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Abstract

In this article, we examine the joint InSAR phase denoising and coherence estimation per-
formance of the network known as Φ-Net [Sica et al., IEEE Transactions on Geoscience and
Remote Sensing, 2021]. We briefly examine the method, network architecture, training data
and strategy. Then, in the experimental section, we compare the network’s performance against
the simple boxcar uniform filter. We verify the observations made by the authors, in particular
concerning the superior denoising performance and preservation of fine details in the coherence
estimation. Our experiments also indicate that an end-to-end deep learning method might bring
a small improvement to the patch-based approach adopted in Φ-Net.

Source Code

The source code and documentation for this algorithm are available from the web page of this
article1. Usage instructions are included in the README.md file of the archive. The authors’
original method implementation is available here2.
This is an MLBriefs article, the source code has not been reviewed!
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1 Introduction

Interferometric Synthetic Aperture Radar (InSAR) is a remote sensing technique that mainly mea-
sures ground topography or deformation. This is possible by combining two different Synthetic
Aperture Radar (SAR) Single Look Complex (SLC) images z1 and z2 acquired at slightly different
locations and/or dates. An interferogram Γ is computed by applying the complex multiplication

Γ = z1 · z
∗
2 , (1)

where ∗ denotes the conjugation operation. The interferometric phase Φz is defined and interpreted
by

Φz = ∠Γ =
−4π

λ
∆R + Φnoise, (2)

where ∠ refers to the phase of the complex number ∈ [−π, π), λ is the radar carrier wavelength,
and ∆R is the change of distance between the reflector and the satellite. Therefore, Φz is related to
the change in distance to the target, which can be linked to the scene topography and deformation
in the satellite’s line of sight, among other factors. Since Φz can only be observed in a 2π interval,
phase jumps called fringes will be present in the signal. Phase unwrapping is, therefore, a necessary
processing step to obtain a consistent phase field. However, in practice, the observed phase is
contaminated by noise Φnoise due to several decorrelating effects (thermal noise, speckle, change in
the scattering mechanism, different acquisition geometries, and processing errors, . . .). This increases
the difficulty of phase unwrapping. Therefore, phase denoising is usually performed before phase
unwrapping. Furthermore, it is usually of interest to measure the local complex signal correlation γ0
of the two SAR images defined as

γ0 =
E (z1 · z

∗
2)

√

E
(

|z1|
2) · E

(

|z2|
2)

= ρ · ejφ. (3)

Here, γ0 can be decomposed into the coherence ρ = |γ0| ∈ [0, 1] and the denoised phase φ = ∠γ0. The
coherence ρ is usually a good indicator of the phase noise level and, consequently, of the reliability
of pixels for further analysis. For example, it can be used as a quality map in phase unwrapping.
Coherence estimation can also be useful in other applications, such as change detection, where a
local coherence loss could indicate that the area is affected by a change between the two dates.

1.1 Related Work

Algorithms for estimating the InSAR denoised phase and coherence have been actively developed
throughout the years. Here, we will mention a few algorithms and refer to [14] for a more compre-
hensive overview. The most straightforward method is the multilook filter [7], i.e. a simple boxcar
moving average filter chosen as a proxy of the expectation operation E in Equation (3). Its main
drawback is that the estimation quality deteriorates when the signal is not locally stationary within
the estimation window. This has motivated the introduction of adaptive filtering techniques such
as the Lee filter in [8], where directional windows are used to consider the fringe direction. Also,
local noise statistics are considered in the final estimation. On the other hand, it is also possible to
filter the interferogram in a transformed domain. For example, a widely used filter in the frequency
domain is known as the Goldstein filter [4]. This method denoises patches in the image separately
and then recombines them to form the final denoised image. The filter is designed as the power
α of the smoothed modulus of the Fourier transform of the patch (α varies between 0 and 1 and
controls the filtering power). Similarly, sparse representations have been used to tackle this prob-
lem in the method termed SpInPhase [5], where a dictionary of patches is learned from the data,
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and each patch is represented as a sparse linear combination of dictionary patches. More recently,
non-local patch-based filters have been applied to InSAR data because of their texture preservation
properties. These methods start by assigning weights to patches in a local search window based on a
similarity measure to the central patch. Then, the patches are typically used for joint filtering before
recombining to provide the final filtered result. NL-InSAR [3] is a typical patch-based method char-
acterized by its iterative scheme. At each iteration, similarity weights with neighboring patches are
set based on the posterior probability of having the same underlying parameters. Then, a weighted
maximum likelihood estimate is used to provide the filtered phase, coherence and reflectivity for the
current iteration. Simply put, the similarity criterion and the estimate are based on the SAR data
statistics. In [11], the BM3D [2] non-local collaborative filtering algorithm is extended to InSAR and
denoted InSAR-BM3D. Then, in [10], an offset compensation criterion for patch similarity evalua-
tion is established. Thus, OC-INSAR-BM3D is the offset-compensated version of InSAR-BM3D and
demonstrates state-of-the-art filtering performance.

On the other hand, in recent years, Convolutional Neural Networks (CNNs) have been applied
successfully to image processing tasks. In [15], the DnCNN network was proved to perform highly
effective image denoising. Residual learning is highlighted as an important factor to boost denoising
performance. In [6], the first CNN with residual connection is used for InSAR phase denoising.
Φ-Net [12] combines residual learning with the well-known U-net architecture [9] to solve the inter-
ferometric phase denoising and coherence estimation task. Even though more recent articles tackling
the problem of InSAR phase denoising using CNN architectures have emerged [13], Φ-Net [12] showed
state-of-the-art performances at the time of its release. Furthermore, the model is available online
for testing, which makes our evaluation study possible.

1.2 Paper Organization

In this work, we examine and test the network Φ-Net [12]. The article is organized as follows:
in Section 2, we briefly inspect the method, the network architecture, the simulated dataset, and
the training strategy. In Section 3, we perform experiments on some Sentinel-1 interferograms and
compare the estimates of Φ-Net against the boxcar uniform filter. Section 4 provides a short guide
for running the demo.

1.3 Mathematical Notation

In this section, we introduce the notation for uniform image filtering used in the article. Consider an
image I, and denote UM×N the uniform filter window centered at the origin with size M ×N . The
uniform filtering operation (UM×N ⊛ I)(i, j) at spatial position (i, j) can be written as:

(UM×N ⊛ I)(i, j) =
1

MN

M−1
2
∑

m=−M−1
2

N−1
2
∑

n=−N−1
2

I(i+m, j + n). (4)

2 Method

This section will first explain the forward inference for estimating the noise-free parameters ρ and φ

of a couple of Single Look Complex (SLC) images z1 and z2. Specifically, some pre-processing and
post-processing are highlighted, as well as the network architecture. Then, we will briefly look at the
training data and the training strategy used by the authors since we did not re-train the network.
Note that the code for this part is not made public and that the following section is based solely on
the original article [12].
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Figure 1: Denoising workflow with Φ-Net. The normalized interferogram is decomposed into P patches. Each patch is
decorrelated and then fed to the network. The inverse transform is then applied, and the patches are recombined.

2.1 Forward Estimation

Starting from the two images z1 and z2, several steps are needed for the forward estimation as seen
in Figure 1:

1. A normalized interferogram is computed. To do so, it is assumed that both images have the
same amplitude A, and an estimate Â is obtained using the maximum likelihood expression

Â =

√

√

√

√Uw×w ⊛

(

|z1|
2 + |z2|

2

2

)

. (5)

In simple words, the intensity |zi|
2 (i ∈ {1, 2}) is first averaged between the two dates, then

a uniform w × w (w = 3) filter is applied following the notation defined in Equation (4), and
the square root is finally taken. Then, the interferogram is normalized with the estimated
amplitude

γ =
Γ

Â2
= γR + jγI . (6)

2. The interferogram image is decomposed into 64 × 64 overlapping patches with a stride 8 in
both dimensions. The superscript (p) is used to designate quantities related to the patch p.
Note that because of the patch decomposition and the fact that the stride is taken as 8, it is
preferable to have an image size multiple of 8 in both dimensions; otherwise, some NaN pixels
will appear at the border of the result. The number of NaN pixels is the remainder of the
division of the image dimension by 8.

3. For each patch, the decorrelating Karhunen–Loève transform D
(p)
ml is applied

x(p) =

(

a(p)

b(p)

)

= D
(p)
ml

(

γ
(p)
R

γ
(p)
I

)

, (7)

where γ
(p)
R and γ

(p)
I are the real and imaginary parts of γ(p) and a(p) and b(p) are the corresponding

decorrelated quantities. The decorrelating matrix D
(p)
ml has the following expression:

D
(p)
ml =

(

cosφ
(p)
ml sinφ

(p)
ml

− sinφ
(p)
ml cosφ

(p)
ml

)

, (8)

where

φ
(p)
ml = ∠

64
∑

i=1

64
∑

j=1

γ(p) (i, j)
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(a) General network architecture. The array dimensions are shown in grey between brack-
ets: [M, P] denotes a M x M array with P channels. (b) Residual block architecture

Figure 2: Figures taken from the original article [12]. The network architecture is shown on the left. The residual block is
shown on the right.

is the phase maximum likelihood estimate over the patch, i.e. it is a single scalar value for the
whole patch. The matrix D

(p)
ml is a rotation matrix with angle −φ

(p)
ml and can be interpreted as

the matrix containing the eigenvectors of the noise covariance matrix (see [11] for more details).

4. x(p) = (a(p), b(p)) is fed to the network F as two separate channels, and a denoised estimate
F (x(p)) = (â(p), b̂(p)) is obtained.

5. The inverse transform (D
(p)
ml )

−1 is applied to the filtered patch

(

γ̂R
(p)

γ̂I
(p)

)

= (D
(p)
ml )

−1

(

â(p)

b̂(p)

)

. (9)

6. The patches are recombined with averaging at overlapping positions. This gives an estimate of
γ̂ = γ̂R + jγ̂I .

7. The denoised phase is taken as φ̂ = ∠γ̂ and the coherence as ρ̂ = |γ̂|.

2.2 Network Architecture

The network architecture is shown in Figure 2. It is inspired by the U-Net network, with a shallower
architecture since the input patches are small (M = 64). The first stage is an encoder, where the image
size is successively reduced with 2× 2 max pooling, whereas the number of channels increases. Since
the parameter P that dictates the number of channels is set to P=64, the output of the encoder has a
size [M

8
, M

8
, 8P ] = [8, 8, 512] (the size specified in the original article network description is [4, 4, 512],

which might indicate a small mistake regarding the array size). The second stage is the decoder,
characterized by the inverse process, where the upsampling is conducted using bilinear interpolation.
Skip connections are used to copy features (channels) from the encoding stage to the decoding stage.

In both the encoding and decoding stages, residual blocks are applied on the feature tensors
instead of simple convolutions. Residual blocks that are part of operations represented as arrows in
Figure 2a correspond to the detailed diagram of Figure 2b. Inside a residual block, the convolutional
kernels are of size 3×3, except for the 1×1 residual connection. Also, notice that the residual blocks
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in Figure 2a always output kP channels, with k ∈ {1, 2, 4, 8}. In practice, for a residual block that
outputs kP channels, all of its convolutions also output kP channels.

In Figure 2a, the last convolution is the only one not belonging to a residual block. It has a kernel
of size 1×1, and it is used to get two channels representing the noise prediction G(x). Then, the last
residual connection is used to compute the denoised output F (x) by combining the noise estimation
G(x) with the input x as F (x) = x−G(x).

2.3 Dataset

2.3.1 Signal Model

The dataset is constructed via simulation of the phase, amplitude and coherence images. The ob-
jective is to have both noiseless (a0, b0) and noisy simulations (a, b) of the de-correlated channels.
Under Goodman’s model, z1 and z2 follow a zero mean circular Gaussian distribution with a covari-
ance matrix given by

Σ = E

{(

z1
z2

)

(

z∗1 z∗2
)

}

=

(

A2 A2ρejφ

A2ρe−jφ A2

)

,

(10)

where ρ and φ are the noiseless coherence and phase as seen in Equation (3), and A is the amplitude,
considered equal for both images as previously mentioned.

Then, the model used for the simulation of the noisy images z1 and z2 from the underlying
noiseless parameters A, φ, ρ is based on the following equation

(

z1
z2

)

= T

(

u1

u2

)

,

T =

(

A 0

Aρe−jφ A
√

1− ρ2

)

,

(11)

where u1 and u2 are two standard circular Gaussian random variables, and T is the Cholesky decom-
position of the covariance matrix Σ. The simulation using Equation (11) is a simple way to ensure
that the obtained data z1 and z2 follow a zero mean circular Gaussian distribution and that their
covariance matrix equals Σ = TTH , where TH is the conjugate transpose of T. Then, the noisy
(a, b) simulations are obtained from z1 and z2 by applying the normalization, patch decomposition,

and decorrelation steps as shown in Figure 1. To get (a0, b0), the same decorrelation transform D
(p)
ml

should be applied to the noiseless γ0 = ρejφ.

2.3.2 Noiseless Data Simulation

We need to simulate A, ρ and φ for the noiseless data simulation. First, For the amplitude and
coherence, two types of simulations were used:

1. Linear horizontal Left-Right (LR) ramps or vertical Top-Bottom (TB) ramps,

2. Natural Patterns (NP) from optical images taken from the NWPU-RESISC45 dataset [1].

As for the phase, the SRTM (30 meters resolution) digital elevation model was used at two loca-
tions in Austria with Tandem-X acquisition parameters to generate topographic phase simulations.
From the simulations, two subsets of 250 patches presenting Low-Frequency (LF) and High-Frequency
(HF) spatial variations, respectively, were selected. These phase simulations were associated with
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different combinations of amplitude and coherence simulations (linear ramps or natural patterns).
Also, another 100 low-frequency phase patches were selected and combined with amplitude and co-
herence images selected from natural patterns. In this case, the coherence images were segmented
based on a watershed technique with two segmentation intervals: 0.6 < ρ < 0.8 and 0.8 < ρ < 1.
In each segment, a random phase Step was added to the Low-Frequency pattern (LF+Step). The

phase steps were simulated from a zero mean Gaussian distribution with standard deviation σ = π
√
2
6

which ensures that 3σ is in the [−π, π) interval. Table 1 summarizes the combinations used for the
noiseless simulation. In the end, 600 simulations of size 256 x 256 were obtained. These simulations
reflect different patterns and correlations between the amplitude, coherence and phase.

Data Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Amplitude LR TB NP TB NP NP
Coherence LR LR LR NP NP NP
Phase LF/HF LF/HF LF/HF LF/HF LF/HF LF+Step

Table 1: The combination of different patterns for the noiseless data simulation. LR refers to Left-Right ramp, TB refers
to Top-Bottom ramp, NP refers to Natural Patterns. LF/HF refers to 50 images of Low-Frequency fringes and 50 of
High-Frequency fringes, while LF+Step refers to 100 images of Low-Frequency fringes on which random phase Steps were
added in some segments based on the coherence. Each column is a simulation of 100 images, which gives a total of 600
images. The image size is 256× 256.

2.4 Training

The loss used for the training is a combination of an L2 term with a regularization term R as follows

L
(

a0, b0, â, b̂
)

= L2

(

a0 − â, b0 − b̂
)

+ λR(â, b̂)

=

∥

∥

∥

∥

[

a0 − â

b0 − b̂

]∥

∥

∥

∥

2

+ λ ·

∥

∥

∥

∥

[

max(0, |â| − 1)

max(0, |b̂| − 1)

]∥

∥

∥

∥

1

.
(12)

The first term is an L2 loss term between the predicted denoised channels (â, b̂) and the ground truth
noiseless data (a0, b0). The second term is a regularization that encourages the output to be less
than 1 in absolute value. It is only active when at least one of the outputs (â, b̂) is greater than 1 in
absolute value, and in this case, the L1 loss is used to penalize it. Parameter λ was used to adjust
the regularization amount and was empirically set to λ = 10−2.

The dataset was split into 540 training images and 60 validation images. The training data was
also split into 64 × 64 patches of stride 8. Since the patches have a lot of overlap, to augment the
diversity of the data, each patch was rotated by 90◦ with respect to the neighboring patch, and the
sign was switched every four patches. This process yielded NT = 337408 patches for training and
NV = 37376 patches for validation. The batch size was taken as Bs = 128. The Adam algorithm
was utilized with an initial learning rate of lr = 10−4, which was subsequently divided by factors of
10, 20, and 30 after 15, 30, and 45 epochs, respectively. The training converged after 50 epochs, and
the validation loss indicated no over-fitting.

3 Experiments

In this section, we conducted a few experiments with the Φ-Net network to assess its denoising
capabilities.

211
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We compared the results against the simple boxcar filter given by

γ̂box =
Us×s ⊛ (z1 · z

∗
2)

√

(

Us×s ⊛ |z1|
2) ·
(

Us×s ⊛ |z2|
2)

= ρ̂box · e
jφ̂box , (13)

where the expectation in Equation (3) is replaced by the empirical moving average of size s× s with
the notation defined in Equation (4). We chose s = 5, as it is the same size selected in the Φ-Net
article in its experimental section [12].

We conducted experiments using Sentinel-1 data on mountainous regions, for which the charac-
teristics are listed in Table 2. Two aligned image crops c1 and c2 of size 256×256 were computed for
each area of interest. The orbital phase contribution was also simulated as φorb, and compensated
from the secondary image, such that

z1 = c1,

z2 = c2 · e
jφorb .

(14)

After compensation, the interferogram Γ obtained through Equation (1) is mainly affected by topo-
graphic phase components, which is the most interesting contribution to observe on this terrain.

Idx Area Primary date Secondary date Centroid (lon, lat) orbit B⊥(m)
A Etna 20220411 20220505 14.9863, 37.7429 124 -139
B El Capitan 20210710 20210728 -119.6358, 37.7422 144 -107
C War Jan 20230118 20230130 65.3277, 32.4301 42 -310
D Kilimanjaro 20180809 20180821 37.3586, -3.0648 79 130

Table 2: Sentinel-1 dataset consisting of image couples selected over mountainous regions at two dates with small temporal
separation and big geometric baseline B⊥ separation. This setting is designed to optimize the observation of topographic
fringes.

The results are shown in Figure 3. Looking at the results globally, we can see that the Φ-Net
phase and coherence are cleaner than the boxcar estimation. In particular, the fringes on the top
of the image in example D are perfectly denoised with Φ-Net, whereas the boxcar filter struggles to
completely remove the noise in this area. Notice that the fringes are dense and difficult to discern
in the original noisy phase. Φ-Net also succeeds in estimating the coherence, attributing it a high
value in this area, which indicates robustness to the fringe density.

Another observation can be made on the Φ-Net phase estimation in areas highly contaminated
with noise (low coherence). At first glance, we might say that the network produces two different
types of results in these regions. It either introduces high frequency fringes, such as the ones in A and
D, or some low frequency smooth phase estimation. In fact, when looking at the boxcar results for the
same areas, we notice a link with the Φ-Net results. When the boxcar is applied on completely noisy
areas (top of image A), we see some small random color patches in the denoised phase. In this case,
Φ-Net hallucinates fringes consistent with the boxcar pattern. Conversely, when the boxcar filter
finds a common phase in the noisy region, i.e. the small patch colors are slightly coherent (bottom
of B, or river in C), Φ-Net provides a filtered phase with this common color. This observation might
be better interpreted if we look at the Φ-Net workflow in Figure 1. Indeed, the input image is
decomposed into overlapping patches, and then the patch phase is subtracted (Decorrelation) before
going into the network. Finally, the patch phase is added back, and the patches are recombined.
Thus, the Decorrelation of patches is analogous to the boxcar estimation, and Φ-Net can be thought
as being a network that extracts an additional signal from the residual of the boxcar filter. This
might explain the visual link we see in the results of Φ-Net and the boxcar filter. In any case, even
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Figure 3: Performance comparison on the four areas of interest in Table 2. The first two rows show the noisy interferogram;
then we show the denoised phase and coherence estimation with the boxcar filter and the Φ-Net network.
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Roland Akiki, Jérémy Anger, Carlo de Franchis, Gabriele Facciolo, Raphaël Grandin, Jean-Michel Morel

though introducing fringes in noisy areas might be considered undesirable, Φ-Net designates these
areas as incoherent.

An interesting feature of Φ-Net is the very good resolution of the coherence estimation. For
example, in image C, we can see the preservation of small details around the river. The river edges
look very sharp, the coherent pixels from the river bank do not propagate to the river, i.e. the
network is sure that the river area is incoherent and assigns it a low value. Other details that can
be seen are small bright spots or linear structures. The width of such structures seems to be around
2 pixels, indicating only a small loss of resolution compared to the original Sentinel-1 image, which
is impressive.

Our last observation is on image C, where some horizontal discontinuities can be seen very clearly
in the Φ-Net phase fringes. These discontinuities can also be slightly seen in the boxcar results, which
brings us back to the analogy between both methods. However, looking at the original interferogram,
one could hope to recover fringes without these discontinuities. This might be attributed to the patch-
based processing upon which Φ-Net is built. Perhaps using a fully convolutional neural network, one
might increase the receptive field beyond the prescribed patch size (64 in this case) and recover
globally consistent fringes.

4 Demo

In this section, we illustrate the demo usage through an example. On the main page of the demo
website, the user will find an exhaustive overview of the input and output description.

Figure 4: The interface of the demo result. The image gallery allows flipping between results and a side-by-side comparison
as well. Messages are printed out to indicate the correct execution of the demo. The user can also click on the download
buttons to obtain the images in TIFF format or, for the ”All” button, download an archive containing all the images in ZIP
format.

In particular, we highlight the image format, order, preprocessing, and size. The output order
and colormap descriptions are also detailed. The demo does not have parameters, so the user only
has to select the inputs by clicking on the “Upload data” button or picking any of the suggested
examples. After clicking the “Run” button, the user has to wait until the execution completes. The
typical runtime for 256 x 256 images is around 30 seconds. When the execution finishes, the results
are displayed in a gallery, as seen in Figure 4. The plots of the results and the log text file are
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stored in the demo’s archive (Figure 5) and can be revisited later, downloaded, or visualized with
the “Reconstruct” button. However, the TIFF arrays are not archived, and attempting to download
the files will result in an error.

Figure 5: The archive interface. All the plots are saved and the output gallery can be reconstructed by clicking on the
“Reconstruct” button.

Image Credits

Network architecture from [12]
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