4 Global View of One Iteration of the Algorithm

In this section, we describe the whole running of one iteration (say iteration i) of the tree construction
algorithm. At this stage, we assume that an intermediate version of the tree T has been built, and
we aim to add a new segment to this tree with all the induced side e�ects.

4.1 Evolution of the Domain Size

Before adding a new branch and a new ending point to the tree, the size of the domain is increased,
as discussed in Section 3.3.1. This step has a time complexity Θ(i) if the coordinates of all the points
are updated (i.e. the size of the domain is increased), or Θ(1) if the �size of the space� is decreased,
which means that the physical positions of the points remain unchanged, but a scale factor is applied,
that impacts the computation of the length. This last choice has been chosen in our implementation.

4.2 New Ending Point

A new ending point p2i+1 is de�ned. As discussed in Section 3.3.2, this is a random choice under
various constraints. Many attempts may then be carried out, and the time complexity of this step
is then Θ(i · νp) where νp is equal to this number of attempts.

4.3 Choice of the Candidate Segments for Connection

The creation of a new segment is carried out by connecting p2i+1 to an existing segment S of the
tree (that will be split into two segments). In theory, all the segments of the current tree may be
considered. However, such an exhaustive strategy would lead to a prohibitive computational cost. In

266

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

Increase the number of terminals

Yes

Add connection minimizing
 the total tree volume

Add connection
success

Yes

No

Yes

Initialize the tree

Generate the first segment
()

Generate an ending point

Find candidate segments
 for connecting

For each candidate segment

Create a bifurcation point
 from , and

Optimization process
for the bifurcation point

Intersection test

No

Update radii

Figure 2: Work�ow of the proposed method of vascular tree construction.

practice, only the nearest segments are investigated. The de�nition of these νS segments is carried
out in linear time O(i · log νS) via point-to-segment distance computation.

4.4 Segment Generation and Connection

For each segment S within the νS candidate segments, a connection between the point p2i+1 and the
segment S is carried out. This process, documented in Section 3.2, leads to the proposal of a new
segment and the update of S as two segments. This proposal is valid if and only if:

� these three segments satisfy the non-intersection requirements discussed in Section 3.3.3. This
test of intersection is performed once for a new terminal point (before the optimization process
of bifurcation), and during the optimization process of bifurcation;

267

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

� a ratio constraint that imposes that for each segment, the ratio length / radius of the segment
be greater than 2 (i.e. the segment is �long enough�): 2ri ≤ li.

Remark: If the optimization process does not converge or if the obtained bifurcation is not valid,
then the candidate segment is discarded. If all the νS candidate segments are discarded, then the
number νS is doubled as many times as necessary. Note that the overall complexity of this step also
depends on the complexity of the non-linear solver computation.

4.5 Radius Update, Volume Computation and Final Choice

For each successful connection, an updated tree is obtained. The radii of the segments of this tree
are updated, based on the procedure documented in Section 3.1. It is then possible to compute the
whole volume of the tree as the sum of the volumes of each segment. The tree, which minimizes this
volume, is chosen as the new current tree at the end of the iteration.

5 Parameters

The proposed algorithm involves various (hyper)parameters introduced in the previous sections. In
practice, the purpose is to generate trees that present realistic geometry and morphology with regard
to physiological properties. In this context, the tree is seen as a vascular network where blood �ows
from one unique input (the starting point) towards the k outputs (the ending points).

5.1 Hyperparameters

The proposed algorithm relies on the following hyperparameters:

� κ = 8µ
π
, where µ is a physiological parameter de�ned in the next subsection;

� ξ = Qout

Pin−Pout
, whereQout and Pin, Pout are �ow and pressure values de�ned in the next subsection.

5.2 Physiological Parameters

The algorithm also relies on the following physiological parameters:

� µ is the viscosity of the �uid in the structure (in the case of the blood, µ is set to 3.6 cP);

� γ is the Murray bifurcation exponent that controls the geometry of the bifurcations (in general,
γ is set to 3);

� Qout is the �ow (assumed the same) at each of the k ending points (in our experiments, we set
Qout as 0.125 mL/min);

� Pout is the pressure (assumed the same) at each of the k ending points (in our experiments, we
set Pout as 60 mmHg);

� Pin is the pressure at the starting point (in our experiments, we set Pin as 100 mmHg).

Note that, without loss of generality, the pressure, �ow and viscosity parameters are expressed in
Pa, mm3/s and Pa·s in our implementation, respectively.

268

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

6 Code and Implementation Details

In this section, we provide information about the principal data structure considered in our imple-
mentation of the algorithm (Subsection 6.1), some pseudo-codes related to the most important parts
of the algorithm (Subsection 6.2) and a brief source-code description (Subsection 6.3).

6.1 Data Structure of a Vascular Tree

The data structure of a vascular tree is given in the class CoronaryArteryTree. Each segment of
the vascular tree is de�ned by the structure Segment. It contains the following attributes:

� Distal point of the segment (xj): myCoordinate;

� Index of the segment (j): myIndex;

� Radius of the tubular section (rj): myRadius;

� Total number of terminal segments in its children segment (Lj): myKTerm;

� Hydrodynamic resistance (Rj): myResistance;

� Flow (fj): myFlow;

� Relative radii (radius ratio between the segment and its parent, ρj): myBeta.

A vascular tree is then composed of:

� A vector of terminal segments: myVectTerminals;

� A vector of all the segments of the tree (E): myVectSegments;

� A vector of the left (�rst) and right (second) segments of each indexed segment (Φ): myVectChildren;

� A vector of the parent of each indexed segment (φ): myVectParent.

Global biological attributes are de�ned by the structure BioAlgoParameter:

� Number of terminal segments (k): my_NTerm;

� Perfusion area / volume (|Ω|): my_aPerf.

� Final radius of circular area (|Ω|/k): my_rPerf;

� Flow (Qout): my_qPerf;

� Perfusion pressure (Pin): my_pPerf;

� Pressure of terminal segment (Pout): my_pTerm;

� Bifurcation exponent (γ): my_gamma;

� Viscosity (µ): my_mu;

(Note that 7 of these 8 attributes are parameters, whereas the 8th one, namely my_rPerf, is calculated
from the others.)

Internal algorithm parameters are de�ned by the structure InternAlgoParameter:

269

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

Algorithm 2: Generate randomly a point with distance constraints
→ see C++ code: generateALocation() of class CoronaryArteryTree in package src
Input: A distance threshold myDThreshold
Input: A vector of terminal points myV ectTerminals of the current tree
Input: A vector of segments myV ectSegments of the current tree
Output: A generated point p
Output: A Boolean isComp indicating whether the generation has succeeded

1 p ← generate a random point

// Generated point must have a certain distance to all tree terminals
2 isComp ← true
3 id ← 1
while isComp and id < myVectTerminals.size do

5 isComp ← distance(myV ectTerminals[id].myCoordinate, p) > myDThreshold
6 id ← id+ 1

// Generated point must have a certain distance to all tree segments radii
7 id← 1
while isComp and id < myVectSegments.size do

9 isComp ← distance(myV ectSegments[id], p) > myV ectSegments[id].myRadius
10 id ← id+ 1;

11 return (p, isComp)

� Current number of terminal segments: myKTerm;

� Number of nearest neighbors to be tested: myNumNeighbor;

� Average radius of blackboxes: myRsupp;

� Scale factor: myLengthFactor.

6.2 Pseudo-codes

In this subsection, we provide some pseudo-codes related to the following tasks:

� Generation of the new points in the tree (Algorithms 2 and 3);

� Intersection checking of the branches in the tree (Algorithms 4 and 5);

� Whole process for creating a new bifurcation (Algorithm 6).

6.3 Source Codes and Dependencies

The code of OpenCCO is written in C++. It is composed of the following classes in the src directory:

� CoronaryArteryTree contains the structure of a vascular tree and functions to create a bifur-
cation;

� DomainController contains the construction of the domain of a vascular tree;

� helpers/GeomHelpers contains functions to generate randomly terminal points, check inter-
sections, Kamyia optimization, . . . ;

� helpers/ExpandTreeHelpers contains functions to generate a vascular tree;

270

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

Algorithm 3: Generate a terminal point
→ see C++ code: generateNewLocation() of class CoronaryArteryTree in package src
Input: Number of maximum trials nbTrials (= 1000 by default)
Output: A generated point p

1 myDThreshold ← compute the distance constraint // See Section 3.3.2
2 found ← false
3 n ← nbTrials
4 while ¬found and n ≥ 0 do

5 n← n− 1

6 (pt, found) ← generateALocation(myDThreshold) // See Algorithm 2
7 if found then

p ← pt

9 if n = 0 then

10 n ← nbTrials
11 myDThreshold ← myDThreshold ∗ 0.9

return p

Algorithm 4: Check if there is an intersection between two thick segments
→ see C++ code: isIntersecting() of class GeomHelpers in package src/helpers
Input: Two thick segments given by their endpoints and thickness (segA, segB, rAB) and (segC, segD, rCD)
Output: A Boolean indicating whether they are intersecting

1 cAB ← (segA+ segB)/2
2 cCD ← (segC + segD)/2
3 lAB ← (segA− segB).norm
4 lCD ← (segC − segD).norm
5 dC ← (cAB − cCD).norm

6 d← (lAB+lCD)
2 + rAB + rCD

7 if dC > d then

8 return false

9 distanceSeg ← distance between the two segments [segA, segB] and [segC, segD]
10 if distanceSeg > (rAB + rCD) then
11 return false

12 return true

� helpers/XMLHelpers contains functions to export a vascular tree into XLM �le.

The program (and the online demo) takes into account the following parameters:

� Options for both 2D and 3D cases:

� number of terminal segments/ending points (-n | �nbTerm INT, default=1000)

� perfusion area / volume (-a | �aPerf FLOAT, default=20000)

� value of the gamma parameter (-g | -gamma FLOAT, default=3)

� minimal distance to border (-m | �minDistanceToBorder FLOAT, default=5)

� organ domain using a mask image (-d | �organDomain TEXT)

� output the resulting graph as xml �le (-x | �exportXML TEXT)

� use a squared implicit domain instead of a sphere (-s | �squaredDom, defaut=sphere)

� Speci�c options in 2D:

271

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

Algorithm 5: Check if there is an intersection between a thick segment and all segments of
the current tree, except certain segments
→ see C++ code: isIntersectingTree() of class CoronaryArteryTree in package src
Input: A thick segment given by two points and a radius (ptA, ptB, r)
Input: The vector of segments myV ectSegments of the current tree
Input: A triplet idExcept containing the 3 segments indices not tested for intersection
Output: A Boolean indicating whether there is an intersection
// If they are root segment, then ignore the test

1 if (idExcept[0] = 0 or idExcept[1] = 0 or idExcept[2] = 0) then
2 return false

foreach s : myVectSegments do

4 id← s.myIndex
5 if id ̸= 0 and id ̸= idExcept[0] and id ̸= idExcept[1] and id ̸= idExcept[2] then
6 ptC ← s.myCoordinate
7 ptD ← myV ectSegments[myV ectParent[id]].myCoordinate
8 if isIntersecting(ptA, ptB, r, ptC, ptD, s.myRadius) then //see Algorithm 4
9 return true

10 return false

� initial position of root (-p | �posInit INT INT, default=image center)

� output the result into EPS format (-o | �outputEPS TEXT, default=result.eps)

� output the result into SVG format (-e | �exportSVG TEXT, default=result.svg)

� Speci�c options in 3D:

� initial position of root (-p | �posInit INT INT INT, default=image center)

� output the 3D mesh into OFF �le (-o | �outputName TEXT, default=result.o�)

� output the 3D mesh into text �le (-e | �export TEXT)

� display 3D view using QGLViewer (�view)

The program requires the DGtal library (1.3 or later): https://github.com/DGtal-team/DGtal.

7 Experimental Results and Comparison

In this section, we propose some experiments and results dedicated to compare the behaviour of our
implementation with the state-of-the-art version of the 2-dimensional and 3-dimensional algorithm,
and variants proposed in the literature.

From a qualitative point of view, we �rst illustrate, in Figures 3 and 4, some 2- and 3-dimensional
vascular trees generated in a disk / sphere domain, by the initial algorithms and our implementation.
We also provide, in Figure 5, a 3-dimensional vascular tree generated in a complex arbitrary domain.

We also illustrate, in Figure 6 the di�erence between a 3-dimensional vascular tree generated by
VascuSynth [3] and with our proposed implementation of CCO with the same input parameters, plus
a plot of the diameters of the segments depending on the bifurcation level. A quantitative assessment
of the diameters of the segments depending on the bifurcation level in a non-open implementation
proposed in [4], and our implementation is given in Figure 7. Finally, an analysis of the computation
cost of our 2-dimensional and 3-dimensional implementation of CCO is illustrated w.r.t. implicit (i.e.
spherical) / masked (i.e. arbitrary) domains and vs. VascuSynth [3], in Figure 8. These measurements
were performed on a processor Apple M1 Max.

272

https://github.com/DGtal-team/DGtal

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

Algorithm 6: Create a new bifurcation from a terminal point to a near segment of the tree
→ see C++ code: isAddable() of class CoronaryArteryTree in package src
Input: A new terminal point p
Input: The index segIndex of a segment close enough to p
Input: The maximal number of iterations, nbIter
Input: The tolerance to assess the convergence of tree volume, tolerance
Output: A Boolean indicating whether p can be added to the tree

1 pCurrent← calculate a �rst bifurcation from p, the segment segIndex and the image domain
2 Let sParent be the segment parent of segIndex
3 pParent← sParent.myCoordinate

4 Let sNewLeft, sNewRight, sCurrent be the new left, right and middle segments // see Section 2.4
5 r0, r1, r2← sCurrent.myRadius
6 vol, volCurr ← −1
7 isDone← false
8 i← 0
9 while i < nbIter and ¬isDone do

10 res1← kamyiaOptimization(pCurrent, pParent, sCurrent.myRadius, sNewLeft, sNewRight,

1, pOpt, r0, r1, r2) // see Section 3.2 (Equations (9)�(13))
11 if ¬res1 then // Kamyia does not lead to a solution
12 return false

// Check intersection with the current tree for the middle segment
13 idSegPar ← myV ectParent[segIndex]
14 (idL, idR)← (myV ectChildren[idSegPar].first,myV ectChildren[idSegPar].second)

15 res2← isIntersectingTree(pOpt, pParent, r0, [idL, idR, idSegPar]) // see Algorithm 5
16 if res2 then // There is an intersection with the middle segment
17 return false

18 if pCurrent /∈ the image domain or the middle segment /∈ the image domain then

19 return false

20 Do similar test of intersection for the left and right segments

// Iterate for the optimization process of the new bifurcation
21 Let cTreeCurr and cTree1 be a copy of the current tree

22 (sNewLeft.myRadius, sNewRight.myRadius)← (r1, r2) // Update values for the segments
23 cTree1.add(sNewLeft)

24 cTree1.add(sNewRight) // Add the left and right segments to cTree1

25 cTree1.update() // Update parameters of cTree1: new segments, physiological parameters. . .

26 vol← cTree1.computeTotalV olume() // Compute volume of the current tree
27 if i = 0 then // The �rst computation of volume
28 volCurr ← vol
29 cTreeCurr ← cTree1

30 else

31 if |volCurr − vol| < tolerance then

// Check that the resulting segments are long enough (see Section 4.4)
32 Let l0, l1, l2 be the length of the segments [pOpt, pParent], [pOpt, sNewLeft.myCoordinate],

[pOpt, sNewRight.myCoordinate]
33 res3← (2 ∗ r0) ≤ l0 and (2 ∗ r1) ≤ l1 and (2 ∗ r2) ≤ l2
34 if res3 then // If there is a solution, then save the result

isDone← true
save cTree1

37 else

38 volCurr ← vol
39 cTreeCurr ← cTree1

40 Update tree parameters: new position and physiological parameters (see Equations (1�6))
41 i← i+ 1

42 return isDone

273

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

Figure 3: 2-dimensional network generated in a disk domain. The number of terminal points is set to 4000. This result can
be compared to the one depicted in [17, Figure 3, p. 486].

(a) (b)

Figure 4: 3-dimensional networks generated in a sphere domain. The number of terminal points is set to 1000 (a) and 4000
(b). These results can be compared to those depicted in [7, Figure 5, p. 31].

274

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

(a) (b)

(c) (d)

Figure 5: 3-dimensional network generated in an arbitrary shape domain. Here, the domain (a) is composed by the non-
convex thick boundary of the Stanford bunny (a topological hollow sphere with holes). The domain (c) is de�ned by the
same construction but by cutting the front mesh to increase visibility. The number of terminal points in the network is set
to 20000 in (b) and 3000 in (d).

275

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

(a) k = 200, γ = 3, t = 5, 61 s (b) k = 200, γ = 3, t = 0, 24 s

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5 10 15 20 25

m
e
a
n

 s
e
g
m
e
n
t
d
ia
m
e
te
r
(m
m
)

bifurcation level

VascuSynth
CCO implementation

(c)

Figure 6: 3-dimensional networks generated in a cubic domain: VascuSynth (a) and our implementation of CCO (b). (c)
Comparison of the segment diameters variation according to the bifurcation level between the VascuSynth reconstruction
and our implementation of CCO.

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20 25 30 35

m
e
a
n

 s
e
g
m
e
n
t
d
ia
m
e
te
r
(m
m
)

bifurcation level

gamma 2.10
gamma 2.55
gamma 3.0

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40

m
e
a
n

 s
e
g
m
e
n
t
d
ia
m
e
te
r
(m
m
)

bifurcation level

gamma 2.10
gamma 2.55
gamma 3.0

(c)

Figure 7: Averaged segment diameters at respective bifurcation levels. (a) Results from [4]: �Radius study along bifurcation

levels: mean and standard deviation at each bifurcation level on 10 simulated trees� (text from [4]). (b�c) Results from
our implementation in 3-dimensions (b) and 2-dimensions (c). These results can also be compared to those depicted in [17,
Figure 4, p. 487]. The behaviours of the curves are comparable, up to the di�erent parameters which may induce distinct
quantitative values.

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

U
s
e
r
e
x
e
c
u
tio
n

 t
im
e

 (
s
e
c
)

Number of vertex (k)

CCO 2D with masked domain
CCO 2D implicit domain

(a) CCO 2D

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700 800 900 1000

U
s
e
r
e
x
e
c
u
tio
n

 t
im
e

 (
s
e
c
)

Number of vertex (k)

CCO 3D with masked domain
CCO 3D implicit domain

(b) CCO 3D

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

U
s
e
r
e
x
e
c
u
tio
n

 t
im
e

 (
s
e
c
)

Number of vertex (k)

VascuSynth
CCO 3D implicit domain

(c) CCO 3D

Figure 8: Comparison of computation time: (a) CCO in 2D and (b) 3D with implicit and masked domains, (c) CCO vs.
VascuSynth in 3D with implicit domain.

276

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

All these experimental results argue in favour of the homogeneity and the correctness of the
behaviour of our implementation with the native algorithms proposed in [7] and [17].

8 Conclusion and Perspectives

In this article we proposed an implementation of the CCO algorithm, initially designed in [17]
for the 2-dimensional case and in [7] for the 3-dimensional case. We did our best to provide an
implementation that is as close as possible to these original algorithms.

We believe that our implementation could be of precious use for any researcher interested in
obtaining realistic vascular networks (or similar tree-based objects). In particular, it may constitute
a useful alternative to existing softwares, such as VascuSynth [3].

It could be possible to build upon this framework in order to propose complementary function-
alities that could tackle some recurrent issues that occur in vascular modeling. First, the approach
could be extended to generate complementary networks (e.g. arterial and venous trees), which would
require the handling of distinct, independent trees in a forest structure, whereas considering the
constraints that each tree imposes to the other(s). Another important perspective would concern
the ability to design a partial network composed of many branches that constitute the extension of
ending points of the vascular structures at a given scale. Such approach would allow to build some
vascular models obtained from segmentation at the lowest scales (e.g. from patient-speci�c analysis
of medical images), and from modeling at the highest scales, where the images do no longer provide
useful information, but where physiological behaviour from realistic models could be statistically
inferred. Such optimizations could �nd inspiration in recent works dedicated to extend / build upon
CCO or similar algorithms, e.g. [12, 8].

In the current version of the algorithm, the output �ow is the same for each terminal point of
the tree, whereas a uniform probability is considered to determine the putative position of these
ending points. More versatile strategies could be developed to allow non-homogeneous output �ows
and biases in the positioning of the ending points, e.g. for better modeling phenomena such as
angiogenesis.

From a more technical point of view, some octree-like hierarchical representations of the tree and
of the vascular domain may also be considered for optimizing the computational burden induced by
the assessment of the geometrical hypotheses related to the tree-tree and tree-domain constraints.

Image Credits

Stanford bunny5 from Turk and Levoy at Stanford University under two-clause BSD license.

Thickened surface from Stanford bunny by Kerautret, Ngo, Passat, Talbot, Jaquet, license CC BY-SA.

Acknowledgements

This work was supported by the French Agence Nationale de la Recherche (grants ANR-18-CE45-
0018, ANR-18-CE45-0014, ANR-20-CE45-0011).

5https://faculty.cc.gatech.edu/~turk/bunny/bunny.html

277

https://faculty.cc.gatech.edu/~turk/bunny/bunny.html

Bertrand Kerautret, Phuc Ngo, Nicolas Passat, Hugues Talbot, Clara Jaquet

References

[1] S. Agarwal, K. Mierle, and T. C. S. Team, CeresSolver, 2022. Software Apache-2.0,
https://github.com/ceres-solver/ceres-solver.

[2] A. Fortin, S. Salmon, J. Baruthio, M. Delbany, and E. Durand, Flow MRI Simulation
in Complex 3D Geometries: Application to the Cerebral Venous Network, Magnetic Resonance
in Medicine, 80 (2018), pp. 1655�1665, https://doi.org/10.1002/mrm.27114.

[3] G. Hamarneh and P. Jassi, VASCUSYNTH: Simulating Vascular Trees for Generating Volu-
metric Image Data with Ground-Truth Segmentation and Tree Analysis, Computerized Medical
Imaging and Graphics, 34 (2010), pp. 605�616, https://doi.org/10.1016/j.compmedimag.
2010.06.002.

[4] C. Jaquet, Vers la Simulation de Perfusion du Myocarde À Partir D'image Tomographique
Scanner. (Toward Simulation of Myocardial Perfusion Based on a Single CTA Scan), PhD thesis,
University of Paris-Est, France, 2018. https://tel.archives-ouvertes.fr/tel-02085886.

[5] C. Jaquet, L. Najman, H. Talbot, L. J. Grady, M. Schaap, B. Spain, H. J. Kim,
I. E. Vignon-Clementel, and C. A. Taylor, Generation of Patient-Speci�c Cardiac Vas-
cular Networks: A Hybrid Image-Based and Synthetic Geometric Model, IEEE Transactions
on Biomedical Engineering, 66 (2019), pp. 946�955, https://doi.org/10.1109/TBME.2018.
2865667.

[6] A. Kamiya and T. Togawa, Optimal Branching Structure of the Vascular Tree, The Bulletin
of Mathematical Biophysics, 34 (1972), pp. 431�438, https://doi.org/10.1007/BF02476705.

[7] R. Karch, F. Neumann, M. Neumann, and W. Schreiner, A Three-Dimensional Model
for Arterial Tree Representation, Generated by Constrained Constructive Optimization, Comput-
ers in Biology and Medicine, 29 (1999), pp. 19�38, https://doi.org/10.1016/S0010-4825(98)
00045-6.

[8] H. J. Kim, H. C. Rundfeldt, I. Lee, and S. Lee, Tissue-Growth-Based Synthetic Tree
Generation and Perfusion Simulation, Biomechanics and Modeling in Mechanobiology, (2023),
https://doi.org/10.1007/s10237-023-01703-8.

[9] J. Lamy, O. Merveille, B. Kerautret, and N. Passat, A Benchmark Framework for
Multiregion Analysis of Vesselness Filters, IEEE Transactions on Medical Imaging, 41 (2022),
pp. 3649�3662, https://doi.org/10.1109/TMI.2022.3192679.

[10] D. Lesage, E. D. Angelini, I. Bloch, and G. Funka-Lea, A Review of 3D Vessel Lumen
Segmentation Techniques: MODELS, Features and Extraction Schemes, Medical Image Analysis,
13 (2009), pp. 819�845, https://doi.org/10.1016/j.media.2009.07.011.

[11] V. J. Lumelsky, On Fast Computation of Distance Between Line Segments, Information Pro-
cessing Letters, 21 (1985), pp. 55�61.

[12] G. D. Maso Talou, S. Safaei, P. J. Hunter, and P. J. Blanco, Adaptive Constrained
Constructive Optimisation for Complex Vascularisation Processes, Scienti�c Reports, 11 (2021),
p. 6180, https://doi.org/10.1038/s41598-021-85434-9.

[13] O. Miraucourt, S. Salmon, M. Szopos, and M. Thiriet, Blood Flow in the Cerebral
Venous System: Modeling and Simulation, Computer Methods in Biomechanics and Biomedical
Engineering, 20 (2017), pp. 471�482, https://doi.org/10.1080/10255842.2016.1247833.

278

https://github.com/ceres-solver/ceres-solver
https://doi.org/10.1002/mrm.27114
https://doi.org/10.1016/j.compmedimag.2010.06.002
https://doi.org/10.1016/j.compmedimag.2010.06.002
https://tel.archives-ouvertes.fr/tel-02085886
https://doi.org/10.1109/TBME.2018.2865667
https://doi.org/10.1109/TBME.2018.2865667
https://doi.org/10.1007/BF02476705
https://doi.org/10.1016/S0010-4825(98)00045-6
https://doi.org/10.1016/S0010-4825(98)00045-6
https://doi.org/10.1007/s10237-023-01703-8
https://doi.org/10.1109/TMI.2022.3192679
https://doi.org/10.1016/j.media.2009.07.011
https://doi.org/10.1038/s41598-021-85434-9
https://doi.org/10.1080/10255842.2016.1247833

OpenCCO: An Implementation of Constrained Constructive Optimization for Generating 2D and 3D Vascular Trees

[14] S. Moccia, E. De Momi, S. El Hadji, and L. S. Mattos, Blood Vessel Segmentation
Algorithms - Review of Methods, Datasets and Evaluation Metrics, Computer Methods and
Programs in Biomedicine, 158 (2018), pp. 71�91, https://doi.org/10.1016/j.cmpb.2018.
02.001.

[15] C. D. Murray, The Physiological Principle of Minimum Work: I. The Vascular System and the
Cost of Blood Volume., Proceedings of the National Academy of Sciences, 12 (1926), pp. 207�214.

[16] M. Schneider, J. Reichold, B. Weber, G. Székely, and S. Hirsch, Tissue Metabolism
Driven Arterial Tree Generation, Medical Image Analysis, 16 (2012), pp. 1397�1414. https:

//doi.org/10.1016/j.media.2012.04.009.

[17] W. Schreiner and P. Buxbaum, Computer-Optimization of Vascular Trees, IEEE Trans-
actions on Biomedical Engineering, 40 (1993), pp. 482�491, https://doi.org/10.1109/10.
243413.

279

https://doi.org/10.1016/j.cmpb.2018.02.001
https://doi.org/10.1016/j.cmpb.2018.02.001
https://doi.org/10.1016/j.media.2012.04.009
https://doi.org/10.1016/j.media.2012.04.009
https://doi.org/10.1109/10.243413
https://doi.org/10.1109/10.243413

	Introduction
	Overview of the Method
	Description of the Constructed Tree
	Input / Output
	Sketch of the Algorithm from a Topological Perspective
	Geometrical and Morphological Constraints

	Main Key Points
	Radius Computation
	Relative Radii
	Absolute Radii
	Iterative Computation and Computational Cost

	Segment Construction
	Constraints
	Preliminary Remark: Evolution of the Size of the Domain
	Distance Constraints
	Non-intersection Constraints

	Global View of One Iteration of the Algorithm
	Evolution of the Domain Size
	New Ending Point
	Choice of the Candidate Segments for Connection
	Segment Generation and Connection
	Radius Update, Volume Computation and Final Choice

	Parameters
	Hyperparameters
	Physiological Parameters

	Code and Implementation Details
	Data Structure of a Vascular Tree
	Pseudo-codes
	Source Codes and Dependencies

	Experimental Results and Comparison
	Conclusion and Perspectives

