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Abstract

In many applications, planar spline interpolations of scattered data on the sphere are unsatisfac-
tory; spherical splines are desired. Wahba (1981) defined the thin-plate splines on the sphere by
analogy with the polynomial splines on the circle and the thin-plate splines in R?. The thin-plate
spline fit to a scattered data set on the sphere is the solution to an empirical risk minimization
problem that penalizes the infidelity of the fit to the data as well as its “wiggliness”. This latter
term is the square of a seminorm penalty based on the Laplace-Beltrami operator. The mini-
mization problem is posed in a reproducing kernel Hilbert space (RKHS) of functions of finite
wiggliness, whose reproducing kernel is isotropic and, due to a result by Schoenberg (1942), given
by a Legendre series. A closed-form expression (in terms of the polylogarithm) for the kernel
was found by Wendelberger (1982) and re-discovered by Beatson and zu Castell (2018). These
closed-form expressions make not just spline interpolation but also downstream signal-processing
tasks, such as cubature or resolution of inverse problems, more tractable in fields where scattered
data and spherical models are common, such as remote sensing, geostatistics, motion planning,
graphics, and medical imaging. In this paper, we present a tutorial on spline methods in RKHSs
and show how they can be used to interpolate, smooth, and numerically integrate scattered data
on the sphere and solve related inverse problems. The accompanying demo compares thin-plate
spline interpolation over the sphere with thin-plate splines on an equirectangular projection and
natural cubic splines on a one-dimensional latitudinal projection used in greenhouse gas mon-
itoring. Global mean values of the interpolation surfaces are presented as well, to illustrate
how this isotropic spherical kernel-which penalizes interpolant wiggliness without concern for
application-specific factors like atmospheric winds—affects the computation of global averages.

Source Code
A Python implementation of the algorithms described in this article is available at the associated
web page!. Usage instructions are included in the README. txt file of the archive. The associated
online demo is accessible through the web site.
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1 Introduction

Among signal-processing practitioners, the word “spline” often conjures up a limited set of techniques
for interpolating data that are sampled at regular locations (such as images). In the statistics
and inverse-problems communities, spline models are used to solve a richer set of variational data-
fitting problems, such as interpolating data, smoothing data, and solving inverse problems based on
observations of bounded linear functionals. They can be applied in diverse settings, including on
compact Riemannian manifolds such as the sphere, or in finite simple graphs. Their flexibility makes
them suitable for scattered data applications—that is, on data sets that are irregularly sampled—
without the need for gridding the data. While certain less flexible methods for interpolation used in
image processing do not generally require a matrix inversion, this relative advantage often vanishes
in the context of an inverse-problem processing chain that requires an inversion anyway.

In the reproducing kernel Hilbert space (RKHS, introduced in Section 2.1) framework, splines are
not just an element of a signal-processing chain but also a language in which to express the solution
to the empirical risk minimization problem the processing chain seeks to resolve. The positive-
definite kernel associated with each RKHS model space expresses the similarity between points in
the index set (which can be arbitrary). Accordingly, the curve-fitting properties of spline models
depend on how the kernel expresses similarity on the index set. Kernels can be defined using the
geometric properties of the index set, statistical models expressing similarity (covariance) between
elements the data set, or computed features. For problems posed on index sets with geometric
structure—such as Fuclidean space, compact Riemannian manifolds, and graphs—and in the absence
of additional information apart from a preference for smoothness, the thin-plate splines are a natural
choice of interpolant. In Euclidean space, they represent the bending energy of a thin sheet in the
linear elastic regime (see Section 2.6.4). They are, moreover, based on the Laplacian, which yields
desirable invariance properties. The use of the Laplacian, which maps functions to functions and
possesses a spectrum that exposes geometric and topological properties of the index set, also lends
the approach interpretability and generalizability.

Derived using a smoothness seminorm penalty involving the iterated Laplacian, the iterated
Laplace-Beltrami operator of a compact Riemannian manifold, or the iterated Laplacian matrix of a
graph, the space of thin-plate splines is equipped with a notion of “wiggliness” that is adapted to the
metric of the index set and that possesses the same isometry-invariance properties of the Laplacian.
The minimizer of empirical risk, therefore, is a function over the Kuclidean space, manifold, or full
set of vertices in the graph that minimizes disagreement with the scattered observations as well as
this measure of wiggliness.

1.1 What Do We Mean by “Spline Model”?

Spline models are, in general, solutions to an empirical risk minimization problem formulated over a
hypothesis space of functions over an index set. These problems penalize disagreement with a set of
observations (often scattered pointwise evaluations) and prior knowledge.

In geostatistics, this prior knowledge usually takes the form of a Gaussian process. To each point
on the index set (typically identified with time or Euclidean space), we associate a random variable
corresponding to the real variable we wish to interpolate. We assume the joint density of any finite
set of these variables is Gaussian. The mean of the observed value depends only on the observed
location — and is often constant. The covariance of any two random variables assumes a parametric
form that depends on the displacements between the two corresponding index locations — for isotropic
models, on their Euclidean distance alone. Non-isotropy may be introduced to incorporate knowledge
about prevailing winds, ocean currents, and so forth (with care to ensure valid covariance matrices).
Specifying the parametric form of the model amounts to choosing a function space and a distribution
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thereon. High covariance at small displacements favors smooth interpolants. An interpolating spline
is found by conditioning the Gaussian process on the values of noise-free observations; a smoothing
spline is found by incorporating a likelihood function modeling observation noise. In either case,
the mean value of the posterior distribution at a set of evaluation points is easily computed using
linear algebra (see, e.g., [164], Equation 2.23). In the kriging community, the parametric model of
covariance is called a variogram or semi-variogram; in the Gaussian process community, a covariance
function or kernel. With cokriging, auxiliary data, often sampled at different scattered locations, can
lend further credibility to the interpolant. For instance, humidity measurements can enhance the
estimates of atmospheric temperature between scattered observations. Introducing prior knowledge
requires choosing a parametric family of covariance function (and, for cokriging, cross-covariance
functions) and selecting the parameters.

In applications where such prior knowledge is inaccessible or difficult to model accurately, smooth-
ing splines are a common tool. These penalize the wiggliness of the function using the geometry of
the index set. Since, by Stokes’s theorem, —div and V are formally adjoint, penalizing the Dirich-
let energy—the squared Euclidean norm of the gradient field of the function over the index set—is
equivalent to penalizing a Laplacian-based term: u - Au

/X V()| de = /X (Vu(), Vu(z)) de = /X _div(Vu(e)) - u(z) de = / w(z) - Au(z) de.

X

More generally, the smoothing-spline wiggliness penalty of order m takes the following form:

S (A2 f(2))? dz, if m is even;

)= {fx IV(ATD2f@)]Pde, i m s odd.

This penalty can be written, where boundary conditions allow,

Ju(f) = (-1 /X f(2)- A f(x) da. 1)

This sensible notion of wiggliness yields penalties that are invariant to isometries. That polyno-
mials of the Laplacian are translation- and rotation-invariant differential operators in R? (indeed, the
only ones!) follows easily from the properties of the Fourier transform (see, e.g., [19], Theorem 2.1).
The wiggliness seminorm of thin-plate splines in R, defined using the iterated Laplacian, is invariant
to isometries: the wiggliness of spline interpolants can be defined in terms of a radial basis function
that depends only on the Euclidean distances between spline knots. On compact Riemannian man-
ifolds, the Laplace-Beltrami operator, defined using the metric, commutes with isometries (in fact,
the only diffeomorphisms that leave the Laplace-Beltrami operator invariant are isometries; see [64],
Proposition 2.4). On the sphere in particular, all positive-definite kernels that depend only on the
geodesic distance between points have a simple characterization in terms of their expansion on the
eigenfunctions of the spherical Laplacian. The wiggliness of a spline interpolant can be given in terms
of such a kernel. By a theorem of Schoenberg, expansions of such kernels on these eigenfunctions, the
spherical harmonics, must weight equally every harmonic of the same Dirichlet energy; see Section
2.2.3. This isotropy ensures that rotating the sphere will not affect the measured wiggliness of a
function thereon. A similar situation arises on graphs: wiggliness penalties based on the iterated
Laplacian are invariant to automorphisms (vertex permutations that preserve the edge structure);
the Laplace matrix of the transformed graph is permutation-similar to the original Laplace matrix
and thus has the same spectrum [57, 139].

The form (1) of the penalty is particularly useful for index sets X’ that are compact manifolds
like the sphere (and for graphs). Since the eigenfunctions of the Laplace-Beltrami operator form a
complete orthonormal system for L?(X), with corresponding eigenvalues giving the Dirichlet energy

3
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of each mode, we can represent this penalty “on the Fourier side,” as an infinite series of wiggliness-
weighted Fourier coefficients. The space of functions for which this series converges—the functions with
finite wiggliness penalty—is an RKHS. For certain manifolds like the circle and sphere, no truncation
of the infinite series is required in practice as the series has a closed-form expression in terms of
special functions.

1.2 Natural Cubic Splines

To make things a bit more concrete, let us take a look at one of the best-known examples of these
splines, the natural cubic splines. The thin-plate splines in R? or on the sphere can be seen as
generalizations of these splines. The natural cubic splines live in a space of well-behaved functions
that we call H, as it is an RKHS. The space H can be written as the direct sum of two RKHSs
H=Ho D Hi:

e #, is an infinite-dimensional space of continuous functions? with continuous ordinary deriva-
tive and ordinary second derivative that exists almost everywhere and is square-integrable.
The squared norm of this space is the wiggliness penalty, designed to enforce smoothness by
measuring curvature on some index set X = [a, b], given by

T () = /X (u®(2))*de. (2)

To ensure the wiggliness penalty is a definite norm on H;, we require that all nonzero functions
in H; be wiggly: v € Hy and u #0 = J x(u) > 0. In Section 2.6.1, we will use boundary
conditions to enforce definiteness.

e Hy is the finite-dimensional null space of Jox: u € Hy = Jox(u) = 0. Ho contains
the functions that are sufficiently well-behaved to live in H and sufficiently non-wiggly to be
assigned 0 by J; », which is a seminorm on H. In Section 2.6.1, we will see that H, is the space
of affine functions on X.

We will give precise definitions of the spaces H, Hy, and H; associated with the natural cubic splines in
Section 2.6.1. The natural cubic splines are functions o € H that solve an empirical risk minimization
problem. Specifically, for each data set ({(x;,y;)}",) with z; € X and y; € R and for each choice of
regularization parameter A > 0, the associated natural cubic smoothing spline is the function o € ‘H
that minimizes, over H, the empirical risk

n

1
Ry xp(u) = - Z (w(z:) = yi)* +A Jax(u).
i=1 N
~ _ wiggliness

-~

adherence to training data penalty

By the Wahba-Kimeldorf representer theorem [79, 131, 159] (see Section 2.5), the spline may be
written sparsely, or at least in a finite manner, as follows:

dim Ho n
o= E a;Q; + E Bikz,,
=1 i=1

2The elements of H; are equivalence classes of functions that agree almost everywhere. Here, by a Sobolev em-
bedding theorem, we can choose a unique representer for H; that is absolutely continuous, has absolutely continuous
(ordinary) derivative, and has an (ordinary) second derivative that is defined almost everywhere and square integrable.
See Theorem 129 of [17] and Theorem 10.45 of [162].
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where the ¢; are a basis for the finite-dimensional RKHS H, and the k,, are the representers of
evaluation at the scattered data, that is, the Riesz representations of the evaluation functionals at
the z;. (RKHSs are Hilbert spaces on which all evaluation functionals—that is, linear functionals
on H; associated with a point x € X that map a function f to its pointwise evaluation f(z)-are
bounded and therefore have Riesz representations.) By the kernel trick, we do not need direct access
to the representers of evaluation; our interaction with them is mediated by the Gram matrix of their
inner products (K);; = (ke,, ko, )2,. We will recall these details in Section 2.1.

1.3 Thin-plate Splines Are Generalizations of the Natural Cubic Splines

Natural cubic splines and their planar equivalent, the thin-plate splines on the plane, were first
introduced using integration by parts. The kernel can be computed using the Green’s function of the
Laplacian. Since the Green’s function of the planar Laplacian would vary with the geometry of any
choice of bounded domain over which the Laplacian-based wiggliness penalty is applied, typically X
is set to all of R%, with the constraint that m > d/2.

We rewrite the penalty (2) to place it in a form that is consistent with the thin-plate splines in
Euclidean d-space. With appropriate boundary conditions®, two integrations of (2) by parts yield

Jox(u) = /Xu(x) W (z) dx = /Xu(x) - A%u(z)dr, (3)

where A = % is the Laplacian operator on R. The iterated Laplacian operator contributes similarly
to the definition of thin-plate splines in Euclidean space R?. On the sphere, the iterated Laplace-
Beltrami operator Ag plays the part of the Laplacian in defining thin-plate splines. This operator
is the restriction of the Euclidean Laplacian to the surface of the sphere; its isometry invariance can
be established without results from differential geometry by appealing to the isometry invariance of
the iterated Fuclidean Laplacian and the restriction operator; see [68], Chapter 3.1, or [52], page
5. By analogy, splines can be defined on graphs using the Laplace matrix; the wiggliness penalty
is invariant to edge-preserving vertex relabelings, which leave the Laplace matrix’s spectrum alone.
Our generalizations of the natural cubic splines to R? use wiggliness penalties of the form

() = (—1)™ /X u(z) - Amu(z) e,

which have finite-dimensional null space. On a restricted space of functions H; of nonzero wiggliness,
these penalties are definite, and induced by a definite inner product (-, )3, given by

(g = (-1" [ f@)amg(a) da.
X
We can use the Green’s function E,,(x,t) of the m-iterated Laplacian, which satisfies
A"E,(t,x) = 6(t — x),
to establish the reproducing property

£(t) = (-1 /X F(2) - A B, (t,7) dz = (F, En(t, )0,

o(t—x)

3In defining the natural cubic splines—and, more generally, the natural polynomial splines (see [17], Theorem 68)—
our model space H; will be defined using boundary conditions u(z1) = u(z,) = ... = u™ Y (z;) = um=Y(z,) = 0,
which do not necessarily permit the integration by parts to rewrite (2) as (3). However, it turns out that the functions
in the model space that minimize (2) also satisfy the natural, or Neumann, boundary conditions and are linear beyond
the scattered data: if X = [zy,x,], requiring that u(™ (z1) = u(™(2,) = 0, for n = m,m + 1,...,2m — 1, does not
change the solution [158].
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via the “sifting” property of the Dirac . Taking the inner product of a function f with a Green’s
function E,,(t,-) of the m-iterated Laplacian, evaluated at one argument ¢, evaluates f at ¢; the
Green’s function acts as a Riesz representation of evaluation at ¢ in this restricted space of functions
and can be used to compute a reproducing kernel. We can then extend the solution to the direct
sum of H; and H,, the null space of J,, x. We cover this approach in detail in Section 2.6.

While the natural polynomial splines on R and the thin-plate splines on R are introduced using
a Green’s function, thin-plate splines on compact manifolds such as the sphere and circle are derived
“on the Fourier side” using the eigenfunctions of the Laplace-Beltrami operator.

1.4 Certain Thin-Plate Splines Are Derived on the “Fourier Side”

It is well-known (see, e.g., [123], Theorem 1.29) that for any compact connected oriented Riemannian
manifold X, there exists a complete orthonormal basis of L?(X) consisting of eigenfunctions {¢,}°°,
of the Laplace-Beltrami operator whose eigenvalues {\,}°°, are nonnegative, each with finite mul-
tiplicity, accumulating only at infinity. Zero is an eigenvalue of multiplicity one, whose associated
eigenspace consists of the constant functions, i.e., span {1}. This holds on a manifold without bound-
ary (as is the case for the sphere), or with boundary, provided we impose the Neumann or Dirichlet
boundary conditions. In Section 2.6.2, we define the polynomial splines on the circle as splines on
the compact interval [0, 1] using Dirichlet boundary conditions.

Moreover, each eigenvalue A, of the Laplace-Beltrami operator gives the Dirichlet energy (a
common measurement of wiggliness) of the corresponding eigenfunction ¢,. Expanding a function
in f € L*(X) as a Fourier series on this basis,

[~ Z(f)n¢n (where convergence is in the L?(X) norm),
n=1

we can, using the orthonormality of the basis functions, write a seminorm penalty like

Ju(f) = (-1 /X f(x) - (A" () dz

in series form

Tmae(f) = (=1)" /X f(2)- A f(x) dz = (~1)" /X (Z(fm(x)) - (Z(fw(bn(x)) da

n=1 n=1
(D [ ou(w)ds
X
1

(f)nAn-

WE

3
Il
—_

K

3
Il
i

The series converges whenever the Fourier components {(f),}>2; decay sufficiently quickly to over-
come the weighting the iterated Laplace-Beltrami operator places on the wiggly, high-Dirichlet-energy
(high-\,,) components. In such situations, as we will see with the thin-plate splines on the circle and
on the sphere, the functions of finite wiggliness penalty are so well-behaved that they can be evalu-
ated pointwise and constitute an RKHS. The Fourier expansion f ~ Y > (f),¢, in fact converges
pointwise for any spline of order m > 0.

We develop these ideas more explicitly and rigorously in Section 2.2. The process of constructing
an RKHS and corresponding reproducing kernel by penalizing the functions’ components on certain
the eigenfunctions is described in Proposition 2.38. To see how weighting spherical harmonics by
their Dirichlet energy yields an isotropic kernel, see Section 2.2.3.
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1.5 OQOutline

The remainder of this article is organized as follows. In the next section, we give a tutorial on RKHSs
and on solving certain variational problems in these spaces—problems where the regularization penalty
has a null space of finite dimension. The solutions to these problems are what we call splines. We
develop the motivation given by Wahba for the thin-plate splines on the sphere [154, 158] in part
by enumerating their kin, the splines that belong to the family of, in the words of Duchon, “splines
minimizing rotation-invariant seminorms in Sobolev spaces™the thin-plate splines [40].

Those interested only in implementation details of thin-plate splines on the sphere may safely skip
to Section 3, where the kernel for thin-plate splines on the sphere is given, along with pseudocode for
finding the thin-plate spline interpolants of scattered data on the sphere. In Section 4, we stress that
the (nearly) closed-form expressions for the reproducing kernels of the thin-plate splines on the sphere
allow us not just to learn interpolants of scattered data, but also to estimate the values of a linear
functional applied to an unknown continuous function on the sphere from its scattered samples by
applying the functional to the interpolant. More generally, we can solve inverse problems where our
scattered data need not be mere (possibly noisy) evaluations of an unknown function on the sphere,
but can be measurements produced by arbitrary bounded linear measurement functionals. As an
illustration, we estimate the global mean of the atmospheric CO, concentration based on scattered
measurements. This example can be run in the IPOL demo, which is described in Section 5. Finally,
in Section 6, we provide some brief discussion with pointers to extensions and other implementations
of the thin-plate splines on the sphere in the literature.

2 Thin-plate Splines on the Sphere: An Overview of the Math-
ematical Background

The solutions to norm-minimization problems that arise in approximation and inference contexts,
such as
argmin ||Az — b||gm,
zeR™

can often be characterized with local criteria, since norm objectives are convex. When formulated in
a Hilbert space H, these local criteria take the form of orthogonality constraints. In such cases, the
norm objectives ||-|| are induced by an inner product (-,-) = ||-||*. Squaring each norm objective term
|| - ||, we arrive at a problem that is equivalent to our original problem (when the objective consists
of a single term) or that serves as a tractable proxy for it* (when the objective consists of multiple
summed norm terms). In our example, we get the following reformulation

arg min || Az — b||3. = argmin (Az — b, Az — b)gm,
TER™ TER™

In this case, the objective’s (Fréchet) derivative is proportional to the inner product®. The derivative,
taken at x, is the following bounded linear functional

Vol|Az — b||z2m = v 2(Az — b, Av)gm = 2(AT (Ax — ), v)gn.

4For example, the problem of finding a k-dimensional subspace of a Euclidean space R? that approximates a data
set in R? by minimizing its sum of squared Euclidean residual norms after orthogonal projections is solved by taking the
span of the first & principal components found by Principal Components Analysis (PCA). This problem is an example
of benign non-converity as the problem is formulated over the non-convex manifold of subspaces, the Grassmannian.
However, replacing the sum of squared residual Euclidean norms with a sum of residual Euclidean norms eliminates
the benignity in the worst case (the problem becomes the NP-complete 2-1 norm matrix approximation problem [98]).

In any real Hilbert space, the Fréchet derivative of the map x — ||z]|3,, evaluated at « € H \ {0}, is the bounded
linear functional on H’' given by h +— 2 (h, x),, . Hilbert spaces over C require greater care.

7
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As a result, norm-minimization problems reduce to an orthogonality constraint (called the normal
equations) via the first-order condition®

find 2 such that V,||Az —b||2. =0 <= Yo € R" (AT(Az —b),v)pn =0 <= AT(Az —b) =0.

In Euclidean space, these equations AT Az = ATb always have a solution. Indeed, a solution always
exists when we replace the m x n matrix A with an arbitrary bounded linear map A from any Hilbert
space H; to any Hilbert space Hs, provided the range of A is closed in Hs (i.e., if A is bounded
below): we write ATAx = ATb, where AT is the adjoint of A (see [90], Section 6.9). In effect,
this is the Hilbert space projection theorem applied to the range of A; the solution applies to b the
Moore-Penrose pseudoinverse of A”.

When optimizing over spaces of large or infinite dimensions, we can still struggle to express the
solution (or a Cauchy sequence that converges to it quickly) on a computer. However, if we know
the solution lies in a finite-dimensional vector or affine subspace, or in the orthogonal complement
of a finite dimensional space®, we can write the solution using finite-dimensional linear algebra.

Using the theory of reproducing kernel Hilbert spaces, we can take full advantage of these results
about norm-minimization problems in Hilbert spaces to solve interpolation problems. In a reproduc-
ing kernel Hilbert space H, a constraint set consisting of a finite set of pointwise evaluation equalities,
as in the interpolation problem

arg min ||f||§_[ subject to f(x1) = aq,..., f(z,) = an,
feH

is an affine subspace that can be expressed in terms of the inner product (f, k(-,x;))3 = a;, where
k is the kernel associated with the space. The solution to the interpolation problem can be found
by inverting the Gram matrix (K);; = k(z;,z;) associated with the kernel. Even if we relax the
interpolation problem into an empirical risk minimization problem

arg min Zloss(f(wi), a;) + M| f3,
fer 4

with arbitrary loss (see [131], Theorem 1) or replace the function evaluations f(x;) with other bounded
linear functionals, the solution remains a finite-dimensional linear algebra problem, even if H is
infinite-dimensional. We can see that any minimizer of the above loss must lie in span {k(-, ;) }I,,
as projecting any potential solution onto this finite-dimensional subspace cannot affect the data-
adherence loss term but can reduce the wiggliness penalty ||f||3. This striking result-that the
minimizer over a large or infinite-dimensional space of a norm-minimization problem lies in a finite-
dimensional space spanned by what are called the Riesz representations or “representers” of evaluation
at the data locations—is known as the representer theorem (see Section 2.5). It was introduced by
Grace Wahba and George Kimeldorf in the context of L-splines |79, 80|, which include the splines in
this article as a special case. In short, for norm-minimization problems in Hilbert spaces, completeness
and convexity guarantees us the solution’s existence; Hilbert space theory allows us to characterize
the solution in terms of inner products; and RKHS theory gives us an expression for the solution in
terms of the Gram matrix of the kernel. It is the last step that (in theory) brings tractability.

6Since the objective is convex and the set over which we are optimizing is convex, the Euler inequality is necessary
and sufficient for a global optimum. Since we are optimizing over the space H itself, every point is an interior point,
and the Euler inequality becomes the first-order condition.

"Which always exists in Hilbert spaces when the range of A is closed and, more generally, for von Neumann-regular
operators in C*-algebras [62].

8 After all, minimizing the distance (induced by the Hilbert norm) between a function f and a Hilbert subspace
M-i.e., finding its orthogonal projection fj; on M-is equivalent to maximizing the alignment between the difference
vector f — fus and any vector in M.
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This section is organized as follows. In Section 2.1, we review RKHS theory. In Section 2.2, we
restrict our attention to index sets that are closed regions in Fuclidean space and synthesize kernels
for such index sets using an ¢! sequence and a complete orthonormal system for the index set; we give
particular attention to the sphere, on which we characterize all positive-definite functions that are
isotropic. Then in 2.3, we return to a general context, where index sets can be arbitrary, and show
how norm-minimization problems like interpolation and smoothing can be solved in an RKHS using
finite-dimensional linear algebra, for which pseudocode is provided. Sections 2.4-2.5 are devoted to
translating these results to the case of seminorm-minimization problems, where the seminorm has
null space of finite dimension. Finally, in 2.6, we introduce the thin-plate splines over different index
sets, including the sphere, as solutions to seminorm-minimization problems.

2.1 Reproducing Kernel Hilbert Spaces (RKHSs)

Much of the material in this section is standard and may be found, for instance, in [4, 17, 78, 93, 95,
132, 134, 141].

2.1.1 RKHS Basics

A Hilbert space? is an inner product space that is complete with respect to the norm induced by its
inner product. The theory of reproducing kernel Hilbert space depends on the Riesz representation
theorem, which identifies an isometric isomorphism between a Hilbert space H and its (“continuous”
or “topological”) dual space H', that is, the space of bounded linear functionals from H to a complete
field (which we take to be R, rather than C). Through this isomorphism, any bounded linear
functional on H can be expressed as an inner product between the input and a fixed element of H,
often called the representer of the functional.

Theorem 2.1 (Riesz-Fréchet representation theorem). Let E : H — R be a linear functional on a
Hilbert space H. Suppose that E is bounded (or, equivalently, since it is linear, continuous). That is,
suppose there is a number M > 0 such that, for all u € H, we have that

|Bulle < Mfully.

Then there exists a unique element ng in H, called a representer of the functional ¥, such that, for
all u € H,

moreover, ||nel s = |1Ellr.
Proof. See, for example, [36], Theorem 3.7.7. ]

Remark 2.2. This theorem tells us that every bounded linear functional has a representer. Its proof
involves the construction of a linear'® isometric isomorphism that maps the bounded functional E
to its representer ng. Conversely, every uw € H is a representer of the bounded linear functional

Eu =t <',U>H.

In a reproducing kernel Hilbert space (RKHS), evaluation functionals have representers.

9While we work with real Hilbert spaces, the key results presented here all generalize to complex Hilbert spaces
when conjugated accordingly, except where stated otherwise. In proofs, replace words like “bilinear” with “sesquilinear”,
“symmetry” with “conjugate symmetry”, and so forth.

10 Antilinear (conjugate-linear) if we take the field to be C.
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Definition 2.3 (RKHS: when you’re here, your evaluation functionals are bounded). A reproducing
kernel Hilbert space (RKHS) is a Hilbert space H C RY over an index set X such that, for all v € X
the evaluation functional at x

E, H—>R
u— u(x),
15 a bounded linear functional.

Remark 2.4. This definition tells us that as functions in an RKHS approach each other in the
RKHS norm, their pointwise evaluations approach each other as well. Indeed, given an RKHS H
with inner product (-, )3 and induced norm || - ||y, we know that, since for all x € X the evaluation

functional at x, E,, is bounded, by the Riesz representation theorem, there is a unique representer
k. = ng, of E. such that, for all f € H

Using the Cauchy-Schwarz inequality, we can confirm that a sequence of functions {f,}>>, that
converges in H to a function f also converges pointwise at every x € X

for all € >0, || fo—= flln < 6o = m = [ fa(@) = f(@)] = [{fa = [ ke)ul <[ fn = fllnllkalln <€

If there exists an M for which, for all x € X, ||k;||3 < M, then this convergence is uniform.
Pointwise convergence is assured in an RKHS even if f, converges to f only weakly in H.

for all h € H, (fn, h)u — (f, h)n

implies that, in particular, for all x € X,

Before we present an example of an RKHS, let us recall the following definition of a Sobolev space
of positive integral order.

Definition 2.5 (Sobolev space of positive integral order m). Let X be a bounded interval of the real
line. The Sobolev space W™?(X) = {u € D'(X) | v € L*(X) fori = 0,1,...,m}, where u'? is
the ith weak (distributional) derivative. We can simplify this definition by noting (see [17], Theorem
129) that any distribution is in W™2(X) if and only if it has a unique representer u thal satisfies
the following:

1. its ordinary derivatives u® are absolutely continuous and square integrable on X for i =
0,...,m—1;

(m

2. its ordinary derivative u'™ is defined almost everywhere and is square integrable on X.

Note that the spline literature uses nonstandard definitions of Sobolev norms''. The classical
inner product given to a Sobolev space is
m

(f,9)n = Z(f(i)yg(i)h?(x)-

=0

HFor an open, bounded subset of R such as an interval (a,b), the space of functions assigned a finite value by
this norm—the Beppo Levi norm—coincides algebraically with the Sobolev spaces because the Poincaré identity tells
us these norms are equivalent on the smooth test functions compactly supported on this subset [37]. Splines derived
from wiggliness penalties corresponding to standard Sobolev 2-norms on X = R%, that is, ||ul|g,, = > i, ||u(i)||%2(X)
(with m > d/2) are called Matérn kernels and can be expressed in terms of the modified Bessel function of the second
kind. A variety of other Sobolev-like penalties have been considered for constructing splines such as the splines with
tension that minimize a difference between the m + 1-iterated Laplacian and the weighted m-iterated Laplacian [21].

10
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However, the wiggliness penalties of thin-plate splines are symmetric bilinear forms that exclude the
first m — 1 derivatives from the penalty

(F0m gty 2 vy, (4)

which does not possess definiteness on the model spaces we care about, such as the Sobolev space of
order 2 on X = [0, 1] (the model space for the natural cubic splines). We call any such semidefinite
bilinear form a semi-inner product or an indefinite inner product. In Section 2.6.1, we will use the
decomposition principle (see Section (2.4)) to complement the indefinite inner product with an inner
product over its null space, rendering it definite. The Sobolev spaces of integral order m > 1 are
RKHSs [17, 100] with this extension to the inner product (4), as we will see in Section 2.6.1.

The first example of an RKHS we consider is the Sobolev space of order m = 1 on X = [0, 1].
We impose boundary conditions on the space so as to make (4) strictly definite over the space. In
Section 2.6.1, we show how to remove these boundary conditions by using the decomposition principle
to complement the indefinite inner product (4) with an inner product on its null space.

Example 2.6. Let H be the Sobolev space of absolutely continuous functions f : [0,1] — R with
derivative f' € L*([0,1]) and for which f(0) = 0, with inner product

1
uwaaéfwﬂmm:uw%mm

Thus, the induced norm

1
Hﬂ&=ﬁjmzl£ﬂwa=Hﬂmmm

s a sort of measure of wiggliness.

Note that the condition of absolute continuity and boundary condition f(0) = 0 together guarantee
the positive definiteness of (-, )y: Vf € H, if || f|3, = fol(f’(u))2 du =0, then f =0. The full proof
that H is a Hilbert space can be found in [17].

For any x € [0,1] and f € H, the evaluation functional at x

E:cf = f(l‘) = /Ox f/(u) du = /0 f/(u)]luﬁx<u) du = <f,7 ]l'Sx>L2([O,1]) = <f7 min('v x)>’H

is bounded since it is expressible as an inner product between f and a fized element of H (Vx € [0, 1],
the function min(-,z) € H since it is absolutely continuous, has square-integrable derivative 1.,
and satisfies the boundary condition: min(z,0) = 0). Indeed,

B f| = [f(2)] = |(f, min(:, 2))3| < HfHH\//O (Lo (w)” du = vV - || flls

Since H is a Hilbert space whose evaluation functional is bounded (with representer of evaluation at
x given by min(-,x)), it is an RKHS.

The Fourier coefficients f of functions f in the space H in Example 2.6 decay in a manner
concomitant with the smoothness of its functions; in fact H can be defined [17, 162]

H = {f e L*([0,1) | Y (1+n)|f(n))? < oo}.

n=—oo

11
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The Fourier coefficients are weighted or “low-pass filtered” by an ¢! sequence given by \, = Tlﬁ SO
as to excise from H all functions whose Fourier coefficients do not decay sufficiently quickly. Only

functions for which .

> (1 +n?)[f(n)]? < oo.

n=0
are kept. We will see in Section 2.2.1 that this Fourier characterization can be used to construct
RKHSs, including that of the thin-plate splines on the sphere. As we observe in our first example
of a Hilbert space that fails to be an RKHS, this filtering by the sequence )\, is needed to enforce
regularity.

Non-example 2.7. The Hilbert space L*([0,1]) is not an RKHS, since pointwise evaluation is not
well-defined in L*([0,1]). Moreover, while the Dirac delta’s “sifting property” allows it to formally
play the part of a Riesz representation of the evaluation functional

vz € (0,1), f(z) = /O 5t — 2) fu) du = (f, 5(- — 2)) 120.)-

the tempered distribution §(- — ) is neither bounded nor in L*([0,1]).

RKHSs—and the Riesz representations of bounded linear evaluation functionals that reside therein—
are closely associated with functions called positive-definite kernels.

Definition 2.8 (Positive-definite kernel). A positive-definite kernel on a set X is a function k :
X x X — R that is symmelric

V(z,2') € X% k(z,2') = k(') 2)

and definite—that is,
n n
Z Z a;aik(z;,z;) >0 (5)
i=1 j=1
holds for alln € N, (z1,29,...,2,) € X", and a = (a1, ay,...a,) € R™.
When the inequality (5) is strict for all n and choices of (21,22 ...,2,) € X™ and nonzero weight
vector a € R™, we call the positive-definite kernel strictly positive-definite. This convention is,
unfortunately, not aligned with the one we use for matrices. We call a symmetric n X n matrix M

positive-definite only if the quadratic form 2 Max > 0 for all nonzero € R"-that is, only if the
symmetric bilinear form (z,y) = 27My is a (definite) inner product.

Remark 2.9. Define the Gram matriz K of k on any collection of n points (z1,xs,...2,) in X" by
(K)ij = k(zi, z;).

Then k is a positive-definite kernel if and only if every Gram matriz K based on k is a symmetric
positive-semidefinite matrix; k is strictly positive-definite if and only if every associated Gram matriz
K is symmetric positive-definite.

Remark 2.10. While X is an arbitrary set, and not necessarily an inner product space, a positive-
definite kernel k defined on X? nevertheless behaves a bit like an inner product. In particular, it
obeys the Cauchy-Schwarz inequality: for all (x,2") € X2,

k(z,2")? < k(x, 2)k(2, 1),

12
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since the Gram matriz associated with the points x and 2/,

<= (5 1)

has only nonnegative eigenvalues, since the Rayleigh quotient

- 2Kz

—— >0Vre R? (and, in particular, for eigenvectors of K)
2Tr

and thus nonnegative determinant
k(x,z)k(2',2") — k(z,2")* > 0,
by the symmetry of k.

In fact, positive-definite kernels are inner products—just not on X'. As shown by Kolmogorov [137]
(for countable index sets X) and Mercer [102] (for compact X') and later extended by Aronszajn to
arbitrary index sets X' [3], a positive-definite kernel k defined on an index set X’ expresses an inner
product in a Hilbert space ‘H associated with k and X.

Proposition 2.11 (Aronszajn-Moore theorem). A function
E:X? >R

18 a positive-definite kernel if and only if there is a Hilbert space H and a mapping
p: X —>H

such that
V(z,2") € X2, (¢(x), ¢(2))y = k(x,2").

Thus, each positive-definite kernel k takes in pairs of values from the index set X and outputs an
inner product between pairs of functions in the Hilbert space H that Aronszajn associated with k.
Before proving Proposition 2.11, let us first introduce an alternate characterization of an RKHS.

Definition 2.12 (RKHS: we have the reproducing kernel). Let X be a set and H C RY be a Hilbert
space of functions on X with inner product (-,-)%. Then H is an RKHS if there exists a reproducing
kernel, that is, a function

k:X? =R
for which
e H contains, for all x € X, the function k, o k(- x)

ky: X — R
y = k(y,x).

o Forallx € X and f € H the reproducing property holds

f(@) = (f, ka)n

13
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The reproducing property is another way of saying that k, = k(-, z) acts as the Riesz representer
of the E, : H — R. A reproducing kernel, therefore, allows us to evaluate any function f € H C RY
at a point x € X simply by taking an inner product with a function determined entirely by the
kernel: k, = k(-,z) € H.

We can see immediately the equivalence of Definition 2.12 with Definition 2.3. Since for all
r € X, we have that k, € H and f(x) = (f, k.)#, if H is associated with a reproducing kernel, then
all evaluation functionals are linear and bounded

e f[ = [f ()] = I k)l < A fllel Bl = VRG]l a,

by the Cauchy-Schwarz inequality. Conversely, if all evaluation functionals are bounded, their Riesz
representers all exist in H and can be used, via their inner products, to define a reproducing kernel

def

V(z,2') € X2 k(z,2") S (ky, ko) = ko(2') = kp ().

It is straightforward to use the reproducing property to show that if a Hilbert space has a repro-
ducing kernel, it is unique.

Lemma 2.13. If k and k' are both reproducing kernels associated with an RKHS H C R?, then
k=FK.

Proof. Suppose k and k' are both reproducing kernels. Then by the bilinearity of (-, )3, we must
have, for all z € X that

||kx - k;”% = <kx - k;m ke — k:;c>7'l = <kl’ - k;: kx)ﬂ - <kx — K, k,>H~ (6)

x)

But since k and k&’ are both reproducing kernels, k, = k(-,z) and k,, = k'(-,x) both reproduce
evaluation at z; the difference (6) becomes

(ke = k3)(2) = (ko — k3)(2) = 0.
Since || - || is definite, k, = k. for all x € X. For all (x,y) € X?,

k(w,y) = (ky, ka)w = (ky, ko )w = K (2, ).
[l

Moreover, any reproducing kernel k : X2 — R and index set X is associated with a unique RKHS.
We can therefore speak of “the” reproducing kernel of an RKHS or “the” RKHS of a reproducing
kernel.

By the reproducing property, we can evaluate a reproducing kernel k£ on a pair (x,y) € X2 by
taking the inner product (k,, k,)%. A reproducing kernel must be symmetric, then, by the symmetry
of the inner product

k?([E,y) = kx(y) = <kxaky>7'l = <ky7k:v>’H - k’y(l‘) = k)(y,l’)

Since a reproducing kernel k is symmetric, we must have, for all x € X, k, = k(z,:) = k(-,x). A
reproducing kernel is, moreover, positive-definite.

Proposition 2.14. A function k : X? — R is positive definite if and only if it is a reproducing
kernel associated with an RKHS H C RY,

14
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Proof. We start by showing that a reproducing kernel is positive definite. (We have just seen that
it is symmetric.) Let k be a reproducing kernel on index set X associated with some RKHS H. To
see that k is positive definite, let (z1,z,...2,) € X™ for some n € N and let (aq,aq,...,a,) € R™
Then by the bilinearity of the inner product

n n N n n n
Z Z CLZ‘CL]'/C(SL’Z', I‘j) = Z Z aiaj<kxi, kxj>7-[ = < Z G/ikzi, ajkxj> =
H

i=1 j=1 i=1 j=1 i=1 j=1

n 2

Z a; kxl

i=1

> 0.
H

To show the converse, suppose k : X? — R is a positive-definite kernel. We will construct the space

H whose functions k reproduces. Form the linear manifold # by taking all finite linear combinations
of the k, = k(-,z) forz € X
H = span {kx}x€X~

We can therefore express any f € H and g € H as linear combinations of the k, functions
f= Zaik% and g = ijk:yj for (zq,...,2,) € X™, and (y1,...,y,) € X" (7)

We endow this space with the following inner product

n

(f,9)m = <Z az‘kmnzbjkyj> Zzaz (koss by yw = D> aibik(i, yj).
i=1 j=1

H i=1 j=1 i=1 j=1

We can see that (f, g)# does not depend on the choice of expansion in (7)

(foa) =) aibik(x;, y;) Zb (Zaj ., y]) be y;), and

i=1 j=1 Ni=l
f(l/y)
ng—ZZazbk:y],@ ZZCI,Z(ijkaj(Ii)) :Zaig(m
i=1 j=1 i=1 j=1 i=1

g(x:)

Thus, (-, )% is a symmetric bilinear form. Moreover, the k, reproduce evaluation at z: letting
f=3"" aik,, and k, = 301 1k,,

(f, kx H-ZZl ak(x;,x :Z (@i, x (Z:aZ x> = f(x).
7j=1 =1 =1
That || f||z > 0 follows directly from the bilinearity of (-,-)3; and the positive definiteness of &
1712 = (F, fw = <Za1kxi, Za@-km> =5 ke y) > 0
i=1 i=1 H i=1 j=1
Then the Cauchy-Schwarz relation holds and, in particular,
[f(@)] = [ kaul < ([l k(2 ).
Thus ||f||z = 0 entails that f(x) =0 for all x € X and thus f = 0.

15
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This linear manifold H is therefore an inner product space as (-, )3 is a strictly positive-definite
symmetric bilinear form. Moreover, in this space, norm convergence implies pointwise convergence.
Let {f.}nen be a Cauchy sequence of functions in H. We know that for all m € N, n € N, and
x € X, the Cauchy-Schwarz inequality and reproducing property guarantee that

Since {fn}nen is Cauchy in the norm || - ||, for any € > 0 there is an N, > 0 such that for all
m,n > Ne, || fmn — fulls < €. For every x € X the sequence of values {f,,(x)},en is Cauchy in R: for

all € > 0, we can choose €, = ﬁ; then for m,n > N,
T,T

|f(2) — fu(2)| < €2V E(x,2) =€

This Cauchy sequence {f,(z)}nen of real values therefore converges in R to some value f(z). We
define f in this manner to be the pointwise limit of the Cauchy sequence of functions {f, }nen-

Let H be the result of adding the pointwise limit functions of all Cauchy sequences in H. It
is straightforward, but tedious, to show that the inner product continues to be well-defined, that
k remains a reproducing kernel, that % = span {k,}.cx is dense in 7, and that the evaluation
functionals remain bounded. # is the RKHS for which the positive-definite function %k acts as a
reproducing kernel. O]

Remark 2.15. There is another way to see that the span of the representers of evaluation at the
points in the index set span{k;}rcx must be dense in an RKHS H. The sequence {k;}rcx forms a
complete system for H, since any f € H orthogonal to the representers of evaluation at all v € X
must be identically 0: f(x) = (f,ke)x =0 for allx € X.

We can now prove Proposition 2.11.

Proof. Suppose k is a positive-definite kernel defined on the set X'. We just showed that there is an
RKHS H corresponding'? to k. Consider the map from the points in the index set to their Riesz
representers of evaluation

p: X —>H
T — k.
Then for all pairs (z,7') € X? we have that k(x,2") = (ky, ko )y = (¢(2), d(a))3 is a reproducing
kernel. Indeed, the reproducing property follows from the fact that k, is a Riesz representer of
evaluation at z: Vf € H,Vx € X, f(x) = (f, kz)n. Conversely, suppose there is a Hilbert space H
and a mapping
o: X —H
T = kg,

such that for all (z,2’) € X2, we can define a reproducing kernel k(z,z’) = (¢(x), #(a))%. Then for
any n € N and (ay,as,...a,) € X", we see, by the bilinearity of (-, )4, that k is positive definite

S wajka, x;) = <Z ai¢($i)7zaj¢($j)> =

i=1 j=1 i=1 j=1

N 2

Z azﬂs(%')

=1

> 0.

H
[l

2In the proof of Proposition 2.14, we used a bar to emphasize that H was the completion of the span of the
representers of evaluation at each point in the index set; here we jettison the bar as H is understood to be complete.
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Remark 2.16 (The kernel trick). We have now seen that a kernel k maps pairs of points in an
index set X to the inner product between functions—the representers of evaluation at these points—in
H C R*. These functions are often called “feature vectors” by machine learning practitioners, and
the map ¢ the “feature map”. To solve many learning and approximation problems in practice, one
does not need access to the representers of evaluation k, or the space H in which they live, so long
as one is confident they are suited to the application and one can compute the kernel k on pairs of
inputs in the space. One of the most commonly used kernels has a native space H that is difficult
to characterize [142], and the feature map need not be uniquely specified given an RKHS and its
kernel [3/]. The machine learning literature calls “the kernel trick” this ability to solve problems in
infinite-dimensional spaces without full access to the functions that live there, using only the inner
products k(z,x') = (ky, ky )y between select functions in the space. In the context of approximating
functions with splines, this trick was identified by Wahba and Kimeldorf with the representer theorem
(see Section 2.5).

Positive-definite kernels also assesses the similarity between points in X'. With respect to this
similarity metric, the RKHS norm || || indicates a function’s smoothness or regularity (the smaller
the norm of a function, the smoother it is). The RKHS #H and its norm are therefore useful to
consider in applications such as spline smoothing, even when one can make use of the kernel trick.

Remark 2.17. Positive-definite kernels encode a metric or pseudometric on the indexr set X ac-
cording to which any function f in the associated RKHS H is Lipschitz continuous with Lipschitz
constant M = || f||x

de(f(x), f(2") = |f(z) = f(a") = [{f ke — ka)au| < ||l 1oz — ka0 = Mdx (2, 2"),
——

M

where

dy(z,2") = dy(ke, ko) = ||ke — kol = (ke — ko, ke — ko) = (2, 2) + k(2/, 2) — 2k(z, 2").

Positivity of dy need not hold, so dx is in general a pseudometric. However, if k is strictly positive-
definite, its Gram matriz on x and =’ # x has a positive determinant: k(x,z)k(a’,2') > k(z,z')*.
But then, by the inequality of arithmetic and geometric means, we have that

k(x,z) + k(2 2’
2

) > VVk(z, 2)k(z!, 2') > k(z,2),

so for any x # x', we can establish the positivity of dx

1
id;((x,x’)Q =

k(x,z) + k(2',2")
2

— k(z,2") > 0.

Strict positive definiteness is a sufficient but not necessary condition for dy to be a metric. Consider
the positive-definite kernel of Example 2.6, which is not strictly positive-definite (the Gram matriz
on {0,1} C X has eigenvalues {0,1}). Nevertheless, the associated distance metric exhibits positivity

dy(z,2') = ||min(-, 2) — min(-, 2')|| = /min(z, z) + min(z’, 2') — 2min(z, 2') = /|z — 2/|.

This metric dx illustrates, moreover, that the distances between elements of the index set possess
different properties from elements of the RKHS and its reproducing kernel. With one argument fized,
dy is not sufficiently well-behaved to reside in the RKHS H of Example 2.6 as its derivative is not
square integrable on [0,1]. Moreover, it is not a positive-definite kernel (the distance matriz of dx
on {0,1} has eigenvalues {1, —1}).
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Remark 2.18. If X is a real inner product space, its dual space is an RKHS. For each x € X, the
representation of evaluation at x is the functional ¢(x) = (-, x)x; the kernel is the inner product:
k(z,y) = (ks, ky)n = (z,y)x. Solutions of spline interpolation problems in this RKHS are given by
ordinary linear regression; smoothing problems, ridge regression>. The metric on X induced by the
linear kernel is the same as the metric induced by inner product of X

d(z,y) = \ll2l + il — 20 v)a = [l — yllx.

Linear kernels defined over a Euclidean inner product space, for instance, induce a Euclidean metric
over the index set.

On the other hand, kernels can endow an inner product space with metrics that disagree sharply
with the metric induced by the inner product. While the FEuclidean space X = R can be endowed
with a Fuclidean metric by the linear kernel, different kernels, associated with different RKHSs of
functions on X, can equip X with vastly different metrics. The Paley-Wiener space of finite-energy
bandlimited signals

PW,w = {f € L*(R) | support(f) C [-rw, Tw]}

is the RKHS induced by the sinc kernel: k(x,y) = W This strictly positive-definite kernel
induces a bounded, oscillating metric on R

() = [[a = By llpwwy., = \/2 (w _ sin(mw(a y»)‘

m(z —y)

Norm-minimizing solutions to interpolation and smoothing problems over this space exhibit charac-
teristic wiggles that are related to the nature of this distance metric.

When there is additional structure on X', there is more to say about the relationship between the
properties of k and those of the functions in H. The boundedness (and, if X is a topological space,
the continuity) of the kernel k£ depends on the boundedness (respectively, continuity) of the feature
map.

Definition 2.19 (Feature map). We shall call the map

o: X —H
x>k,

introduced in the proof of Proposition 2.11 the feature map of the kernel k or RKHS H.

Definition 2.20. We say a kernel is bounded if

sup k(z,z) < oo.
TEX

Remark 2.21. Note that the mazimum absolute value of k must occur on its “diagonal”. Clearly,
we have that imposing the diagonal constraint cannot increase the maximum kernel absolute value

sup [k(w, )| > sup k(z, 2).
(z,2")eX? reX

(We omitted the absolute value sign on the right-hand side because k(x,z) = ||k.|3,.)

13To pose the problem over the richer space of affine functions, not just the dual space, the direct-sum decomposition
principle can be used (see Section 2.4).
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On the other hand, by the Cauchy-Schwarz inequality and monotone continuity of the square root
function, we have the opposite relation

sup k(z,a)| = sup |k, kodul < sup k(@ 2) - sup /K@, @) = suph(, 7). (8)

(z,2')eXx? (z,a')EX2 TEX 2 EX hex
Thus,
supk(z,x) = sup |k(x,2')|.

reX (z,z")eX?

Proposition 2.22. A kernel is bounded if and only if its feature map is bounded. In this case, every
function in H is bounded.

Proof. The first statement holds because
Vo € M, [[0(2)][5; = (ke ko)p = k@, ).
The second since, for all f € H and all z € X,

[f(@)] = [ kaul < ([l k(2 ).
O

We have already seen that convergence in an RKHS implies pointwise convergence. We can
expand on this, with the following result from Aronszajn [3].

Proposition 2.23 (Convergence in H and pointwise convergence). Let H C RY be an RKHS. Then

1. The sequence of functions { f,}52, converges weakly in H to f if and only if (a) for each x € X,
fn(x) converges to f(x) in R and (b) {||full2}22, is bounded.

2. The sequence { f,}52, converges strongly to f if and only if (a) holds and (b°) lim, o0 || fulln =
[ 112

Proof. 1. Suppose {f,}5°, converges weakly to f in H. Then for all g € H
Tim (fo, g)u = (f, 9)n;
and in particular, for all z € X', we have that
Jim fo(z) = T (fo, ka)p = ([, ka)u = f(2).

The uniform boundedness principle for Hilbert spaces, a consequence of the Banach-Steinhaus
theorem (see, e.g., [36], Theorem 3.3.15), allows us to immediately establish (b).

Now suppose (a) and (b) are established. We want to show that for any h € H,

lm (f, — f, h)y = 0.

n—oo

From (a), we know that, for all z € X,

lim <fn -/ k:c>7'l = nh_{{.lo (fn(x) - f(.CE)) = 0.

n—oo

Using (b), we can choose an M < oo such that || f,||x < M for all n € N.
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Because {k;},ex is dense in H, for all € > 0, property (a) allows us to choose a finite sequence
of representers of evaluation {k,,,...,k,, } and weights oy, ..., a,, such that the function A’
defined as the linear combination

W=>" aik, (9)
i=1
is within an e-neighborhood of h in the norm of H
I|h— Wy <e

In particular, with enough terms, the expansion (9) will satisfy

he ||y < —
=Wl < S 7T

for any € > 0 and f € H. Then

lim |(fo = £, h)ul < T [(fu = o= W)l T [(f = £, 1)

n—oo

< lim ||fo = fllallh = Bl + Um > il fa = frka)n
n—oo n—o0 i:l

(. >

f

. pointwise
0, since fn

€

< tim (1F )1+ 1D - 777 <

by the triangle inequality.

Weak convergence plus (b’) is equivalent to strong convergence in Hilbert spaces (see, e.g., [36],
Theorem 3.3.13).
]

Aronszajn also considered the continuity properties of the kernel when X is a topological space.

Prop

osition 2.24 (Kernel and RKHS continuity over a topological space). Let H C RY be an

RKHS with reproducing kernel k, and X a topological space. Then the following statements related

to the
1.
2.

5.
Proof.

continuity of k hold.
The map ¢ : x > k. is continuous if and only if k is continuous along the diagonal.

Every function f : X — R in H is continuous in X if and only if every representer of evaluation
k. is continuous and the map x — k(x,x) is locally bounded.

If X is locally compact and the feature map ¢ is continuous, then for every sequence of functions
{fn}22, that converges weakly in H, {fn}>°, also converges uniformly over any compact set in
X. Thus, by the uniform limit theorem, if the map ¢ is continuous, then any weakly convergent
sequence of functions that are continuous on X converges to a continuous function.

. Bvery family of bounded functions By = {f € H|||f|ln < M} is equicontinuous if and only

if the map x — k(z,x) is continuous and each representer of evaluation is continuous. In this
case, k is continuous.

If X is separable and every function in H is continuous, then H is separable.

1. Observe that [|k,||3, = (ks, ki) = k(z, 2).
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2. Suppose f € H is continuous and consider a sequence {y, }°2, of points in X. Since representers
of evaluation are in H, they must be continuous; we therefore need only show (b), the local
boundedness of the map = — k(x,z). For any continuous function f € H, the reproducing
property implies that the representers of convergent sequences in X are weakly convergent in

H

Since every function in H is continuous, k,, converges weakly to k, in H, and we can apply
part 1 of Proposition 2.23 to conclude that k(y, y) = [|k,||3, is locally bounded.

Conversely, suppose = — k(x,x) is locally bounded and every representer of evaluation is
continuous, and consider any sequence {z,}°2, in X that converges to a limit z. Then for all
n > N, for some N sufficiently large, the quantity ||k.||3 + ||k=, || must be bounded above
by twice the local bound M < oo of the map = — k(x,x), evaluated at z; in other words,
k.| + |k2, || < 2M. Since the (bounded) representers of evaluation are a dense subset of
‘H, we have that for any f € H, there is a sequence of (bounded) representers of evaluation
{fm}5o_, strongly converging to f in H; then, for any sequence {z,}>2, converging to z in X,

£ (2) = f(zn)l = [(£(2) = fn(2)) + (fn(2) = frn(zn)) + (fin(20) = [(z0))]
< [F(2) = S (D) + 1 fn(2) = S (o) |+ [ (20) = f(20)]
= |fm(2) = fm ()l + [ = fons kcdael + [ = f o Fez )]
< | fm(2) = fo ()| + |1 = Sl (el + 1R )

where on the third line we swapped the first and second terms in addition to applying the
reproducing property. For any € > 0, we can choose m so that

€

1 = Fulle < -

Since each f,, is a representer of evaluation and therefore continuous, we can choose N’ such
that for n > N', [ fn(2) — fm(2n)| < 5. Then for m sufficiently large and n > max(N, N'), we
have that

1£(2) = Fzn)l < 1fn(2) = (el A+ 11F = Fll (1Rl 4 Weonllp0) < = + —— - 2M = e.

2 AM

Thus, since f was arbitrary, all functions in H are continuous by the local boundedness, con-
tinuity, and density in H of the representers of evaluation.

See also [132], Proposition 24, and [17], Theorem 17.

3. The continuous ¢ maps a compact set X’ C X to a compact subset H' C H. Suppose the
sequence of functions f,, — f weakly while remaining in #'. By Proposition 2.23 (the uniform
boundedness principle), { f,}22, is bounded; choose an integer M so that sup {||f.||3 522, < M.
In fact, {f,}5, converges strongly'?. By the compactness of X’ and continuity of ¢, for every
€ > 0, there is a finite subcover of open balls of radius d./4as centered at C' = {y1, ...,y } such
that for every y € X’ there exists some center y; € X’ satisfying

€

Ay ) < Sepanr = 110(0) = 8l = 1y — ol < 157

1 Any subsequence of {f,}5%, has a convergent subsequence whose limit is necessarily f by the weak convergence.
But saying that every subsequence of a sequence in a metric space itself has a subsequence that converges to a fixed
limit implies that f, converges in the metric d(fn, f) = ||fn — fll2!
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Then, choosing N such that for all n > N and y; € C, |f(yi) — fu(y)| < §, we see that

1f(y) = @) = 1(f() = flw) + (f () = falwn) + (falw) — fa(y)]
= |(f = fur by = ky)w + F() — fuu)| S U = fos by — Kyl + 1f(w) — fuly)|
< Uf - an?'g Uky - ky;H?—E"‘ ’f(yl) - fn<yl>l < €.

Vv Vv
<A A frlln <3
v M

9

IN
lo

Since N does not depend on y (i.e., no matter which open ball y falls in, its center point y, € C
satisfies | f(y)) — fu(yi)| < §), fn converges to f uniformly.

. Suppose every set of bounded functions in H is equicontinuous. Then every function in H is
continuous and by part 2, k is locally bounded on the diagonal. In particular, the representer
of evaluation at x, k., is continuous for any x € X. Since the function k, is continuous, we
have that for any sequence {z,}5°, converging to x within the neighborhood of x in which
x +— k(z,x) is locally bounded,

k(2 xn) — k(z, )| = [(k(2n, T0) — k(20 7)) + (k(2n, ) — k(z, 2))|
< |k(zp, xn) — k(xn, )| + |k(zp, ) — k(z, 2)]

= [k, (2n) = Ko, (2)] + R (20) = Ko ()],

by the symmetry of k and triangle inequality. Both terms tend to 0 as n — oo by the
continuity of the representers of evaluation. Hence, k is continuous along the diagonal.

Now suppose all representers of evaluation k, are continuous and that k is continuous along
the diagonal. Consider any sequences {z,}>, and {y,}>2, converging to = and y, respectively,
for any (z,y) € X% Accordingly, by the symmetry of k, reproducing property, and triangle
inequality,

(0, yn) — k(z,y)| = [k(20, yn) — k(T0,y) + k(z0,y) — k(2,9)]
< ki (Yn) = K, ()| + Ky (20) — k()]
= [(Kus Ky, — Ky)u| + [y e,y — )2
<y, = Fyllael kw2 + e, — Kl |2 Ky [30-

Since k is continuous along the diagonal, ||k, ||x = k(xn, z,) — k(z,z) = ||ks||3 as n — oo.
Thus, we need only show that the sequences of representers of evaluation {k,, }°°, and {k,, }7°,
converge in the norm to k, and k,, respectively. But both terms of

Hk:r:n - kx”?—t = <kxn - kI7kIn - kx)?—t
= (k(xp, zn) — k(zn, ) + (k(z, 2,) — k(2, 7))
= (ko (¥0) = ke, (7)) + (ka(2n) — ka(2)),

converge to 0 as n — oo by the continuity of the representers of evaluation k., and k.. The
strong convergence of {k,, }>°, to k, can be shown in the same way. Thus, k is continuous in
both arguments simultaneously, since for all (z,y) € X? and all sequences {x,,}°°, and {y,}>°,
converging to z and y, respectively, we have that k(x,,y,) must converge to k(z,vy).

Finally, suppose k is continuous in both arguments simultaneously. Consider the family of
functions By = {f € H|||f|lx < M}. We want to show that for all ¢ > 0 and all z € X,
there exists a d, > 0 such that for all f € By, and all y € X satisfying dx(x,y) < 0., we have
|f(z)— f(y)| < e. But because k is continuous in both arguments, we can choose, for any € > 0
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and x € X, a §, > 0 such that for any y and z satisfying dx(x,y) < 0, and dx(x, 2z) < 0., we

have that |k(z,z) — k(y, 2)| < 3']5% Then for all y satisfying dx(x,y) < ., we have that

ko — ky|[5, = (ko — Ky, ko — ky)3 = (k(z,2) — k(z,9)) + (k(y,y) — k(y, 2))
= (k(z,z) — k(z,y)) + (k(y,y) — k(x,2)) + (k(z,r) — k(y, )

< [k(z, 2) = k(z,y)| + [k(z, 2) = k(y, y)| + |k(2, 2) = k(y, )|

2

<W.
In that case, for any f € By,

€

(@) = FW) = [{f ke = ky)ul < Nl ke — Kyl < M- — =

M

€.

5. In this case, the representers of evaluation R = {k,|z € X’} at a countable, dense subset
X' C X form a complete system for H. Indeed, if f € H is orthogonal to each function in R,
it evaluates to 0 at each point in X’. By the continuity of f, this means it must be identically
0. For any =z € X, let {z,}>2, be a sequence of points in X’ converging to x. Then, since f is
continuous,

Fx) = tim f(r,) = lm {f, ko, )u = 0.
O

For more examples of how constraints on X and k£ can endow the functions in the associated
RKHS H with desirable properties (such as differentiability), see, for instance, [132], Section 9; [3],
Section 5; and [4], Section 2.

We end this section by introducing two types of kernels on Euclidean spaces that arise in many
applications: the shift-invariant and radial kernels. These are related to the Fourier and Laplace
transforms of nonnegative Borel measures, respectively. In particular, the former can be seen to be
infinite linear combinations of complex exponentials of different frequencies; the latter, infinite linear
combinations of Gaussians of different scales.

Definition 2.25 (Shift-invariant and radial kernels). We say a kernel k : R? x R? — R is shift
invariant if it satisfies, for all (z,y) € R? x RY, k(z,y) = k'(x — y) for some fized k' : R? — R. A
function k : R x RY — R that satisfies k(x,y) = K (||z — y||ge) for some k' : [0,00) — R is called a
radial function. If, for all d € Nsy, k' determines a positive-definite kernel k : R x R — R, we say
that k' is a radial basis function.

Proposition 2.26. 1. A continuous shift-invariant function k : R? x RY — R is positive definite
on X = RY if and only if it can be expressed k(x,y) = k' (v —y), where k' is the Fourier-Stieltjes
transform of a finite nonnegative Borel measure p

() = () = g [, €707 duta).

2. For a fited d € Nsy, a continuous radial function k : RY x RY — R is positive definite if
and only if it can be written k(x,y) = K'(||x — y||re), where k' is the Hankel transform of
a finite nonnegative Borel measure on [0,00) not concentrated at the origin, u. A function
k' :[0,00) = R yields a positive-definite radial function k(z,y) = k'(||x — y||ge) on RY for all
d € N>y if and only if

K (r) = /0 T e du(t)

for some finite nonnegative Borel measure j1. Since the completely monotone functions are
the Laplace-Stieltjes transforms of nonnegative Borel measures, this is equivalent to saying
K (r) = f(r?) for some completely monotone function.
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Proof. 1. This was shown by Bochner in a book on Fourier integrals in 1932 [19] and an article
[18] in 1933, first handling d = 1 and then the general case. (The theorem is sometimes also
attributed to Khinchin [136] and is closely related to the Wiener-Khinchin theorem.) In the
full proof, the exponential must be handled with care given the improper boundary. However,
the only direction we need is easy: for any n € N>; and ¢ € R", we have that

- 3 - - 1 —i((xj—xk),x
ZZCJCkk(l'] — a’;k‘) = chjckw /Rd e (zj—=zk), >]Rd d,u(ﬂf)

j=1 k=1 j=1 k=1

1 i) N i
~ (2m)i /Rd ( et ZC’“G " >Rd> )
=1

k=1
1
- @

2
(This result is usually stated for complex-valued kernels, due to the conjugate used in the
proof.)

J]=
n

Cje_i<xj’x>kd
=1

du(z) > 0.

J

For the other direction, see [162|, Theorem 6.6. It is generalized to characterize conditionally
positive-definite functions in Theorems 8.12 and 8.14 of that work, which also provides sufficient
conditions for strict positive definiteness (e.g., if the carrier of 1 has nonzero Lebesgue measure).

2. See |128], Theorems 2-3.
[

Remark 2.27 (Certain familiar one-dimensional shift-invariant kernels are not radial kernels in
higher dimensions.). Suppose ¢,(-) determines a positive-definite kernel in Euclidean space of every
dimension-that is, for all d € N>y, the function ¢ : RY x RY — R defined by ¢(x,y) = ¢.(||x — y||pa)
18 positive definite. But then, by the second part of Proposition 2.26, there is a nonnegative Borel
measure [ for which

or(ll — yllae) = / e et dp(t)
0

In particular, o, can never be negative or equal zero by the positivity of the erponential on real
arguments and nonnegativity of the measure: for any distance dy > 0, @,(dy) = fooo et du(t) >0
unless pu is the zero measure (in which case ¢ is the zero kernel).

This is why familiar reproducing kernels on the real line like the cardinal B-spline of even order
(which is compactly supported) or Paley-Wiener sinc kernel of the Shannon- Whittaker-Kotel nikov
series (whose oscillations around zero bring its value “beyond the zero”) are not radial basis functions.
However, one can use Bochner’s theorem to define sinc-like kernels in a given dimension by taking the
Fourier transform of the indicator function over a domain such as a rectangle, a disk, or a heragon
in the plane (or extensions thereof in higher dimensions).

2.1.2 Mercer Kernels

Historically, the first proof of Proposition 2.11 for a non-finite index set X is due to Mercer; in this
case, X was a real interval, though the result is readily generalized to any compact Hausdorff space
endowed with a strictly positive, finite Borel measure [93]. We give a version of this result now, as
it aids in the design of kernels on the sphere.
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Proposition 2.28 (Mercer). Let X be a closed, bounded region in RY. Consider a Hilbert-Schmidt
integral operator on L*(X), that is, an operator Ly

Ly : L*(X) — L*(X)
o L. with (Lef) (o) = |

Xk'(:ﬂ,y)f(y) dy and / k(z,y)Pdzdy = B < 0o, (10)

XXX
Suppose k 1s symmetric. Then
1. The operator Ly is compact and self-adjoint.

2. The eigenfunctions of Ly, {¢,}52, form a complete orthonormal system for L*(X). Moreover,
we can expand k into products of these eigenfunctions, weighted by the corresponding real eigen-
values A,

k(x,y) = Z An®n ()P (Y);

this series expansion converges to k in L*(X x X).

3. If, moreover, k is continuous in both arqguments, and \, > 0 for all n € N,'° then the expansion
of the kernel in the eigenfunctions

k<x> y) = Z Anqbn(x)qbn(y)

converges uniformly, not just in the mean.

Proof. We first observe that the operator L is bounded

LS| oy = /X (Luf) (@) da = /X /X ke, y)f () dy
< / / Ik, ) dz dy /X F@)Pdy = BlIf .

XXX

2

dx

by the Cauchy-Schwarz inequality, the integral absolute value inequality, the kernel boundedness
condition (10), and Fubini’s theorem, which guarantees that [, |k(x,y)|dy is finite a.e. and integrable
in x.

1. Then compactness follows, for instance, via [78], Theorem 5.1, and the finite norm of k in

L*(X x X) stipulated above. If {¢,}%, is complete orthonormal sequence in L?(X), then

{&}52, o {ndm ooy is a complete orthonormal sequence in L*(X x X) and the Fourier

coefficients of k on this basis are in ¢2. Indeed, by the Parseval relation, the Fourier coefficients
N = (& = [ [ M) ) drdy > 0 = (Lig, o)
XXX

satisfy

Z)xlz = //!k(w,y)]dedy: B < 0.
1=0

XxX

150r, more generally, all but a finite number of nonzero eigenvalues have the same sign [121].
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When the Mercer assumption of kernel continuity holds, compactness can also be shown more
directly via Ascoli’s theorem, using the uniform boundedness and equicontinuity of the image
of any bounded sequence of functions under the operator Ly.

Self-adjointness follows from the kernel’s symmetry

L 2y) = k dydz = k dedy = (f, L 2
(W b = [ @) [ bt @dyde = [ 1) [ Koo dedy = (£ Lig)
(see [121], Section 92), since Ly is bounded.

. Thanks to item 1, we can invoke the spectral theory of compact self-adjoint operators (|36],
Theorem 4.10.1 and Corollary 4.10.2) to show 2. The key is to use the orthonormal system
{dn o, of L?(X) to form the orthonormal system {&}:°, for L?(X x X) and expand k as a
Fourier series on that basis; the Fourier coefficients of this expansion are the eigenvalues of the
integral operator (10). The result was first stated in Erhard Schmidt’s thesis [127], and proofs
can be found in [121], Section 97, or [78], Theorem 6.2.

. Originally shown by Mercer in 1909 [102]. A more concise proof uses Dini’s theorem to show
that the monotonically increasing partial sums of nonnegative continuous terms converging
pointwise to the continuous k(z, x) thereby converge uniformly

N
Vo e X, > Auda(a)? Y k(x, ).

n=0

The Cauchy-Schwarz relation
k(2 )| < k(a,2)2k(y, y)"?

allows this convergence result to be generalized to all pairs (z,y) € X2 Details are given in
Riesz and Sz.-Nagy [121], Section 98, and Jorgens [74], Theorem 8.11. A similar proof in a
more general context is available in the appendix of [86].

]

Definition 2.29 (Mercer kernel). We will call any symmetric positive-definite kernel defined on
a compact set X a Mercer kernel if it is continuous in both arguments (ensuring that the square
integrability constraint (10) is satisfied) and the eigenvalues A, of the associated Hilbert-Schmidt
wntegral operator Ly are all nonnegative.

The assumption of eigenvalue nonnegativity turns out to be unnecessary; that k is a continuous
positive-definite kernel on a compact set implies that A, > 0 and {\,}°, € ¢! (see [34], Chapter III,
Proposition 2 and Corollary 3; [46], Theorem 1.1; or [86], Lemma 1).

Remark 2.30. The continuity of k in both arquments and compactness of X are sufficient to ensure
that the image of any L*(X) function under L is continuous; in particular, the eigenfunctions
{bn}5° associated with eigenvalues N\, > 0 are all continuous [3/]. With u denoting the Lebesgue
measure, we have, by the Cauchy-Schwarz inequality, that

(L f)(x) = (L f) ()] = /X(k(%y) — k(') f(y) dy| = [(ke — Kor, fra)]

< Hkx - kx’HLQ(X) ) HfHLQ(X)
< V() - maxlk(z,y) = k(@' y)l ]l 2.

. s
-~

M
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Since k is continuous and X is compact, k is uniformly continuous, and the product /pu(X)-M < oco.
The image of any L*(X) function under Ly, is therefore com‘muou316

Remark 2.31. Any non-degenerate Borel measure may be used in the definition of the integral
operator; this will affect the eigenfunctions and eigenvalues, as well as the representers of evaluation,
but not the unique RKHS associated with the kernel on X [93]. Thus, although there is a unique
RKHS associated with a kernel, the feature map needs not be unique.

Remark 2.32. Note that the condition (10) guarantees that the sequence of eigenvalues of the oper-
ator Ly, resides in (2, since, by the orthonormality of the {¢,}°, (and Tonelli’s theorem)

//!kxy!zdxdy—//(zxnasn Jouly )(ZAM ol )dxdy:ni;o)\i.

XxX XXX -

In fact, for Mercer kernels, the sequence {\,}°2, resides in (*, and Ly has finite trace, since

:OOAn¢n()2:>OO\)\n|:OO>\n:oo)\n ¢n()2d: k(,)d<.

The spectral theory of compact self-adjoint operators requires only that the real A\, — 0 as n — oo.
This condition placed on the operator eigenvalues is strengthened greatly in the case of Hilbert-Schmidt
integral operators.

It is this condition—that the sequence of eigenvalues of L decays sufficiently quickly to remain in
(>~that gives us a valid inner product when all eigenvalues ), > 0.

Corollary 2.33. Consider a Hilbert-Schmidt integral operator Ly, of a Mercer kernel k. Let {¢,}52,
be its continuous eigenfunctions and {\,}°2, the corresponding eigenvalues. Then for all (z,y) € X?,
the Fourier expansion of k(x,y) is an inner product in (* of the images of v and y under the continuous
feature map

X — 12

z = ¢(x) = (VAodo(@), VM (2),...). )

Proof. By our construction, k(z,y) = ZZO:O Andn(2)Dn(y) = (0(2), d(y))e2. Every z € X is mapped
to an element of ¢2 since

The feature map is continuous because x,, — x implies

16(2n) = G(@)[22 = (D(20) = 6(), 6(wn) — G(2))e2 = k(wn, 2n) + k(z,2) — 2k(z, 20) — 0,
by the continuity of k. O

This feature map ¢, depends on our choice of measure in the definition of the integral opera-
tor (10), as do the eigenvalues {\,}5°, and eigenvectors {¢,}°°,. Nevertheless, we can use these
eigenvalues and eigenvectors to identify the unique RKHS associated with the continuous positive-
definite kernel k£ on the compact region X.

16Some authors define the Mercer integral operator as the composition of Ly with the inclusion map, in which case
it maps L2(X) equivalence classes to L?(X) equivalence classes of functions that coincide p-a.e. with a continuous
function.
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Corollary 2.34. Let k be Mercer kernel defined on a compact X and L the associated Hilbert-
Schmidt integral operator, with eigenfunctions {¢, }5°, and corresponding eigenvalues {\, }52 . Then
the RKHS H associated with k (and X ) is defined as

{f€L2 X)Z Yn®n such that i(i—)%<oo}, (12)
n=0 n

and is endowed with the inner product between f with Fourier coefficients (f)n = (f, ¢n)r2(x) and g
with Fourier coefficients (9)n = (g, dn) L2(x)

<f, g>H _ Z <f7 ¢n>L2 >\<¢na Z (13)

Proof. First note that (-, )3 is indeed a valid inner product; in particular, it is definite, as A,, > 0 for
all n by the Mercer condition'”. Observe that the operator L; is positive by the Mercer condition.
Thus, we can define the operator'®

L2 LX) > H

1S oy do > L = (v M (14)
n=0 (P n=0

which is an isomorphism (by construction), so H is a separable Hilbert space since L*(X) is a
separable Hilbert space. The series on the right-hand side converges pointwise since it converges in
the norm (by the compactness of L and thus L,lc/z) and thus pointwise (since H is an RKHS, as we
will confirm).

We know, moreover, that, being the eigenfunctions of the Hilbert-Schmidt integral operator of a
Mercer kernel, the ¢,, are all continuous (see Remark 2.30). For any x € X, define the representer of
evaluation at z as

Z A () b (15)
n:O (kr)n
then we can recover the Hilbert-Schmidt expansion using
2 L — k. k — N w — N A
(@, y) € X% k() = (koo By = D =0 = 3 Aadn(@)dn(y), (16)
n=0 n n=0
and the representers of evaluation k, inhabit H
kQ_OO(kQJ)?L_OO)\ Z_k,
n=0 n n=0
The reproducing property then follows
\4 ki)y = = = nOn(x) = . 17
feH, (f ha)n ; " g x ;m On(z) = flz).  (17)

]

17This can be generalized to A > 0 by excluding the eigenfunctions ¢, associated with ), = 0 from our definition
of H, to avoid a division by 0 in the inner product definition without breaking the reproducing property or altering
the Hilbert-Schmidt expansion. Then (-, )3 will still be a valid inner product over H. In fact, we need only require
that all but finitely many of the A, have the same sign [121]. See [34], Chapter 3, Remark 3.

3 Here we use continuous functions as representers of equivalence classes of functions that coincide almost everywhere

with them. See [34] for a presentation where L,lc/ % is composed with the inclusion map, as is suggested by (12) rather
than our expansion (14).
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In summary, we started with a Mercer kernel k, which gave us a complete orthonormal system
{pn}o2, for L?(X), where the ¢, are continuous eigenfunctions (with eigenvalues A, > 0) of the
corresponding Hilbert-Schmidt integral operator Ly. Associated with this kernel is the unique RKHS
‘H with representers of evaluation at x given by (15). Thanks to the nonnegativity of the eigenvalues,
we can write a complete orthonormal system for H using the eigenvalues and eigenfunctions of Ly:
{IVAn®n 2, (orthonormality is immediate; using the definition of (-, )3, completeness follows since
any function f € H orthogonal to each of the ¢, has L?(X) Fourier coefficients (f), = 0 for all
n € N and thus is identically 0). We found two ways to express the kernel evaluations k(z,y) as an
inner product: in 2, between ¢(z) and ¢(y) (defined in (11)), and in H, between the representers of
evaluation, k, and k, (given in Equation (16)).

2.2 Synthesizing Mercer Kernels on the Sphere

In this subsection, we derive positive-definite functions on the sphere by running the Mercer theorem
(Proposition 2.28) in reverse: we start with the sequences {\,}>°, of nonnegative eigenvalues and
the continuous eigenfunctions {¢,}>°, and use them to synthesize a continuous kernel k. We begin
this work while continuing to let X be an arbitrary closed region in Euclidean space; later, we will
introduce results that are specific to X = S%.

2.2.1 Mercer Synthesis

We saw how a continuous kernel on a compact Euclidean domain can be expressed as the uniformly
convergent series

= 3" N (0)bn() V() € X x X,

where the weights )\, are nonnegative eigenvalues in £* and orthonormal basis functions ¢, continuous
eigenfunctions of the associated Hilbert-Schmidt integral operator.

In this section, we consider the converse: can we instead start with a family {¢, }°°, of continuous
functions defined on the compact Euclidean domain X that form a complete orthonormal system
for L*(X), as well as an ¢! sequence of weights {\,}°2, with A, > 0 for all n € N and derive a
continuous kernel? We require a few lemmas.

If X is compact, we can prove a result that follows from parts 1 and 3 of Proposition 2.24, but
that is nice to revisit in light of (13).

Lemma 2.35 (Strong convergence implies uniform convergence when X" compact and k diagonally
continuous). Suppose H C R is an RKHS of the form (12) with inner product (13) and “diagonally
continuous” kernel (i.e., the map x — k(x,x) is continuous). Then convergence in the RKHS norm
implies uniform convergence.

Proof. Suppose {fn}>_, converges to f in H. Letting {(fn)n}>, be the Fourier coefficients of f,,
on the orthonormal system {¢,}°°, for L?(X), then for any = € X,

| fm(@) = f(2)] = Z Z Ydn = U /35 (2

00 o\ Y2 / 1/2
(Z ””)) (anqsn(xm(x)) o Flla/ 2
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thus, for all € > 0, there exists NV such that for all m > N and all x € X,

m>N = |[fu— flln < ———= = |fulz) - f(z)| <.
max

k(x, )

reX

The result holds because the the continuous map x +— k(z,z) attains a maximum value on the
compact X. N

Lemma 2.36 (Fourier expansion of a reproducing kernel). Given an RKHS H C R™ with associated
reproducing kernel k and an orthonormal system (not necessarily complete) {10, }5° in H, then

Ve e X, iwn(x)2 < k(z,x).
n=0

Proof. By the reproducing property, the Fourier expansion of the representer of evaluation at any
r € X on {1, }22, can be written

Mg

3
Il
o

Thus, Bessel’s inequality gives

> Un(@)? = (ke on)al® < [[kel3, = K, ).

n=0 n=0

This becomes equality when the system {1, }5°, is complete. In the Fourier-weighted Hilbert space,

= \/x¢n7 S0
= Ann(2)?,
n=0

where {, }22, is a complete orthonormal system for L?(X). O

Remark 2.37 (Pointwise convergence of Riesz-Fischer limits in an RKHS). The Riesz-Fischer theo-
rem'? states that, given an orthonormal system {1, }32, (not necessarily complete) in a Hilbert space
H and a sequence of weights {(g)n}%, in (%, the sum

o0

Z(g)n¢n — 49

n=0

converges strongly in H to a limit g. If H is, moreover, an RKHS, over an inder set X, then by
Remark 2.4, this convergence s also pointwise, and for all x € X,

l9(x)] = <Z(9)n¢mkx> = > (@altn, ka)ue| = [{(@)n}rZo: {n (@) 120) e

0o /2 / 1/2 oo 1/2
S(Z@i) (an(:v)2> < Vk(z, ) (Z(@i) ,

n=0 n=0

by the Cauchy-Schwarz inequality and Lemma 2.56.

19The theorem we refer to was given in [47, 48, 119] in the context of L?(R) and quickly generalized to arbitrary
separable Hilbert spaces, as in [82], Section 16, Theorem 9, or [36], Theorem 3.4.10.
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Proposition 2.38 (Fourier-weighted Hilbert space synthesis of a Mercer kernel). Suppose we are
given a compact region in R X, a sequence of weights {\,}°%, € £* with A\, > 0 for all n € N, and
a sequence of functions {¢,}°2, that are continuous on X and form a complete orthonormal system
for L*(X). Moreover, to ensure the local boundedness of

E(z,2) = Augn(x)’

for each x € X, we make the sufficient (but not necessary) assumption that the family {p,}2, is
locally bounded, i.e., for all x € X there exists a neighborhood B(x) such that for all n € N and all
y € B(z), we have that |p,(y)| < M,.

Then the weights {\,}°, and complete orthonormal system {¢,}22, synthesize a Mercer kernel
wn the sense that the kernel

k(x, y) = Z An(bn(x)(bn(y)a

which converges in L?(X x X) by the Riesz-Fischer theorem, also converges uniformly to a continuous
kernel.

Proof. Define?

<f79>H :Z(‘f);z\ﬂ7

n=0 n

and
oo

H = {f € LQ()()‘JCLQ,EJX) :0<f)n¢n and i% < oo}.

n

By construction, the Fourier-weighting operator

L/?: LX(X) > H

n=0 n=0

is an isometry

1By = 3002 = 3 WIS

‘2
A H

the Fourier weighting injection an isomorphism. Thus, H is a separable Hilbert space, with complete
orthonormal system {+/A,én}22 .

The reproducing property (17) still holds, by construction, and the representers of evaluation are
given by

n=0

Vo € X, ke = Autn(2)on.

n=0
The ¢,, are continuous, and therefore uniformly continuous (since X is compact). We now show
the kernel is continuous. First, observe that for all x € X', the representer of evaluation at x

ke = D Mbn(@)60 = 3 (VAba(@)) (VAut0).

=0

20This generalizes immediately to the case where we merely require that the \,, > 0: we simply exclude those terms
where A, = 0 from the following sums.
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is in H by the Riesz-Fischer theorem, since {v/\,d,(z)}2, € ¢, and, moreover, is continuous, since
for any sequence of points {x,,}5°_, in X converging to x € X and any y € X, we have that

lim z, =2 = lim ky(z,,) = nlbgnoo Z)\nqbn YOn(Tm) Z hm M@0 (V) On (1)

= Z A (1)) = by (),

|<%H0for

by Tannery’s theorem (since the set {¢,}52, is locally bounded, |\, ¢n(y)dn(2m)| <
sufficiently large m and n, where M, is a local bound of {¢,}>°, in a neighborhood of ).
We now make the recognition that x — k,(x) = k(z, x) is locally bounded, since

S A < 123 A
n=0

n=0

and {\,}>2, € (.
Thus, by Proposition 2.24, part 2, the functions in H are all continuous on X. Using this, we can
see that k, converges weakly in H to k.,

VM, lim (f k)= lim flrn) = f(x) = (f, k)
and, moreover,

. 2 2 . 2 2.
TrlLl_l}gonmeH = nlgnoo ZO)‘n¢n($m) = ZOT}LI_IE}DOAn¢n(xm) = Hku’vHHv

thus, k,, converges strongly to k,, so that the map ¢ : x — k, is continuous and £ is continuous on
the diagonal (by Proposition 2.24, part 1). It remains to be seen that the convergence is uniform.
We notice that the pointwise convergence of the monotonically increasing sequence of functions

k?M I $ Z)\nﬁbn

to the continuous function
o0
T) =3 Autn(2)?
n=0

is uniform, by Dini’s theorem. By the Cauchy-Schwarz inequality, we have also that

n®n () on(y)

<D VAulon (@) VA [6n(y)
o 1/2 / 1/2
< (Z Anfbn(%)2> (Z Anaﬁn(y)2> < Vk(z,2) - VE(y.y).

Thus, the sequence of partial sums Zg:o An®n(7)dn(y) converges uniformly to k(z,y) on X x X'. By
the uniform limit theorem, k is continuous on X x X. O]
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Remark 2.39. The authors of [78] call the space H derived this way a “Fourier weighted Hilbert
space” because il applies selection to the elements of L*(X) via the sequence of nonnegative weights
{An}, which must penalize large Fourier coefficients (f), for large n, so that the sequence of coeffi-
cients {(f)n/ vV} may remain in (* and thus give, by the Riesz-Fischer theorem, the expansion
weights of an element of H. (L*(X) itself, which is not an RKHS, is (re)constructed by a much less
selective sequence of weights, not in (1, given by N\, = 1Vn € N; nonnegative weight sequences in £*
yield a Fourier weighted Hilbert space that is in fact an RKHS.)

The construction of a Fourier weighted Hilbert space via Mercer synthesis is summarized in
Algorithm 1.

Algorithm 1: Synthesis of a Mercer kernel and Fourier-weighted Hilbert space.

Data: An (' sequence {\,}°° of nonnegative weights )\, > 0 and a locally bounded
complete orthonormal system {¢,,}°°, for L*(X). The ¢, are continuous on the
compact set X.

Result: A positive-definite kernel £ on X and an associated RKHS H.

Define the kernel

V(w,y) € X% k(z,y) = > Mdn(2)dn(y)-

The corresponding RKHS H

e consists of continuous functions on X’;

e has inner product (f,g)y = > - <f’¢">L2<X;<9’¢">L2<X> =y (n(@)n.

n=0 n n=0 n
An>0 An>0
o satisfies f € H = [|f|]2, = 2, L < o0;
An>0 "
e has complete orthonormal system {v/\,¢,}5%;
e has representers of evaluation at z € X given by k, = >~ (Audn(2)dn.

An>0

Return the Mercer kernel k and RKHS H.

2.2.2 The Real Spherical Harmonics: A Complete Orthonormal System for L?(S?)

To synthesize kernels on “Fourier side” we require a complete orthonormal system for L?(S?). A
convenient choice is the real spherical harmonics {Y;” | [ € N and n € [—[,[]}, which form a complete
orthonormal system for L? (S?) with respect to the inner product

1 2w ™ )
Famen =4 [ [ F@lg(@sino) 0o,
T Jo 0
and act as eigenfunctions of the 2-sphere Laplace-Beltrami operator Ag
AgY"(0,¢) = — [l + 1)]Y;"(0, ). (18)

(We have adopted the notational convention [a,b] = {a,a+1,...,b}.) In Section 2.7, it is this latter
property (Equation (18)) that makes this choice of complete orthonormal system particularly suited
to the thin-plate spherical splines.
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To define the real spherical harmonics, we first define the complex spherical harmonics [160] as

20(0.6) - \/ R cos(e)e,

where the P/ are associated Legendre polynomials [87, 126], which can be defined by the Rodrigues
formula

for z € [-1,1], P/'(z) def (;lll)!n (1- xz)n/Qddai;nn (a? = 1), if n € [0,1];
A 1 (enl L (1 — 22)m2850 (22 _ 1) ifn e [—1,—1].

Observe that for n even, P*(x) is a polynomial; that P, "(z) differs from P*(z) by a scale factor;
and that P?(z) is the standard (not “associated”) Legendre polynomial. The associated Legendre
polynomials are the canonical solutions of the general Legendre equation of degree [ and order n,

& la-ag @]+ e - 2] rre -o

which reduces to the Legendre equation if n = 0. (The other solutions to this equation, called the
associated Legendre functions of the second kind, have singularities at +1.)

From the complex spherical harmonics Z', we define the (real) spherical harmonics of degree
[ € N and order n € [—[,[] by extracting the real and imaginary parts and renormalizing |78]

VR (Z(6,0)] = VE\/EE D cos(ng) Py (cos(8)), € [~1, ~1];
Y7 (0, 6) = { v/2Im [27(60, 6)] = /2 <§+z;,sm<n¢>a”<cos<e>>, ne [, ;
ZLEL PO(cos(6)), n = 0.

n2

1— 22

A useful property of the spherical harmonics is the addition theorem for real or complex spherical
harmonics |70, 163|, an analogue of the addition formulas for sinusoids

Z O)Y;(0, ) = PP(cos(<u(p. 1)) (19)

where P are, as before, the (standard, un-associated) Legendre polynomials and <t(p, p’) is the angle
between p = (6, ¢) and p’ = (¢/,¢'). Setting p = p’ and noting that P (cos(0)) = P2(1) = 1, we get
a corollary, sometimes called Unséld’s theorem [163]

l

20+ 1
n 2

D V0.0 == —.

n=—I

Let x be the map from spherical to Euclidean coordinates on the unit circle
x:[0,71] x [0,27) — R?
(6, ) = (sin(8) cos(¢), sin(6) sin(¢), cos(6))" ,

and p = (0,¢)" and p' = (¢,¢')T be two points on the sphere. Then x(,¢) and z(¢’,¢’) are two
Euclidean vectors on the unit sphere in R?, and the cosine of the angle <t(p,p’) between them is, by
the addition theorem for sinusoids, the following

cos(<(p. 1)) = =(0,6)"x(6', ¢')
= sin(0) cos(¢) sin(6') cos(¢’) + sin(6) sin(¢) sin(’) sin(¢") + cos() cos(d")
= cos(0) cos(6') + sin(f) sin(8') cos(¢p — ¢').
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The spherical harmonics are not locally bounded. If a function f lies on the (20 + 1)-dimensional
space H; of homogeneous polynomials of total degree [, i.e., span {Yfl, Yl’”l, ..., Y}'}, then

2l+1
sup | f(p)| < Hme §2);

peS?

moreover, every one of these spaces H; has an element for which this upper bound is attained on
some t € S* (see [52|, Section 6).
However, the Legendre polynomials are bounded

Vu € [=1,1], |[P)(u)] < 1 ([105], Lemma 2, p. 43).

The addition theorem therefore allows us to rewrite an expansion on a basis that is not locally
bounded (i.e., the spherical harmonics) as an expansion on a basis (the Legendre polynomials) that
is bounded everywhere in magnitude by unity.

Thus even though the Riesz-Fischer theorem requires that, for every ¢ sequence of weights
VI ~o.n—_1> the weighted sum of spherical harmonics must converge in L*(S* x §?)

ZZ)\ln 7 Mf?

=0 n=—1
we cannot apply Proposition 2.38 to synthesize a kernel using these weights

Z Z A Y0, 0) Y0, ),

=0 n=-I

that converges for all pairs (p,p’) € S* xS?. Nevertheless, if we require that the weights {)‘l,n}?i’ol, I
be constant over each degree-i.e., for all [ € N, \;,, = oy > 0-then we have that

o0

oo 1 I
> 3 N0 = Yo 310,07 = 3o

=0 n=-—I n=—1

converges for all p = (0,¢) € S* if and only if {a;(2] + 1)}°, € ¢*. Then by the Cauchy-Schwarz
inequality

0o l
) =303 MY (0, 9O, o) converges for all (p,p) € S = {au(2l+ 1)} € (-

=0 n=-1

Even though the spherical harmonics are not locally bounded, we can apply Proposition 2.38 after
requiring that the weights on the spherical harmonics exhibit a particular multiplicity, enabling the
application of the addition theorem, which restates the kernel expansion in terms of the Legendre
polynomials P).

As we will see in the next section, it turns out that this seemingly stringent restriction in the
form of the kernel-our choosing, in the Hilbert-Schmidt synthesis sum, the spherical harmonics as
the complete orthonormal sequence of L%(S?), as well as requiring that the ¢! sequence of weights
Al in the sum adopt a constant value a; > 0 over each (2! 4+ 1)-multiplicity eigenspace H; of the
Laplace-Beltrami operator—is not limiting in practice, if we desire a property called isotropy.
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2.2.3 Mercer Synthesis and Isotropic Kernels on the Sphere

On the sphere S?, the spherical harmonics (see Section 2.2.2) are eigenfunctions for the Hilbert-
Schmidt integral operator of any continuous kernel that depends only on the cosine of the geodesic
(great circle) angle between the two points being considered. To see this, let us first recall a formula
that greatly simplifies the Hilbert-Schmidt expansion of any such kernel.

Proposition 2.40 (Funk-Hecke formula). In spherical coordinates, let the colatitude and longitude
of any two points p and p' be given by (0,¢) and (0',¢"), respectively, and let x be the map from
spherical coordinates to Euclidean coordinates, so that ||z(0, ¢)||rs = ||z(0', ¢')||gs = 1. Consider any
kernel of the form

E((6,0),(0',)) = p(a(6, )72, &), with p continuous on [—1,1].
Let Y" be a spherical harmonic of degree l and order n. Then Y;" is an eigenfunction of the operator

L, : L*(S*) — L*(S$?)

2
fr=Lof= / / (0, &N f(, @) sin(@) Ao de'
with an eigenvalue oy that depends only on the degree | and the function ¢
1
=2 [ pl@)PP(a) ds (20)
~1
2m

1
= 21—“/ oW (2)(1 = 2)*dx (if ¢ is k times continuously differentiable on [-1,1]),
S

where P is the Legendre polynomial of degree ; the second equality holds by the Rodrigues formula.

Proof. Originally given in [50, 63]. Any continuous function on [—1,1] has an almost everywhere
pointwise convergent?' Legendre expansion

chP —Z Prpcnrt =3 (55 [ eor@) (o1)

=0

Then for any degree [y and order ng, we have that
2T ™
LoYy = / / p(x(0,0) (0, ¢"))Y,° (0, ¢') sin(6') A6’ d¢’
o Jo

27 T 00
:/O /0 ch PIU(J;(@, ¢)T$(6",¢’))J Y}n(el,gﬁ/) sin(Q’) a6’ d¢,

-

=0 51:71 Yn(9’¢)yn (9/7¢/) 224:1
= i Ame i Y” / / Yn 6/ Yng(g/ 925)5111(9/) 40’ d¢ _ 477'610 o ymo
=2 +1 ~ " 2+ 107
5n,n‘0,6l,lo

2INote that a continuous function is square integrable on the compact interval [—1,1]. Then apply [117], which
gives a Carleson-Hunt-like theorem for Legendre expansions: Legendre expansions of functions in LP?(—1,1) converge
pointwise almost everywhere if p > 4/3.
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by the addition theorem (19). Expanding out the Fourier coefficient ¢;, of the Legendre expansion
of ¢ (21), we see that

dmey, 47 20+ 1 /1 0 /1 .
= = HP (1) dt ) =2 )P (¢) dt
T Sl 4 1 2zo+1< > | PO L EOLACE S

and L,Y)" = Y. Furthermore, the Hilbert-Schmidt expansion of the kernel is its Legendre
expansion

) l
k((6,9), (0,0) = p(x(6,9) = =D > Y (0.0Y"(0.¢)
=0 n=-1
= 20+1 L
- Z 87 A _PlO(ZL’(Q, ¢)Tx(0 ) Qb )) (22)
1=0
= /20+1 [! L
=3 (357 [ etorwar) reto. o0’ o)
1=0 -
which agrees with the Legendre expansion (21). See also [105], Section 4, Lemma 1. O

Remark 2.41. Notice that x(0,9)Tx(0',¢') is precisely the cosine of the geodesic angle <(p,p’)
between p and p'. Thus, we can write k(p,p") = (cos(<(p,p'))).

Definition 2.42 (Isotropic kernel). Let us call any kernel of this form

k(p, p') = p(cos(<(p, p'))),
an isotropic kernel.

Example 2.43. Let k be the isotropic kernel k(p,p') = cos(<t(p,p')) = z(0, )Tz (0, ¢') = z(p)Tx(p'),
so that (z) = . Clearly k is continuous and positive-definite, since for any p and p' in S?, k(p,p’)
gives an inner product in the Euclidean space R3; indeed, for any n € N and any choice of o € R"
and of points on the sphere {p1,...,pn},

ZZ%% pz,pj ZZO&ZO&] p] RS =

=1 j=1 =1 j=1

20.

E:awn

We will verify that the Funk-Hecke formula (20) gives the coefficients of its Hilbert-Schmidt expansion.
Observe that ¢(x) = P)(x) on [—1,1] is the Legendre polynomial of degree 1. By the orthogonality
of the Legendre polynomials, the Funk-Hecke formula produces the eigenvalue sequence

! s, ifl=1;
al:27r/ SO(x)Pl()(x)dx:{QH—la 1 )

1 0, otherwise.

Indeed, we can confirm that this ergenvalue sequence synthesizes the Mercer kernel k. By the addition
theorem for spherical harmonics (19), the series

[e'S) l )

=330 OO0 ) = S or R eon(<(0.1))

- PP(COS( <(p,p))) = cos(<(p, ).

The synthesized kernel k is isotropic and conlinuous, and the convergence is (trivially) uniform.
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We wish to find isotropic positive-definite kernels on the sphere. One approach is to do Mer-
cer synthesis (see Section 2.2.1): start with a complete orthonormal system for S? (namely, the
spherical harmonics) and a sequence of eigenvalues (in /' and nonnegative, so that they converge
to a positive-definite kernel; with multiplicity equal to the degree to guarantee isotropy, by the
Funk-Hecke formula (20)). Working on “the Fourier side” is a great way to guarantee the positive
definiteness and continuity of the kernel, but deriving a kernel that can be expressed in closed form
requires care.

We could instead choose a continuous function ¢ and verify that the eigenvalues {)‘l,n}?i’ol, el
of L, given by the Funk-Hecke formula (Proposition 2.40) \;,, = oy are nonnegative and in ¢' (i.e.,
{aq(2l + 1)}2, € £'). Checking these criteria can be tedious, but if we start with a kernel that is
easy to compute, we will not be stuck evaluating the kernel via infinite series.

Whichever approach we take, we can be confident that we can recover any isotropic positive-
definite kernel on the sphere. In other words, the choices we made—using the spherical harmonics, with
nonnegative eigenvalues in ¢! with Funk-Hecke multiplicities (Proposition 2.40)-are not limiting. I.J.
Schoenberg showed that all isotropic positive-definite functions on the sphere admit series expansions
on the spherical harmonics with nonnegative, summable weights, whose multiplicities are specified
by the Funk-Hecke formula (20).

Proposition 2.44 (Schoenberg, 1942 (Theorem 1)). A continuous function ¢ : [—1,1] — R gives
rise to a positive-definite isotropic kernel k(p,p') = ¢(cos(<(p,p'))) on the sphere S* if and only if
its expansion in the Legendre polynomials P has nonnegative weights that are in ¢*. In other words,
in the Fourier expansion of ¢ on the complete orthogonal system {PP}°, for L*(—1,1)

o0

L2 1,1
p(cos(< Z HPO ) PO cos (< ZCZPZ cos(<t(p,p'))), (23)

I— HL2( 1,1)

the weights all satisfy

20+1 (! S
o = (T+ /_1<p(u)PlO(u) du) >0 and ch < 00.

=0

Proof. See [129], Theorem 1. The key to the proof is the recognition that the Legendre polynomials
P?, interpreted as isotropic kernels, are all positive-definite functions on the sphere (the case with
[ = 1 is explored in Example 2.43); this is an easy consequence of the addition theorem, and an
inductive proof is given in [129]; see also [140], Chapter 4. The remaining details follow.

First, suppose that the weights {¢}°, € ¢' and ¢ > 0 for all [ € N. Since the Legendre
polynomials P? are all continuous and bounded in absolute value by 1 on [—1,1], the Legendre
expansion (23) converges uniformly (by the Weierstrass M-test, since the sequence {¢;}°, is in ¢!)
to a continuous limit (by the uniform limit theorem, since the P are continuous). This continuous
limit ¢ of positive-definite functions must also be positive definite. Indeed, for any n € N, choice of
points {p;}?; on the sphere, and o € R", we have

D ) i PP (cos(<(pipy)) > 0.

i=1 j=1
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Hence,
n n n n 00
Zazozjcp (cos(<t(pi,pj)) ZZO‘%O‘JZQPZO (cos(<(ps, py))

=1 =1 i=1 j=1 1=0
oo n n
z&(zzmﬂa i) 20
=0 >0 =1 j=1

>0

and the continuous ¢ is positive definite.
Conversely, suppose @ is a positive-definite isotropic kernel on the sphere and is continuous on
[—1,1]. Then for any choice of n € N, points {p;}?_; on the sphere S, and weights a € R",  satisfies

ZZO&ZO&]QO cos(<(pi,p;))) = 0.
=1 j=1

This is equivalent to the integral inequality for any continuous function h : S? — R

/ W) / W Yplcos(<(p.#))) dS(W') dS(p) = 0
S2 S2

where, at p = (0, ¢), the unit sphere’s surface area differential dS(p) = sin(f) df d¢. Setting h = 1,
we get the requirement that

47?/ ¢(cos(<(p,p'))) dS(p') > 0
SQ
Then .
/ / (cos(<t((6, 6), (&, &) sin(¢) 46/ de' > 0, (24)

and the [th coefficient of the expansion of ¢ in Legendre polynomials can be written, via the substi-
tution u = cos(6’),

o=211 AR = = RCOTIONEEY
%Ll cp(cos(@ )) PO (cos(@)) sin(@) A6/
-2 “ [ Pocos(alpn.f))tcos(trn, ) sin®) 060

where p; = (01, ¢1) is the North Pole, so that for any p' = (¢',¢') on S?
cos(<(p1,p')) = cos(6y) cos(0') + sin(6y) sin(6') cos(p; — ¢') = cos(6).
e 5

But then ¢; > 0 by (24), since the product PPy of two positive-definite functions is positive definite.

We now show the absolute summability of the {¢;}7°, and the uniform convergence of the weighted
sum of Legendre polynomials, with ¢; > 0, to the kernel ¢. We recall the result (see [105]; [114]; [129]; [172],
remarks to Theorem 3.1) that the decomposition

o~y ab) (25)
=0
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is everywhere Abel-summable if ¢ is everywhere continuous. Then, in particular, ¢ is Abel-summable
at 1

lim ch lim ort = A < .
r%l—z ! r%l—z !

But since, for all (p,p’) € S*? x S? and m € N,

m m m
ZZ; et PP (cos(<1(p, p)))| < lZ P(1) = lz
_ _ e _
and since ¢; > 0, we have that
m x m m oo
! ! . . 1
;clr < ;clr , and TIE{E chr ZO ;< rlig{ Z qr' = A.

As m was arbitrary, we can conclude

> laP(cos(a(p,p) <) a < A
=0 =0

Conversely, since for any r € (0,1)

o o oo o0
chrl < ch, we see that A = lim chrl < ch.
1=0 1=0 =0

r—1-
lf

Thus,

=0

and (25) converges absolutely and uniformly for all <(p,p’) € [0,7]. Hence, the Hilbert-Schmidt
kernel sum of the isotropic kernel k : S? x §* — R,

00 l
/ 47TC n n /
k(p, 1) = @(cos(< Zq (cos(<t(p, 1)) = ZzHllZ}ﬁ OV (O, ¢,
=0

n=—1
[&7)

converges uniformly.
Note that we have adapted Schoenberg’s more general Gegenbauer (“ultraspherical”) polynomial
expansion of an isotropic kernel in §” (2.11) to the specific case of the Legendre polynomials, which
1

is appropriate for S* (set m = 2, A\ = 3, and in the integrals u = cos(¢’)). ]

Remark 2.45. Schoenberg’s theorem tells us that an isotropic kernel applies the same weight to
each spherical harmonic of the same wiggliness. Isotropic kernels are good candidates to serve as
wiggliness penalties. Suppose an interpolant is a weighted sum of the representations of evaluation,
using an isotropic kernel k whose RKHS is H, of a finite data set: 1(0,¢) = > . aik(-, (0, ¢:)). The
Hilbert norm of this interpolant is o’ Ko, where a = (v, ..., a,)" and (K);; = k((0.¢:), (0, 9;)).
Since k is isotropic, the wiggliness of the interpolant depends only on the weights a and the pairwise
geodesic distances between points in the data set.
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Remark 2.46. For the Legendre expansion (25) to converge everywhere pointwise, the continuity
of @ s ordinarily insufficient; continuous differentiability is typically the sufficient criterion that
is most convenient to show [125]. Schoenberg’s theorem (Proposition 2.44) shows that the Legendre
series converges uniformly if ¢ is continuous and positive-definite (i.e., if we enforce the rather strong
constraint that all Fourier coefficients ¢, in its expansion on the Legendre polynomials satisfy ¢, > 0).

Example 2.47. The positive sequence {/\l,n}?;é,lzfn given by N, = oy = 21+16l with B € (0,1),
is in (1 by the convergence of the geometric series. We take the Hilbert Schmidt expansion of this
sequence of eigenvalues on the spherical harmonics and apply the addition theorem to synthesize the
corresponding kernel

[e.9]

S a6, 6700 ) Zaz”;;lﬂ(eos <(p, ) ZPl cos(<(p, )8

=0 n=-I

The Legendre polynomials P can be defined, inter alia, by the generating function identified by
Legendre while investigating 1/r potentials [22]

1 oo
— PO l
/—1—2624‘52 ZZ:; 1 (2)B

For any z € [—1,1] and p € (0,1), the function on the left-hand side is easily seen to be continuous
in both arguments at (z,3). Since for z € [—1,1], the |P’(z)| < 1, we can apply the Weierstrass
M-test to confirm that the right-hand side, as a function of z, converges uniformly to the left-hand
side on [—1,1]. Thus, the Mercer kernel associated with this positive eigenvalue sequence is

1
\/1 — 26 cos(<t(p,p')) + 32
Let H be the RKHS associated with k. The reproducing property can be verified using (17)

k(p,p') =

=0 n=— .
_ Z Z OélY s,gbs n Z Z nlY S’¢s> _ f(S);
=0 n=-1 =0 n=-1

the Fourier expansion converges uniformly and thus pointwise since k is continuous and f € H.

Let us summarize our findings. Using Proposition 2.38, we synthesized a kernel as a Hilbert-
Schmidt weighted sum of spherical harmonics. We used the eigenvalue conditions of Mercer kernels—
nonnegativity and bounded ¢! norm-and added a new one by imposing equality on the eigenvalues of
the 2] 41 spherical harmonics of the same degree. We found the synthesized positive-definite kernels
were isotropic. By the addition theorem, the kernel sum can be expressed in terms of the (bounded)
Legendre polynomials {PP}:2,. This process can synthesize all isotropic positive-definite kernels on
the sphere, by Schoenberg’s theorem (Proposition 2.44).

Moreover, the Fourier expansion of any such ¢ € L*(—1,1) on the Legendre polynomials

o 21+1 2041
© ~ ZCZPIO, where ¢; = <g0, + PZO> _ 2t (t)P(t)dt
1=0 L2(-1L1)

2 2 _1
converges not only in L?(—1,1) but uniformly and absolutely.
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The condition that the sequence {\;, n}z 0.n=_; of nonnegative weights on the spherical harmonics
be absolutely summable can be rewritten using the multiplicity (\;,, = o) guaranteed by the Funk-
Hecke formula: (Proposition 2.40) {(20 + 1)a;}°, € ¢*. By the addition theorem, this obliges the
weights ¢; on the Legendre polynomial expansion of ¢ to be absolutely summable. The «; are
nonnegative precisely when the ¢; are

1
oqz27r/ SOPYH) dE >0 = ¢ >0,
“1

J/

st

by the Funk-Hecke formula (20). The conditions (nonnegativity and summability) Schoenberg’s
theorem (Proposition 2.44) places on the weights of the expansion of ¢ : [—1,1] — R on the Legendre
polynomials are the same as the conditions Mercer synthesis (Proposition 2.38) places on the weights
of the Hilbert-Schmidt expansion of a kernel k£ : S? x S? — R on a complete orthonormal system
for L?(S?); the Legendre expansion follows from the Hilbert-Schmidt expansion if we impose the
constraint of isotropy (or, equivalently, Funk-Hecke eigenvalue multiplicities) by the addition theorem
for spherical harmonics (19). We could not use Proposition 2.38 because the spherical harmonics are
not locally bounded. However, isotropy and the addition theorem make it clear that the Hilbert-
Schmidt expansion of the isotropic kernel on the spherical harmonics converges uniformly whenever
the expansion of ¢ on the Legendre polynomials does

[e's) l

k(p,p') = ¢(cos(« Z Z )\l,n Y (6, 0)Y" (0, ¢)
=0 n=-1
§j }:Y” NP0 ) =3 a P (cos(<(p,) ) = 2 art(cos(<(p. 1)

=0 n*—l =

The RKHS #H associated with our Mercer kernel (Definition 2.29) can be defined exactly as
suggested in Section 2.2.1, with inner product

=3 3 Uelthe 521 57 gy

=0 n=—1 n=-—I
/\l,n>0 04l>[:|

where (f);, and (g);, are the Fourier coefficients of the expansion of f and g on the spherical
harmonics, respectively. The inclusion criterion of our Fourier-weighted Hilbert space remains the

same
fet — HfHH—Z Z

n——l
al>0
While the weights {)‘ln}l 0.n=_; Of the Hilbert-Schmidt expansion of an isotropic positive-definite
kernel on the spherical harmonics assume a constant value «y over each space of spherical polynomials
of degree [, the Fourier coefficients of functions in the RKHS H need not exhibit this multiplicity;
the addition theorem cannot be applied, so a double sum remains in the inner product. However,
like the Hilbert-Schmidt expansion of the kernel, the expansion of any f € H

o0 l
) = (k=3 3 U Pt 00) S S (6
! e
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converges uniformly®? by Proposition 2.24, part 3. By the definition of (-, )4, the Fourier expansion
of any f € H on the spherical harmonics converges weakly to f in H

wen (3 S arra) =30 3 P gy,

=0 n=—1 =0 n=—1
a;>0 H a;>0

Hence, that convergence is uniform.

2.3 Solving Norm-Minimizing Interpolation and Smoothing Problems in
an RKHS

The development of RKHS theory was motivated by interpolation applications in a rather particu-
lar setting (in particular, finding holomorphic interpolants of scattered data in the unit disk [15]).
Nachman Aronszajn generalized the notion of reproducing kernels to arbitrary index sets [3]. Grace
Wahba revisited interpolation with this more general perspective. The algorithms Wahba derived
for solving interpolating problems in an RKHS [79, 158] require neither uniform convergence of the
Hilbert-Schmidt expansion nor kernel continuity; in fact, the index set X need not be topological.

As we turn our attention to solving interpolation and smoothing problems in an RKHS, we return
to the full generality of the Aronszajn theorem (Proposition 2.11) and Wahba’s work. In this section,
X can be an arbitrary set.

Definition 2.48 (The exact interpolation problem and the smoothing problem). Suppose we have a
sequence of n sample locations {x;}, in X and corresponding values {y; }7_, in R. An interpolating
function f in a reproducing kernel Hilbert space H C R™ (with reproducing kernel k) is any function
f € H for which f(x;) = y; for each i = 1,...,n. The exact interpolation problem is solved by
finding the interpolating function of minimal norm

argmin || f||x subject to f(x;) =vy; fori=1,... n. (26)
feH

The closely related smoothing problem (often called in the machine learning literature kernel ridge
regression ) seeks the function in H that minimizes the empirical risk

n

agmin Ra(f) = — 3 (F(we) — 91)? + ML (27)

n
fen i=1

This latter problem is readily generalized to incorporate other losses besides the square loss and
other bounded linear functionals besides evaluation at the x;. We will later consider the case where
the desired penalty is not a definite norm, but a seminorm.

In both cases, the solution lies in a finite-dimensional subspace of H, namely, in the span of the
representers of evaluation {k,,, ..., k;, }.

2.3.1 Solving the Exact Interpolation Problem

Given a vector of sample locations x = (z1,...,x,)7, it is far from guaranteed that H is sufficiently
rich to include a function that interpolates any possible set of corresponding sample values y =

22Tt is often misstated in the literature that the Fourier series expansion of continuous functions on the spherical
harmonics is uniformly convergent (e.g., in [91]). In fact, this condition is not sufficient, but uniform convergence
always holds for Fourier expansions of continuously differentiable functions on S? (as on S!) [75]. In our case, we have
a new criterion: f € H.
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(y1,...,yn)T. The exact interpolation problem has no solution when there exists no f € H that
interpolates the data—that is, if y is not in the range of the vectorized evaluation map

E:H-—->R"
fe (fx),. .., fla)r.

Luckily, we can easily make the diagnosis that there exist vectors y € R" for which the RKHS
‘H contains no corresponding interpolator by looking at the Gram matrix. Intuitively, the linear
relationship that exists between the representers of evaluation k., ..., k;, is reproduced in the Gram
matrix and constrains the values every function in the space attains at the evaluation points.

Proposition 2.49. Consider a reproducing kernel Hilbert space H C RY with reproducing kernel k.
Let K be the Gram matriz associated with data points © = (z1,...,x,)": that is, (K);; = k(x;, x;).
Then K is singular if there exists some y € R™ for which no solution to (26) ezists.

Proof. Suppose there exists some vector of sample values y € R" that cannot be interpolated at the
points x by any f € H. Thus, the vectorized evaluation map E is not onto: range E C R". Choose
any nonzero element « of the orthogonal complement of the range of E, that is, & € null E*; where
* indicates the adjoint. With this choice, E*a = 0, and, for all f € H, we have that (E*«, f)y =
(a, Efygn = 0. We can then write, using the reproducing property,

0= (a,Ef)rn = Zaif<$i) = <f>204ikxi> VfeH.
i=1 i=1

H

3

Since only the function that is identically zero?® may satisfy this, we conclude

Z a;k,, = 0 and yet o # 0.

i=1

Moreover, this a € nullK by the fundamental theorem of linear algebra [144| and symmetry of K.

We see this because « is orthogonal to the ¢th row of the Gram matrix fori=1,...,n
0 = (ky,,0),, = <k Zajkxj> = ajk(z;, z;) = K[, ]o.
j=1 y  J=1
This nonzero vector in o € null K establishes the result. O

The converse of this result follows immediately once we decompose H as the direct sum of S =
span {kg,, ..., ks, } and S+, its orthogonal complement?’.

Proposition 2.50. Consider a reproducing kernel Hilbert space H C RY with reproducing kernel k.
Write H = S & S*, where S = span {ky,, ..., ky, }. Then nullE = S, and range E = range K has
the same dimension as S.

Proof. We can see that f € St <= f € nullE by recognizing that f is orthogonal to each
representer of evaluation k,, in & whenever the map E annihilates f: that is, by the reproducing
property, f(x;) = (f, ks, )y =0 foralli=1,... n.

231t is orthogonal to itself, after all, and thus has norm zero!
24Note that S is closed (it is finite-dimensional). S+ is closed (since it is an orthogonal complement, by the continuity
of the inner product) and (S+)* = S.
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Now consider f € S. We can write f = > | a;k,,*°. By the reproducing property, the vector

(f(xl)v»f(xn))T: (<kac1vzazkxz> a"'7<ka}nuzaik$j> >
i=1 H =1 . H
= (Z aik(zy, ;). .., Z ik (zy, xz)>

= Kaoa.

The restriction of E to S is therefore the range of K. The result follows by noting that functions in
S+ evaluate to 0. O

Since f € St if and only if f(x;) = 0 for each ¢ = 1,...,n, the orthogonal projection operator
Ps from H onto § does not change the evaluation of a function on the data points x. Writing the
unique decomposition of f = fs + fsr onto the orthogonal subspaces S and S+, respectively, we
have

vf €EH, f(‘rl) = <f7 krm>?-l = <f57kmz>7‘l + <f$l7k96¢>7‘l = <P3f7 k$z>H = (ng)(l’z) for i = L...,n
0

Though this projection operator does not change a function’s evaluations at the points {z1,...,z,},
it can change its norm.

Proposition 2.51. Consider a reproducing kernel Hilbert space H C RY with reproducing kernel k.
Write H = S ® St, where S = span {k,,, ..., ks, }. Given a vector of sample locations x and sample
values y in R™, if there exists a function f € H such that [ interpolates these data, then the solution
to the minimum-norm ezact interpolation problem (26) is Psf.

Proof. Suppose the minimum-norm interpolant f, when projected on the orthogonal subspaces S and
S+t as fs+ fsi, has nonzero component fs.. Since for all €, the function fs+ efs. also interpolates
the data, we see that if € € [0,1), fs + €fs. is an interpolant with smaller norm

1fs + efsllz = 1 fsll5 + €[ fsellze < sl + s 1B = 1115

We conclude that the minimum-norm interpolant f has no component in S+.
Observe that the difference between any two functions f; € H and f, € H that interpolate the

data lies entirely in S, since for i = 1,...,n, we have that f; — fo L k,,
(fr = fo) (i) = (fi = fas kai)n = fi(@i) — folzi) = 0.
It follows that Psfi = Psfs, and that this function is the unique minimum-norm interpolant. O

Remark 2.52. This result is a special case of Wahba’s representer theorem, as stated in Section 2.5
(Proposition 2.60). The interpolant basis functions {k.,}_, vary with the sample locations {z;},.
It is possible on the real line to find interpolation basis functions that depend on the number of sample
points but not their locations (there is a unique interpolant of n data points in span{l,z,... , a" 1}).
Such a construction is not possible on domains in R? for d > 2 due to the Haar-Mairhuber-Curtis
theorem [94]. Basis functions therefore need vary with the sample locations themselves and much
of the interpolation literature makes the association explicit. This orthogonality arqgument yields a
solution with a “knot placement” pattern that resembles those of most methods in the literature.

25If K is singular, the choice of « is not unique because the representers of evaluation are linearly dependent;
nevertheless all such representations evaluate to the same function.
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Corollary 2.53. Consider a reproducing kernel Hilbert space H C R with reproducing kernel k. If
the Gram matriz K is nonsingular given sample locations x, any map xr — y € R™ can be interpolated

by
f= Zaikxw where oo = K™ 1y.
i=1
The norm of our minimum-norm solution to the exact interpolation problem (26) is therefore
given by

i=1 j=1 ~

y =1 j=1 Y

Corollary 2.54. Under the assumptions of Corollary 2.53, if the Gram matrixz K is singular given
sample locations x and if y € range K there exist infinitely many vectors a € R™ for which Ka = y.
All of these coordinate vectors characterize the same function

i=1

Proof. If Ka = Ko/ = y, then a—a’ € null K. We know that the coordinate vector (a—a/) identifies
the function that is identically zero, since the function
9= (a—a)ik,
i=1
has norm
19153 = {9, 9)n = (@ — &) K(a — ') = 0.

———
0

n n
f= E ik, = E kg,
i—1 i=1

is the unique minimum-norm solution to (26) even if it can be written in multiple ways as a linear
combination of the (linearly dependent) k.. O

Hence,

Remark 2.55. If K is nonsingular, the columns of K=! give a partition of unity, that is, a set of
functions {f1,..., fu} such that fi(x;) = 6;; fori,j =1,...,n, where § is the Kronecker delta. In
constructing the functions f;, we choose as the coordinate of f; on the k., the ith column of K-!

=> K[, ilka,.
j=1

Let e; be the ith standard basis function of R™. FEach f; is then the unique function in S that
interpolates e;, and therefore the minimum-norm function in H that interpolates e;. Let us observe
how our minimum-norm interpolant of y can be expressed in terms of the functions in the partition
of unity: if « = K~ 'y, then

f= ji(K‘ly)jkxj = Z ( (Z y&)) | Zy (ZK 5, ] ) Zyzfz

7j=1

If K is singular, there exist vectors of values y € R™ that cannot be interpolated by any f € H and
there can be no partition of unity.
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Remark 2.56. When K is singular, we can solve the closely related best-approximation problem,
wherein we seek
f* = argmin ) — i) (28)
cin 3 (/G
By the reasoning we used to prove Proposition 2.51, projecting any solution of (28) into S leaves its

evaluations at v = (zy,...,x,)" ~and hence the sum-of-squared-errors loss in (28)-unchanged. We
can therefore take f* as lying in S. Thus, we can write

i=1

Our problem (28) reduces to a least-squares approximation problem in R"

arg min — HKOz — Y[l -
acR™

Taking the gradient of the (convex) objective and setting it to zero, we get the normal equations
K'Ka =K'y,

and observe the problem is solved using the Moore-Penrose pseudo-inverse to find the o € (null K)*
that K maps to the projection of y onto range K

a= (K'K)'KTy. (29)

2.3.2 Solving the Smoothing Problem

Consider again a reproducing kernel Hilbert space H C R? with reproducing kernel k. Write
H=8®S*, where S =span {k,,,..., ks, }. We now solve the smoothing problem (27)

n

argmin Ry(f) = S Z(f(l’z) —ui)” + M| f1 3

n
fen i=1

When A\ = 0, this reduces to the best-approximation problem considered in the previous remark.
Accordingly, we assume A > 0.

Because projecting any f € H onto S does not change the values at the sample points and thus
the error in (27) but reduces the norm if f has a nonzero component in S*, any solution will be of

the form .
f = Z aikx“
i=1

for otherwise the norm penalty could be reduced without reducing the data-adherence loss. In this
case, the vectorized evaluation operator E is effected by the matrix K if we represent a function f by
its (not necessarily unique) coordinates «, and || f|3z = o Ka. Our problem (27) can be rewritten
as the quadratic form
arg min 1 (Ka —1y)" (Ko —y) + A" Ko (30)
acRr T

Noting that the term we are optimizing is differentiable and convex in «, we set the derivative to 0
and find

2
0= XKT(K@ —y) + 22K«

=K(K+ Anl)a—y),
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as K = K. Because A\ > 0, the matrix K + Anl is invertible, we can always force (K + AnI)a — y
to reside in null K by setting

a= (K+ I)™'y. (31)

If K is singular, this is not the only choice of a that gives a solution to (27), but it does indeed solve
the problem. Algorithm 2 summarizes this solution to the spline smoothing problem.

Algorithm 2: The solution to the spline smoothing problem in an RKHS H C R?, with

wiggliness penalty given by the squared norm || - [[3,
u* = arg min 1 i (u(zx;) — y¢)2 + AJull3,
uer N

=1

lies in the span of the representers of evaluation k,, = k(-,z;) at the data points {x;}! .
Consequently, writing any such function as v = Y | a;k,,;, we can find u* by optimizing
over the vector of weights a € R”

1
o = argmin —(y — Ka)” (y — Ka) + Ao’ Ka,
CMGR" n

where K is the Gram matrix of k£ on the data points, using (31) (or, if K is singular and
A =0, (29)). Having found o, we may evaluate u* at any = € X with n calls to the kernel

u*(z) = Z ak(x, x;).

Data: A set of n sample locations {x;}!, in X and n corresponding sample values y; € R.
Parameters: A regularization penalty A > 0 and (implicitly) a choice of model space ‘H and

kernel k, plus squared data adherence loss and wiggliness penalty || - ||3,.
Result: A set of weights o € R™ specifying the empirical risk minimizing function u*.
Compute the n x n Gram matrix K

(K)” — k(zi, z;);
Solve (K + Anl)a =y
o+ (K + MI)"'y (or, if K is singular and A\ = 0, a < K'y);

Return «;

2.4 The Decomposition Principle: Seminorm-Minimizing Interpolation
and Smoothing Where the Penalty Null Space Has Finite Dimension

We know how to solve interpolation and smoothing problems in an RKHS where regularity is enforced
by penalizing the norm. However, many classic wiggliness penalties involve a seminorm penalty. For
instance, the natural polynomial spline penalty of the form

Ju(f) = /X (Fm) () de
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is indefinite over the model spaces that interest us, and hence not a norm. There is a rich mathe-
matical literature®® describing how to solve optimization problems in such indefinite inner product
spaces, which we can place beyond the scope of this article by assuming that the null space of our
penalty is of finite dimension.

Assumption 2.57. Suppose that over the model space H, assumed to be an RKHS, the penalty J,, x
used to enforce reqularity is the square of a seminorm penalty whose null space is of finite dimension
m > 1.

With this assumption, we can use what Berlinet and Thomas-Agnan call “the decomposition
principle” (|17], Section 6.1.3) to write H = Ho @ Hi, where H, is the finite-dimensional null space
of the penalty J,, x, and in H;, J,, x is the square of a definite norm. We will modify the indefinite
penalty J,, » to turn it into the square of a definite norm || - || over all of H.

To this end, we begin by turning H, into an RKHS by endowing it with an inner product (-, )z,
and induced norm. The choice of norm on H is irrelevant to the optimization problems we consider.
It is absent from empirical risk minimization problems that penalize wiggliness; for constrained
optimization problems, we note that, since H is a finite-dimensional, any choice of norm defines the
same topology. Thus, we may arbitrarily choose a norm || ||, on Ho. A common choice is the norm
induced by

(f Do = Z f(z)g(z;), (32)

where {z1,...,z,} is a unisolvent set for Hy—that is, a set of m = dim H, distinct points for which the
only function in H, that evaluates to 0 at each point in the set is the zero function. More generally,
we can use any collection of m linearly independent functionals, and need not limit ourselves to
pointwise evaluation.

Lemma 2.58. Let Hy be any finite-dimensional vector space of functions defined on a set X, and
let m = dim Hg be the dimension of Hy. Letting U = {uy,...,un,} be any linearly independent set
of m bounded linear functionals on (and thus a basis for) the dual space of Hy, endow Hy with the
inner product

(f9)mo E D uil Nualo).

Then Hg is an RKHS.

Proof. Since Hq is a finite-dimensional inner product space, it is a Hilbert space. It remains to
be seen that it has a reproducing kernel. Since the functionals in U are linearly independent, the
vectorized application map of these functionals (between two spaces of dimension m < oo)
E HO — R™
fr (), um(F)T

is invertible, and on Hj, only the zero function evaluates to 0 by all of the u; € U. We construct
a partition of unity with respect to these functionals. For i = 1,...,m, let f; be the inverse image

26The bijection between RKHSs and positive-definite functions can be extended [132] to a surjection between differ-
ences of positive-definite functions and what are now called reproducing kernel Krein spaces (RKKSs). An example
of this multiplicité, that is, of a pair of positive kernels whose difference engenders multiple RKKSs is given in [132],
p. 247. Despite the fact that we can no longer talk about the reproducing kernel space associated with the pair of
positive-definite kernels, and other technical challenges involved, this perspective has been useful to applied mathe-
maticians [24, 29, 55, 104, 124]; indeed, as Schwartz writes, “Néanmoins c’est peut-étre la, non pas une monstruosité,
mais une nouveauté pleine d’intérét.” Interested readers are invited to turn to [20].
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under this map of the ith standard basis function e; € R™ (i.e., the functions {f;}7, are chosen so
as to make the set U their standard dual set, so u;(f;) = ; ;, where ¢ is the Kronecker delta). With
this choice of inner product (and induced norm), the {f;}72, form an orthonormal basis for H,, for

/il = D wilf)ua(f;) =D 67, =1, and (fi, f;)me = 0.
=1

i=1

For all x € X, let
k2 = Zfi(l’)fi;
i=1

we claim the kernel for H, is given by

=SS f@uw) | | s ws) | = f@) fiy)
=1 7j=1 6” 7j=1 6” i=1

Clearly, for all z € X,

is in Hg, for it is a linear combination of the basis functions f;, and
m

Fr2) = KB, = S fila)? < oo
i=1

We can verify that k¥ is indeed a representer of evaluation at x, since for any f € Hy, we can write

f =277, a;fj; hence,

(o) ()

= Z (Z ajui( f;) ) (Z fi(@)ui(£;) ) =Y aifilz) = f(a).
i=1 \j=1 i=1
Consequently, Hg is an RKHS. n

We are now ready to complement the semi-inner product (-, )5, that induces the penalty J,, »
with this inner product (-, )%, to form a definite inner product over H with respect to which H
remains an RKHS. In doing so, we write H = Ho & H;. The space H; may contain equivalence
classes of functions, but we might also choose a representative element of each equivalence class, for
instance, by imposing boundary conditions as in Example 2.6 or in Section 2.6.1.

Proposition 2.59. Let H be a Hilbert space on which the penalty Jo, x = || - ||3,, is the square of a
seminorm || - ||, in the space H. We maintain our assumption that the (nontrivial) null space Hy of
the seminorm penalty has finite dimension m. Moreover, we retain the inner product (-, )3, defined
in Lemma 2.58. Then we can “complete” the seminorm penalty by defining the definite inner product

on H
(f, 91 = (Pof,Pog)r, + (P1f, Pig)n,,

20



THIN-PLATE SPLINES ON THE SPHERE FOR INTERPOLATION, COMPUTING SPHERICAL AVERAGES, AND SOLVING INVERSE PROBLEMS

where Py is the orthogonal projection operator onto Hoy, and Py onto Hy = H/Ho. In M, ||P1-|[3, =
Iz (+)-

Proof. Since H is complete and H, is closed and therefore a Hilbert space, Hi = H/H, is closed and
complete [85]. We need only observe that the two RKHSs H, and H; are orthogonal with respect to
the inner product (-, -)3. It is easy to see that the map

P(]:H—>H(]

[ Z(fv fidno fi = Z < . uj(f)uj(f1)> fi= Zuz<f)fw

i=1

defines the orthogonal projection operator from H to Hy, and Py = 1 — Py from H to H;. By our
construction, which set H, to be the null space of the bounded linear penalty functional u +— J,, x(u),
we have that u € Hy <= Jpx(u) =0 <> ||u||ln, =0.

We observe that H; is the space of functions that every functional in U maps to zero

feHr = I-Po)f=f orPof =0, ie, Y wl(f)fi=0,

which implies that w;(f) = 0 for each u; € U (since the f; are linearly independent). Consequently,
any function f € H, satisfies

/113, = Zuz’(f)ui(f) =0,

and indeed H = Hy & Hq, with Hg L Hy. Thus, for all f € H, the norm

115 = Pof 3y + P f 130, = [1f 13, + I1F 1[5,

is definite since || f||3; = 0 implies that both the null space component Py f and the wiggly component
P, f have zero norm in their respective Hilbert spaces. O

In summary, working with an indefinite penalty in an RKHS H with finite null space involves
constructing two orthogonal spaces: the space of functions that are “beyond reproach” Hy and the
space H1, all of whose nonzero functions’ comportment earns them a nonzero wiggliness penalty. H
is an RKHS; if one of H; or Hy is an RKHS, so is the other. In this case, the kernel k of H is the
sum of the kernels k¥ of Ho and k' of H; ([4], Section 6).

2.5 Wahba’s Representer Theorem: Using Finite-Dimensional Matrix Al-
gebra to Solve an Empirical Risk Minimization Problem with Semi-
norm Penalty over H

As in the previous section, we can write our model space H as the direct sum of a penalty null space

Ho, with dimension m = dim Ho and basis {¢1,...,dn}, and a space H; of wiggly functions. We
are given an empirical risk minimization problem over H = Hq ® H;

n

1
find v* = arg min — Z(Llu —y)? + )\HPluH%l, (33)

n
ueH i—1

where the L; are a set of bounded linear operators (such as pointwise evaluation in an RKHS) with
Riesz representers [121] n; € H so that L;f = (f, ;)% for any f € H and Py is the orthogonal pro-
jection operator onto H;. For those interested in inverse problems apart from signal approximation
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and reconstruction, we stress that each L; may be any bounded linear operator applied to the signal,
such as pointwise derivative evaluations, integrals over a domain, or observations through a linear
instrument with known system response’’. They need only have Riesz representers 7).

The representers can be evaluated pointwise by applying the operators they represent to the
kernel. By the reproducing property,

ni(t) = (i, ke)w = Like = Lik(-, t).

Moreover, since the operator P; is self-adjoint, the projection of the representer onto the penalized
subspace & = Pin; can be evaluated pointwise using the kernel k' of H;

&i(t) = (& ki) = (Pumi, ko = (i, Prka)se = (i, by = Lk (-, ).

Consequently, the inner product between any two functionals § = Pyn, and §; = Pyn;, which are
projections of the representers of evaluation 7, and n; onto the penalized space H;, can be computed
as follows:

(& &)m = (P, Pimj)a = (03, Pimj)a = Li&s = La(L;(ky)) = Li(s = (L;(t — k'(s,1)))),

since Py is an orthogonal projection operator, meaning it is self-adjoint and P? = Py. In this way,
the inner product between & and §; is the number that results from applying L; to the function
s + L;k!. The inner product (&, ;)3 can therefore be computed without explicit knowledge of the
n; and 7n;, just the functionals L; and L; they represent, as well as the kernel. (For this, it certainly
helps to have a kernel in closed form that can be evaluated quickly!)

We can write H; as the direct sum of S = span{¢;,...,&,} and its orthogonal complement S+
since S is closed (it’s a finite-dimensional space) and the orthogonal complement of S+ is (S+)1 = S.

Any element of H, and thus the solution to (33), can be written (uniquely) as

=) digi+ i&i +
u jz_; iP; ;C N

I ) e — Ugl €SLCH1
ugE€Ho us€ESCH1

Let us define 3 to be the n x n matrix whose ith row and jth column contains (X);; = (&, &) n,
and let the matrix T be the n x m matrix defined by (7);; = ¢;(z;). We can, by orthogonality,
write (33) (nearly!) as a finite-dimensional linear algebra problem by writing the solution as u* =
ug + s+ p, with ug € Ho, s € S, and p € S+

* ) * . ]‘

& pt = argmin —|ly — (Zc+ Td)|[n + A ("Se+ |pll3,) - (34)
ceR™, deR™ p*eSL T

Wahba and Kimeldorf employed an elementary orthogonality argument to remove p from the above

problem, making it a (convex) matrix algebra problem.

Proposition 2.60 (The representer theorem (Wahba and Kimeldorf [79])). In the solution u* to the
empirical risk minimization problem (33), the component p € St C H, must be 0.

2Tt is a well-known fact from linear systems theory [25, 109] that (as a consequence of Young’s inequality) the
convolution operator u — g * u, where g is the absolutely summable or integrable impulse response of a linear, time-
invariant system, maps bounded signals to bounded signals and is in fact a bounded linear operator whose operator
norm equals the ¢! or L! norm of g.
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Proof. We observe that v € S* C H, if and only if, for each i = 1,...,n,

0= (u,&)n = (u, Pini)y = (Pru, mi)n = (w,mi)n = Liu,

and thus, u is mapped to 0 by each functional in {Ly,..., L,}. Consequently, the orthogonal pro-
jection operator Pg from H; onto & does not change the measurement-fidelity penalty

1 n
- Liu — ;)°.
n;( w— y;)

Now suppose the solution to the empirical risk minimization problem u*, when projected on the
orthogonal subspaces S and S* of the penalized space H; as us + p, has nonzero component p, so
that ||p[|3,, > 0. Since the functions us and us + p share the same measurement fidelity penalty, we
see that us has smaller risk in (33), since, by the Pythagorean theorem,

llusllr, < lusll, + llell, = llus + plf3,-

Then ugs + p is in fact not the minimum-risk solution to (33), and we conclude u* has no component
in p e St. m

Since p must be 0, the problem (34) really is a finite-dimensional linear algebra problem, and
since X is a matrix of inner products, we can see that X is a symmetric, positive-definite matrix

n n n n n 2
T8z = Z Zzizj@,ﬁj}% = <Z 2, Z zj§j> = Z 2:i&; > 0 whenever z # 0.
i=1 j=1 i=1 j=1 "0 i=1 H,
Hence, the problem (34) can be simplified
1
¢*,d* = argmin —(y — Xc — Td)" (y — Zc — Td) + A" Ze. (35)

ce€Rn, deRm T

The problem is convex in both ¢ and d (note the positive-semidefiniteness of the matrices X, 32,
and TTT). Multiplying the objective by n, we see that

¢, d* = argmin ¢! 2%c + d'TTTd 4 2d" T Sc — 2(d"T? + "' S)y + nc' Se. (36)
cER™, dER™

First setting to 0 the objective’s gradient with respect to ¢ and letting M = 3 4+ nAI, we obtain

S(Zc+nic+Td —y) =0,
—_—

Me

ensuring that at the solution to (36),
y =Mc+ Td+e=M(c+ M 'e) + Td, with e € null X. (37)

It is not hard to see that e can be assumed to be 0?®. Now setting to 0 the objective’s gradient with
respect to d, we get that
TT (Td — y + 3c) = 0.

280rthogonally diagonalize the symmetric positive semidefinite (and hence normal) matrix X in its eigenvectors:
¥ = USU”. Then since M~ = U(S 4 nAI) " 'U”, we see that null ¥ is invariant under M~* and M~'e € null .
This means that updating the weights on the {&;}7_, from c* to ¢* +M™ e, with € € null 2, cannot affect the wiggliness
penalty, since (¢* + M~1e)TS(c* + M~1e) = (¢*)TZc*. Substituting (37) into n times the data-adherence penalty of
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Substituting in our expression for y (37) (and recalling that M = X 4 nAI), we arrive at
T (—nAI)c = 0.
The solution to (36) can therefore be computed by solving the following linear system [153]

Mc+Td=1y

38
T c=0. (38)
Note that if we penalize all functions in the space H = Ho @ H; with the definite penalty || - [|3, =
1113, + 11 13, every nonzero function in H receives nonzero regularity penalty and the two terms
involving T disappear. Then (36) becomes the spline smoothing problem (30) in H, and (38) may
be rewritten

Mc =y,
with solution (31).

Remark 2.61. The representer theorem may be profitably applied to weakly nonlinear bounded func-
tionals by approzimating them through linearization [157]. It can be applied without error in more
general settings, for instance, to allow our empirical risk minimization problem (33) to incorporate
arbitrary loss functions (not just mean squared error) and any norm penalty term g(|| - ||3,) where
g : [0,00) — R is strictly monotonically increasing (not just g(x) = \a?) [131]. Recent work has
sought to extend the theorem beyond the setting of RKHSs associated with a regularization penalty
functional to other Banach spaces of finite penalty. For instance, Unser et al. solve spline smoothing
problems and inverse problems whose formulation applies the reqularization penalty in the Banach
space M of regular Borel measures with total variation norm [151]. The Riesz-Markov theorem
(sometimes called, where context permits it, the Riesz representation theorem) guarantees the exis-
tence of a unique reqular Borel measure v to represent any bounded linear functional ® on Cy (the
Banach space of continuous functions that vanish at infinity, with sup norm) in the sense that inte-
grating any continuous function f € Cy with respect to v gives ®f; the operator norm of ® equals
the total variation of v [120]. A shift-invariant reqularization operator maps a native space of slowly
growing functions to measures whose total variation (called gTV) provides a seminorm on the na-
tive space. A generalized decomposition principle can make it a norm. As with Wahba’s representer
theorem, this framework allows certain inverse problems posed in infinite-dimensional spaces to be

(35) and minimizing the penalty with respect to € subject to the constraint e = 0, we obtain

¢ = argmin (B¢ + nic+ Td + € — Zc — Td)" (Zc¢ + nic + Td + € — ¢ — Td) subject to Ze = 0,
e€ER™

from which we compute the Lagrangian
n2X2cl e+ 2l e + €le + uT S,

where we have introduced the Lagrangian dual variable p. The first-order conditions with respect to € and p yield the

system
3 0 €\ 0
2 X/ \p) \—2nic¢)’

Since ¥ is invertible, so too is the matrix on the left-hand side; we can therefore solve this system by left-multiplying
both sides by this inverse:

€ ! 0 0 0 . .
p) = \om2 w1 \anae) = L c2nam e ; in particular, e = 0.
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transformed into finite-dimensional linear algebra problems; as with the thin-plate splines on an in-
terval and in Fuclidean space, the solution can be written in terms of a finite number of evaluations of
a slowly growing Green’s function of the regqularization operator and a basis of the finite-dimensional
reqularization penalty null space. This work differs from the Wahba-Kimeldorf representer theorem
in the knot placement and in its use of Green’s function that need not be a reproducing kernel, whose
native space need not be an RKHS.

2.5.1 A Corollary of the Representer Theorem: Spline Smoothing Using a Seminorm
Wiggliness Penalty with a Finite-Dimensional Null Space

When the {L;} ; are evaluation functionals, the matrix ¥ of inner products in H; of the projection
of the representers of evaluation onto H; becomes the Gram matrix K of the RKHS H; of penalized
functions associated with the n sample locations of the data one wishes to smooth. Algorithm 3
describes how to set up and solve the linear system (38) for the spline smoothing problem in a space
H = Ho & H;, where the penalty applies only to the function component in H;.

2.6 Examples of Laplacian-Based Wiggliness Penalties

A natural choice of wiggliness penalty involves the Laplacian, Laplace matrix, or Laplace-Beltrami
operator. These penalties are popular because the Laplacian-based penalties give natural notions
of wiggliness, and the Laplacian commutes with isometries: in Euclidean space, the penalties are
unaffected by rotations and translations; on graphs, by vertex relabelings that preserve the edge
structure. The penalty can also be motivated using optimal transport; see [27], Section 2.2.

The penalties J,, » we consider take the form

/ (Am/Qf(x))2 dz (if m is even), or / HV (A(m’lwf(:c)) H2 dz (if m is odd),
X X

which can also be written, where boundary conditions permit it, as
(" [ F@Af(a)do.
X

For example, with m = 0, the penalty [,(f(x))*dz measures regularity (or signal energy); setting
m = 1, the penalty [, ||V f(2)||> dz measures the Dirichlet energy, closely related to total variation™.

Such penalty functionals J,, x, on the corresponding model space H, have finite-dimensional null
spaces that induce the structure H = Hy ® H; described in the previous section. In particular, on a
compact manifold, the null space of the Laplace-Beltrami operator contains only the functions that
assume constant values.

They are also convenient choices for constructing splines via Mercer synthesis. For any bounded
domain & in R, the eigenfunctions of the Laplacian form a complete orthonormal system for L?(X)
and are naturally sorted in increasing Dirichlet energy. The eigenfunctions of the Laplacian can be
seen as local extrema of the Dirichlet energy functional subject to a normality constraint®’, and the
corresponding eigenvalue is the Dirichlet energy of the eigenfunction (see Lemma 2.2 of [107]).

We consider several examples of splines using this Laplacian-based penalty functional in this
section, before seeing how they make congenial company with the thin-plate splines on the sphere.

29Gee [44], p. 42. In Sobolev spaces, this penalty is related to that of the m = 0 case by Poincaré’s inequalities [116].
The version on the circle (i.e., on [0,1] with periodic boundary conditions) is called the Poincaré-Wirtinger inequality
and can be proved using the zero-mean Fourier expansion (46); the version on the sphere, by spherical harmonic
expansion [16].

30Posed in the Hilbert space W2 = H1, i.e., the Sobolev space of order 1. See Appendices A.1 and A.2 of [107].
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Algorithm 3: Given an RKHS H C R% and a seminorm wiggliness penalty J,, x(:) =
[Py - |3,,, Wahba’s representer theorem (Proposition 2.60) permits us to write the solution
to the spline smoothing empirical risk minimization problem in H

n

1
u* = arg min — Z (u(x;) — yi)2 + /\||P1UH"2Hl

n
ueH i=1

u* = Zdj¢j + ch-kl(-, l’i),
j=1 i=1

where k' is the reproducing kernel of ;. Consequently, * may be found directly from the
vectors of weights ¢ € R” and d € R™

1
c*,d* = argmin —(y — Kic — Td)" (y — Kic — Td) + A" Kjc,

ceERn, deRm T

where K; is the Gram matrix of k' on the data points, by solving the linear system (38).
This algorithm sets up and solves that system. Given ¢ and d, u* may be evaluated at any
x € X with n evaluations of the kernel and m evaluations of ¢;

u*(z) = Zdjgﬁj(:c) + Z cik'(z, x;).

Be warned: for notational simplicity, in this pseudocode, we use l-indexing.

Data: A set of n sample locations {x;}", in X and n corresponding sample values y; € R.
Parameters: A regularization penalty A > 0 and (implicitly) a choice of model space
H = Ho ® H, with reproducing kernel k& = k° + k! and seminorm wiggliness
penalty ||Py - |[3,,, whose finite-dimensional null space , has basis

{92517 .- 7¢m}

Result: A set of basis function weights ¢ € R" and d € R™ specifying the empirical risk
minimizing function u*.
Compute the n x n Gram matrix K; in whose 7th row and jth column reposes the value
(Kl)i,j A kl(ﬁiaxj)Q
Compute the n x m matrix T, which satisfies

(T)z’7j — ¢j(@i);

Augment the Gram matrix of k! on our data set with null-space basis function matrix T to
form an (n 4+ m) x (n + m) matrix K and set y accordingly

Kl + )\nInxn T Y .
K+ ( TT Ome> and y < (0m> ;

Solve Ka =y,
o+ Ky (or, if K| is not strictly positive-definite and A = 0, a + K'y);

Return the spline weights ¢ <— o[l : n] and d - a[n + 1 : n+m];
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The rest of the section is organized as follows. We begin by considering the polynomial splines
on [0, 1] with natural boundary conditions. We find a closed-form expression for the kernel using the
Green’s function of the associated differential operator (see Equation (43)). The penalty null space
consists of the polynomials of degree at most m — 1. Next, we consider the polynomial splines on
[0, 1] with periodic boundary conditions. We use Mercer synthesis (see Section 2.2.3) to construct
the kernel using the Fourier basis as our complete orthonormal system for L*([0,1]). No matter
the order of the spline, the null space Hy always consists only of constant functions. As our third
example, we define the thin-plate splines on graphs and obtain the kernel by taking the Moore-
Penrose pseudoinverse of the Laplacian matrix; a Mercer-like expansion is given in Equation (51).
Here too the null space consists only of constant functions no matter the spline order. We follow
up with the thin-plate splines in Euclidean space R?. Mercer’s theorem (Proposition 2.28) does not
apply here (R? is not compact); we find the kernel using the Green’s function of the differential
operator. The penalty null space here consists of polynomials of degree at most m — 1. Finally,
we use Mercer synthesis (Proposition 2.38) to define the thin-plate splines on the sphere using the
spherical harmonics. The penalty null space contains the constant functions®'. We summarize this
roadmap in Table 1.

spline X null space Hg derivation of kernel
natural polynomial (natural bdy) [0, 1] polynomials P,,_1 Green’s function
circular polynomial (periodic bdy) [0, 1] span {1} “Fourier side” synthesis
thin-plate on graph {1,...,n} span{l} Moore-Penrose pinv
Fuclidean thin-plate R polynomials Py, Green’s function
thin-plate on the sphere S? span {1} “Fourier side” synthesis

Table 1: The splines we consider, each of order m, as well as their index set, their null space (either the constant functions
or the polynomials of degree at most m — 1), and the approach we take to derive their kernel (“Fourier side” synthesis or
via use of the Green's function of the differential operator; in the case of the thin-plate splines on a graph, we use the
Moore-Penrose pseudoinverse of the Laplacian matrix). The order m can be as low as 1 (or even 0; see Example 2.63) for
the thin-plate splines on graphs, and 1 for the splines on [0,1] and S?; for thin-plate splines in Euclidean d-space, we have
the technical restriction that m > d/2.

2.6.1 Natural Polynomial Splines

We derive®” the natural polynomial splines [130] (also called D™ splines [17]) on X = [0, 1] using
RKHS theory [3, 6, 34, 132], reproducing the presentation in [79, 80, 158] so that we can use Wahba’s
representer theorem |79, 80, 131, 159] (Proposition 2.60). The same results can be found using only
integration by parts and an elementary proof of optimality [1, 58].

Model space: Let H = W™?2 be the Sobolev space of functions u such that u,/, ..., u
are absolutely continuous, u{™ is defined almost everywhere, and u™ € L?(0,1). (Here, u™ is the
ordinary derivative. See Definition 2.5 for motivation for this definition.) This Sobolev space is an
RKHS with respect to its canonical inner product (see Definition 2.5); however, we wish to endow it
with an inner product related to the seminorm penalty

m—1)

1 1
/ (f'™(z))?dz, induced by the semidefinite bilinear form / ) (2)g"™ (z) da . (39)
0 0

31 As we will see in the IPOL demo, this null space of constant functions can be profitably employed to estimate
spherical averages of scattered data on the sphere.

32Note that this derivation yields polynomial splines of odd degree only: natural cubic splines, natural quintic
splines, and so forth.
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Observe that our definition of H allows us to invoke Taylor’s theorem with the Lagrange remainder
term and write, for all ¢ € [0, 1],

m—1 1 el
" (t—x) .
-3 o [ e w0
=0 ' o (m—1)! )
S————— N~
uo(t)EHo ur(t)EHa

where (-); = max (-, 0) is the rectifier. We make the recognition that the first term wg is in the null
space of the penalty seminorm (39). We will show that these two terms are the two components of
a unique decomposition of u € H into uy € Hy and u; € H;, respectively, where Hq is the space
of polynomials of degree < m — 1 and #; the space of functions u for which u(0) = «/(0) = ... =
u™=1(0) [158].

Null space: The null space H, of (39) in H is a finite-dimensional RKHS spanned by polynomials
of degree at most m — 1. The decomposition principle works with any choice of separating set U of
m functionals in the definition of the inner product on Hy. To better match Taylor’s theorem, we
define®?

(f. 9o =Y F™(0)g"™(0).

n

3

Il
o

Letting ¢,(t) = £, we can define a kernel for H, via the expansion

(s, = 3 du(s)6nlt).

Clearly, for all ¢ € [0, 1], the representer of evaluation kf = k°(-,¢) € Ho. Since £=on(z)| _,
where 0 is the Kronecker 9, we can easily verify that, for any f € H,, the reproducing property holds.
Let f=>"""_ an 1@ Then

%mmﬁ<2%mmmi%%w>

= 5m,n;

m—1 8’ m—1 al m—1
=0 n=0 =0 n'= =0
m—1
=) aioi(t) = f(t)
=0
Wiggly space: For a penalty (39) of order m, let
={ueH | u0)=4(0)=...=u"1(0)=0}. (41)

These boundary conditions® enforce the requirement that |Jullz, = Y1 (u?(0))? = 0; hence the

33For other choices, see [7].
34Note that these boundary conditions are not the natural or Neumann boundary conditions, that is

u™(0)=...=u®V0) =u™1)=... =@ V(1) = 0.

Even though many functions in our model space H do not satisfy these constraints, functions that solve smoothing
problems (27) over this space—that is, splines—do [80, 81, 158]. Thus, these empirical risk minimizing splines satisfy

/01(f<m>< 2 dy = (-1) /f (A" f)(x

where A = a < is the one-dimensional Laplacian.
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Taylor expansion (40) can be rewritten, for any u € H;,

u(t):/o %u(m)(ﬁ) dz.

We can simplify this integrand by recalling that the Green’s function for the problem D™f = g

with boundary conditions f(0) = f/(0) = ... = f™=Y(0) =0 is
!
so that
DG, (t,x) = 6(t — x); (42)

thus, for u € Hq, we get a sort of generalization of the Dirac ¢’s sifting property

= /1 G (t, 2)u'™ (z) d .

We define the inner product on H; so that its induced norm, squared, is the order-m spline wiggliness
penalty

1
(. g / £ (2)g™ () der, and [[f]2%, = (. Fa = ().

The reproducing property for this inner product on H; follows from our recognizing that, if u € H;—
that is, if the Hy component ug = O-then function evaluations of u at a point ¢ look like an inner
product of u with the Green’s function with one argument fixed at ¢

u(t) = /0 %u(m) (x)dx = /0 Gm(t,x)u(m)(x) dz = (G (t, "), u)y, -

To show that the Green’s functions represent evaluation at points via the inner product (-, )%,, we
need to define a kernel. The reproducing kernel k' associated with the RKHS #; is

kl(s,t):/o Gm(s,2)Gn(t, ) dx. (43)

The representers of evaluation at t, k} dof k'(-,t), for t € [0, 1], are all in H; for m > 1, since, by (42),

o ! am !
—k:l(s t) = / Gm(s, ) (—Gm(t,:v)> de = / Gu(s,2)0(t — z)dx = G (s, t); (44)
otm 0 otm 0
hence G,,(-,t) € L*([0, 1]) and its antiderivatives are absolutely continuous® on [0, 1]. Furthermore,
for all t € [0, 1],

kL (s) :/01 Gon(5,2)Gon (1, 7) dx:/o1 (5, 2) (Ef—mkl( )) dz (45)

comparison with (40) confirms that the component of k! in H, is 0.

PForm>1. m=1, 2 T kl(s) =1— H(s —t), where H is the Heavyside step function, and its antiderivative, the
inverted ramp k! = min(-,t), is absolutely continuous on [0, 1], since min(s, ¢) = min(0,¢) + f; (1 — H(u—t)) du for all
s€[0,1]. For m > 1, 2k} (s) = Gy (s, t) is already absolutely continuous.

7 Osm
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The space H; is an RKHS since the evaluation functionals u — u(t) are all bounded; indeed, by
the Cauchy-Schwarz inequality,

|<>|—/ (s 2™ dx<\// () dx\// utm) () = /R Bl

The reproducing property can be verified for u € H;. Using Equation (44), we see that

(1, K g, = /0 1 ( ;;nu(x)) @C—mmkl(x t)) dr = /0 G ™ (@) d = ().

Thus, evaluation of a function u € H; at ¢t € [0,1] can be performed by inner product of u and the
representer of evaluation at ¢, k!, which is the Green’s function with one argument fixed G,,(-,1),
integrated m times. Hi, a closed subset of H, is therefore a reproducing kernel Hilbert space with
reproducing kernel k'. Further technical details can be found in [80, 158|, along with a Bayesian
interpretation of the natural splines of order m.

The reproducing kernel for H: We can verify the orthogonality of Hy and H;. Clearly, if
u € Ho, then u™(t) =0, and

l|ull, =V (U, u)y / u'™ (z))? dz = 0.

If u € Hy, u(0) = ... = u™1(0), and

lulls = Vi w = 3 ((0))* =0

By the decomposition principle, H = Hy & H;, with inner product and induced norm
<f7 g)'H - <P0f7 POQ)'HO + <P1f7 Plg>'H1 and ||u||3-1 = HUUH’?{(} + ||u1||§-[17

where the orthogonal projection operators

P()IH—>H0 PllH—>H1
T w(0) = w™(0)
u u
UHZO . On uHu—ZO o On

are as in Section 2.4, and with reproducing kernel equal to the the sum of ¥ and k' (since the kernel
of the direct sum space is the sum of the kernels [3])

k(s 8) = KO(s, ) + k' (s,8) = S 20 /G 5 2)Con(t, 7) da

n' n!

Thus, k = kY + k! and Pok; = k? and Plkt = ktl That the reproducing property holds follows
immediately from Taylor’s theorem with the Lagrange remainder term

m—1 m—1

u(t) = Z —U(”)(O) n /01 %u(m)@) dx

2l (m —1)!
(Z Bi(t)oi(e ) . - ( ; u“>(0><z>1-<x>)

(Pou)(z)=uo(x)
8m
(m)
[ (ot i as
- <k1(5)7 POU>H0 <P1U, ktl>7-ll = <U, kt>7—[7

(‘#

-1
:0 =0
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since

= ().

&Bmu(x) ox™ nl nl ] Oxm

In fact, following the same process, a generalized Taylor’s expansion may be derived using other
differential operators, using the corresponding Green’s function to define the kernel of H; and re-
mainder term and extended Chebyshev system to define the polynomial term [79].

Solving the Spline Smoothing Problem with Polynomial Splines. We can use Algorithm 4

to solve system (38) for the natural polynomial splines. Here T contains samples of the polynomials
¢;, which span H,, at our scattered data, and K; the kernel defined in (45).

Remark 2.62 (Adapting the algorithm to other intervals). This algorithm in fact works for any
interval |a, b] whose left endpoint a = 0. To adapt this algorithm to data in some interval [a,b], with
a # 0, one need only reparameterize the data with the map t — t — a that sets the left endpoint to 0.
However, the transformation t — =% of [a,b] to the unit interval [0,1] is more commonly used (see,
e.g., [148], Proposition 2).

Consider the natural cubic spline in this case. Let X = [a,b] and H C RY be the set of absolutely
continuous functions on [a,b] whose first derivatives are absolutely continuous and second derivatives
square integrable on [a,b]. Write H = Ho® H1, with Ho = span{l,x —a} and (f,9)n, = f(a)g(a)+
f'(a)g'(a). The reproducing kernel k° for Ho is k°(x,u) = 1+ (u — a)(x — a): indeed, for f € H,,

f@) = fa) 1+ f(a)(z —a) = (f, k),

Let Hy be the functions f € H such that f(a) = f'(a) = 0. Define (f,9)u, = (f",9") 12(jap)), S0
that f € Ho = ||fll3,, = 0. The reproducing kernel k' for Hy is

/b ()d“—/ab(x—u)+(y—u)+du
1
3

(min(z,y)* — a*) — £ty

(min(z,y)? — a*) + zy(min(z, y) — a),

as
27+ a® ;
Kl(y) = %4—% ary+ oY -4, ify<ux
’ Ty axy—i—am”ry—ﬁ ify>ua
6 2 3 )
with ,
(kl)/(y): —%—l—:vy—ax%—%, ny§$
* % aaH—— if y > x,
and

1\ )T Y ify<ax
(k) = {0’ A

satisfies kl(a) = (k1) (a) = 0; and k! and (kL) absolutely continuous; and (kL)" € L*([a,b]). Thus,
fet = ||fll}, =0. The reproducing property in Hy for all f € Hy and all x € [a,b] can be
verified using integration by parts (by the absolute continuity of f € Hy and f') as follows:

(f, kD) /f” )"( du—/f” (2 —u); du
_w/ f”udu—/ f"(wyudu = z(f'(x) — f'(a)) — /f

— ['(a) = (@f'(x) —af'(a)) + f(x) = f(a) = f(z)
gl g g
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Algorithm 4: Here X = [0,1] and our RKHS H = W™?2(X) (see Definition 2.5).
H = Ho @® Hq, where Hy is the m-dimensional space of polynomials of degree < m — 1
and H; the space of functions u € H for which u(0) = v/(0) = ... = «™V(0) = 0. The
wiggliness penalty seminorm on H is Jy, x(u) = [|Piull3, = fol (u™(x))? dz, since Py re-
moves from u a polynomial of degree at most m — 1, whose mth derivative is 0. Given a
set of sample points {x;}! , in [0,1] and corresponding values {y;}!, in R, the representer
theorem (Proposition 2.60) locates the solution to the spline smoothing empirical risk min-
imization problem in H

n

1 1

u* = argmin — Z (u(z;) —u:)* + )\/ ('™ (x))*dx,
ueH N i—1 0

in Hy and a finite-dimensional subspace of H;

m .

J n 1
u*(x) = Zdj% + Zci/o Gz, 2")G (2, 2") da’ .
j=1 ’ i=1

This algorithm recovers ¢ and d by solving the linear system (38). Note: we use 1-indexing.

Data: A set of n sample locations {x;}, in X = [0, 1] and n corresponding sample values
v € R.
Parameters: A regularization penalty A > 0 and (implicitly) a choice of model space
H = Ho © H, and seminorm wiggliness penalty J,, x.
Result: A set of basis function weights ¢ € R” and d € R™ specifying the empirical risk
minimizing function u*.
Compute the n x n Gram matrix K;, which satisfies

1
«K»J+—k%a#w>:x/ G0, 0) G (15, 0) du:
0

For reference, the natural linear, cubic, and quintic spline kernels on [0, 1] are given below:

m | k' (z,y)

1 | min(z,y)

2 | zymin(z,y) — ¥ min(z, y)* + § min(z,y)*

3 | mumnles) sl pinea)” 4 B win (, ) — 28 min e, y) '+ 55 min(r, )’

Fill the n x m matrix T with the basis functions of H, evaluated at the sample locations

Augment the Gram matrix of &' on our data set with null-space basis function matrix T to
form an (n +m) x (n +m) matrix K and set y accordingly

Kl + )\nIan T ) .
K « ( T7 Ome) and y < <0m) ;

Solve Ko = v,
a < K™y (or, if K; has redundant samples and A = 0, o + K'y);

Return the spline weights ¢ <— a1 : n] and d < a[n + 1 : n+ m];
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The reproducing property on H follows from the fact that H = Ho ® H1. It can be verified using

(F o = (£ K, + (£ Kb, = £la) K(a) (@) / () ()" ()

1 (z— u)Jr

= f(0)+ f'(a)(z — a) + 2 ()] - [uf'<u>\z - / (u) du} — ().

Similarly, the reproducing kernel k' for the order 1 natural polynomial spline is k'(z,y) =
min(z,y) — a (the null space remains Ho = span{1}); and for the order 3 natural polynomial spline,
the kernel

2,2 2 4 2
¥ (w.y) = L min(ey) — @) — I inga )2 - o) 4 IS (i g0 ) -
r+y

. 4 4 1 . 5 5
(min(z, y)* — a >+%<mm<x7y> - &),

} so that K'(z,u) =1+ (u —a)(z —CL)—F@M is a

with null space Hy = span{l,z — a, 5

reproducing kernel with inner product (f Do = fla)g(a) + f'(a)g'(a) + f"(a)g"(a).

2.6.2 Polynomial Splines on the Circle

To form splines on the circle, we proceed in much the same way as before, setting the index set
X = [0,1] and defining an identical wiggliness penalty seminorm [158]. However, we change the
model space to enforce periodicity through boundary conditions. By changing the RKHS boundary
conditions, we change the corresponding reproducing kernel. We define this kernel on the “Fourier
side”, using Mercer synthesis (Proposition 2.38) rather than the Green’s function of the penalty
differential operator (i.e., the iterated Laplacian) with periodic boundary conditions.

Model space: Let H be the space of functions  on [0, 1] for which u, 2/, ..., u™ ) are absolutely
continuous, u(™ € L?(0,1), and u satisfies the periodic boundary conditions: namely, u and its first
m — 1 derivatives agree at the boundary.

uk V(1) = u®*D(0) for k=1,...,m
Since u*~Y is absolutely continuous, the boundary conditions are equivalent to

1
/ ub(z)dz =0for k=1,...,m
0

Null space: Let Hg be the space of constant functions: Hy = span{1}. Note that constant
functions satisfy the boundary conditions and reside in H. To this space, we can give an inner product
Ho = fol )dz fo r) dx and turn into an RKHS with reproducing kernel k°(s,t) = 1; clearly

KO = KO-, t) = 1 E Ho. Indeed, for any f € Ho, we have that

vt € [0,1], f(t) = {f,k))n /f da:/ld;v.

Wiggly space: Let H; = {u € H | fo z)dz = 0}, when endowed with the norm

1
lulf, = [ gy = [ @ 0) at,
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be the space of zero-mean periodic functions. An elementary fact of Fourier series is that the 1-
periodic sinusoids form a complete orthonormal system for H; [84, 149]; that is, any function u € H;
can be represented as the zero-mean Fourier series

vVt e [0,1], u(t) = \/ﬁi o, cos(2mvt) + ﬁi B, sin(27mvt), (46)

which converges not just in L?([0,1]) but also, as indicated by the notation, pointwise-in fact,
absolutely and uniformlyfor any u € H;*%, and has finite 7, norm. Thus, by the square integrability
of the mth derivative of u and orthonormality of our Fourier series basis,

1 m 0 e’} 2
HUHE{I = /0 (jt_m (ﬂ; o, cos(2mvt) + ﬂ; B, sin(27rut))> dt

(=1)"2 q sin(2mwt) + (=1)" B, cos(2mvt), if m odd.

_ i@“”)m /1 5 a? c?sj(2wyt) + 2 sin?(2mvt), %f meven; | 0o
0 a? sin*(2wvt) + B2 cos?(2wvt),  if m odd. ~—~—~

orthogonal
cross-terms

This wiggliness penalty is a definite norm on H;. Writing u as the uniformly convergent zero-mean
Fourier series (46), we see that

lull3, = 2(27?1/)2’”(@3 +82)=0 = (W,a,=8,=0) = u=0.

v=1

The bilinear form on H; that induces the root wiggliness penalty as its norm is

(. s = /0 00 ()60 ()

The reproducing kernel for H; can be written [158]

(e e])

k'(s,t) = Z ﬁ cos(2mv(s —t)), (47)

v=1

from which the reproducing property

! = o (=12, cos(2mvt) + (—=1)% B, sin(27vt), if m even;
<u’ ktl>'H1 = \/0 <\/§;(27}'[/)2 { m+1 m—1 .

(—=1)2 aysin(2wvt) + (—1)"z B, cos(2mvt), if m odd.

= 2 (—=1)% cos(2mn(s — t)), if m even; .
(Z (27rm)2m {(—1)2+1 sin(2mn(s —t)), if m odd. }) d

n=1

)
—1)™ 1, cos(2nvt) — (—=1)™B, sin(27vt),  if m odd.

_ i V2 {(—1 ey, cos(2mvt) + (—1)™B, sin(2wvt), if m even; }
v=1 (

=2 Z o, cos(2mvt) + B, sin(2wvt),

v=1

36Since u and u’ are absolutely continuous on the interval; see [149], Section 11, and [84], Theorem 33.7.
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can be verified by the pointwise-convergent zero-mean Fourier series (46). The simplification on the
second line follows from a simple application of the product formula; indeed, for (n,v) € N>1,

cos(2mut), ifn=v

0, otherwise.

/0 2 cos(2mn(s —t)) cos(2mvs) ds = {

/0 2 cos(2mn(s — t)) sin(27vs) ds

sin(2rvt), ifn=v
0, otherwise.

1
/ 2sin(27n(s — t)) cos(2mvs) ds .
0 0, otherwise.

{— sin(2rvt), ifn=v
cos(2mut), ifn=v

0, otherwise.

/0 2sin(27mn(s — t)) sin(27vs) ds = {

A closed-form expression for this kernel (47) was given in terms of the Bernoulli polynomials in [17, 32]
-y
(2m)!

where |-] indicates the floor function and the Bernoulli polynomials B, (t) can be defined on [0, 1]
recursively [158|

k'(s,t) = Bop (s =t —[s—1]),

=1 r=20
B.(t
Q {solves L4 B,(t) = B,_1(t) with periodic boundary conditions, —otherwise
and defined explicitly [89] as
B =3 ST hy
e n+1 4~ k '

n=0

The reproducing kernel for H: Define the orthogonal projection operators

P()IH—>H0 Pi,:H—>H;

1 1
u»—>/u(t)dt, u|—>u—/u(t)dt.
0 0

With respect to the inner product

<f7 g>7'l = <P0f7 Pog>7'l0 + <P1f7 Plg>7‘l17

the subspaces Hy and H; are evidently orthogonal for m > 1, since the mth derivative of any function
in H, is 0, and since the area fol uy(z) dz of any function u; € H; is 0.

Our model space H is the direct sum of the two perpendicular spaces Hy of constant (and
therefore periodic) functions and H; of zero-mean periodic functions. Since the reproducing kernel
of the direct sum of two perpendicular subspaces Hy and H; is the sum of the kernels [3]|, we have
that our reproducing kernel for H

k(s,t) = k(s,t) + k'(s,t) = 1 + Z )2 — cos(2mv(s — 1))
v=1

L D™

2m)) Bzm( —t—|s—t]).
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Algorithm 5: An algorithm that fits periodic splines on X = [0, 1] based on the seminorm
penalty J, x(u) = fol(u(”””)(x))2 dz. By the representer theorem (Proposition 2.60), the
solution to

n

u* = arg min 1 Z(u(mz) —yi)® + )\/0 (u™ (z))? dz

n
ueEH i—1

takes the form

u*:d+;ci%32m(-—xj— s —t]).

This algorithm recovers ¢ € R" and d from samples {y;}" ;, v; € R, taken at scattered values
{zi}iny, @i € [0,1].

Data: A set of n sample locations {z;}! , in [0, 1] and n corresponding sample values y; € R.
Parameters: A regularization penalty parameter A > 0 and (implicitly) a choice of model
space H = Ho ® H; and seminorm wiggliness penalty .J,, », whose
one-dimensional null space Hy = span {1}.
Result: A set of basis function weights ¢ € R" and d € R specifying the empirical risk
minimizing function u*.
Compute the n x n Gram matrix K; in whose ¢th row and jth column reposes the value

(K)i,j K (a,15) = %an (i —xj—|s—t]),
where

Augment the Gram matrix of &' on our data set with null-space basis function matrix
T =1, to form an (n 4+ m) x (n +m) matrix K and set y accordingly

Kl + )\nIan ]-n Yy .
K%( 17 O) andy(—([)),
Solve Ka =y,
o+ K™y (or, if K| is not strictly positive-definite and A = 0, a + K'y);

Return the spline weights ¢ <— a[l : n] and d + a[n + 1];
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Solving the Spline Smoothing Problem for Splines on the Circle. We adapt Algorithm 3
to fit periodic splines on [0, 1] using the seminorm wiggliness penalty J,, x(u) = fol (u™(z))? dz in
Algorithm 5.

Figure 1 compares two kernels associated with the penalty (2), which differ only in their boundary
conditions (the natural cubic spline conditions, or the periodic cubic spline conditions), along with
their corresponding smoothing spline solutions to two related data sets. This result can be applied to

Representers of Evaluation at t, order m=2 Representers of Evaluation at t, order m =2
1.0015 2.4
Natural rep. of eval. at t=0
22 Natural rep. of eval. at t=0.25
1.0010 4 . Natural rep. of eval. at t=0.5
Natural rep. of eval. at t=1
2.0 4
__ 1.0005
: Periodic rep. of eval. at t=0 : 1.8
v Periodic rep. of eval. at t=0.25 =
l 1.0000 Periodic rep. of eval. at t=0.5 o 164
x Periodic rep. of eval. at t=1 3z
o~ -
0.9995 - 147
124
0.9990 4
104 -~
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X x
(a) (b)
Cubic Spline Fits of Monthly Average CO; Data (2021) Cubic Spline Fits of Monthly Average CO, Data (2021)
419 x X 417,54 % MaunaLoa Monthly CO; Average
—— Natural Cubic Spline, A =0.001 %
— Periodic Cubic Spline, A = 0.001
£ 418 / \ ”
o % T 417.0 4
=] a
S =
a 417+ W S X
° \ X s} x
9 ‘ o 416.5 A ) x
= \ @ x
c 416 4 \ =
g | £ X
ol X o
o 9 416.0 -
dJ L
& 415 0
c g X
2 >
= % Mauna Loa Monthly CO; Average 415.5 4
R Natural Cubic Spline, A =0.001 x
Periodic Cubic Spline, A =0.001 % %
T T T T T T T T T T T T T T T T T T T T T T T T
Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
Month Month
(c) (d)

Figure 1: (1a) plots the representers of evaluation k; = k + k} = k(-,t) of the spline on the circle (cubic spline with
periodic boundary conditions) at ¢ = 0,0.25,0.5, and 1. In this case k(-,0) and k(-,1) coincide. (1b) does the same, but
with the kernel for the natural cubic splines. While the kernels are quite different (the former is periodic, treating points
with small along-the-circle distance similarly; the latter is cubic up till ¢, then linear), their Gram matrices’ spectra are
alike with few, regularly spaced data points. (1c)-(1d) compare the corresponding spline curves with A = 0.001 on the
twelve monthly average CO2 measurements taken in 2021 at the Mauna Loa station of the Global Monitoring Laboratory
network [30], both the untreated data (left), with a naturally occurring periodic component, and the de-seasonalized data
(right), reflecting increasing atmospheric CO5 concentrations. To avoid delving into the complexities of the signal processing
chain that produces these monthly averages from discrete measurements, we take these monthly averages to be samples at
times t; = (i — 1) for i € {1,...,12}. Of course, monthly averages are bounded linear functionals, so the representer
theorem (Section 2.5) can be applied to more complicated monthly averaging operators L; than taking a single sample at
each t;.

the construction of piecewise polynomial splines at knots [32]; on equally spaced data, the minimizer
of the spline empirical risk over H resembles the Butterworth filter [32, 158|.
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2.6.3 Thin-plate Splines on Graphs

Kernel methods are most often used to compare graphs, using computed features from each graph.
For example, the subgraph matching kernel expresses similarity between any pair of graphs (each
representing, say, a molecule) in a space of graphs by counting the subgraphs they have in common.
(Computing these features is not always easy!)

In our case, however, we define kernels using the geometric structure of a single graph. Such
kernels can be used to interpolate scattered observations within a graph, or any finite index set
with correlated data due, for instance, to geometric proximity. The finite set can also be a graph
approximation of, say, a compact manifold.

In this section, the index set X is finite and can be taken to be {1,...,n} via a labeling isomor-

phism. Without imposing additional structure on X, spline smoothing and interpolation are rather
dull.

1s an RKHS with the standard basis functions e; as representers of evaluation. A function f :
{1,...,n} — R can be represented as a vector and evaluated pointwise: f(i) = el f. The correspond-
ing kernel k(i,j) = 0, j, where 0 is the Kronecker delta. The similarity metric from Remark 2.17 is
the discrete metric

0, otherwise.
In effect, vertez i tells us nothing about vertex j unless i = j. Given observations {y., }i*, at {z;}7,

with v; € X = {1,...,n}, the minimum weight solution f* to the associated exact-interpolation
problem s easily seen to be

. yj, if x = j for some j already observed: j € {x;}14;
(@) = .
0, otherwise.

The solution to the spline smoothing problem

F* = angmin— S (f(2) — y(@)? + A2,

m
fer® i=1

can be found using the representer theorem (Proposition 2.60): f* =", a;k,,. The function f* is
specified by its weights o € R™ on the representers of evaluation. The linear algebra problem

o = argmin (Ka —y)? + Ao’ Ka,

a€R™

18 solved by setting the gradient with respect to o to 0: o* = HlmAy. Thus,

o= 21ka — Z : +yimkk”

=1

We can evaluate the interpolant using the reproducing property

) = <§:a»k . > B oy — {iﬁ, if J already observed,
- 1V ) - -
=1 H

—~1+A Ji 0, otherwise.
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Graphs are a convenient mechanism of expressing the structure on X that is needed for more
interesting notions of similarity between sample points in X and of “smoothness” in interpolation and
smoothing problems. We define a Sobolev-like seminorm using the Laplace matrix of the graph. Not

all RKHSs on {1,...,n} can be represented in this way. As will become apparent soon, there is no
finite simple graph associated with the above example; nevertheless, it can be be seen as a thin-plate
spline of order m = 0 associated with any graph on {1,...,n} with the usual convention that L® =1

for any matrix L.

Let us first recall some facts about graphs. Let G = (V, E') be an undirected graph with vertices
V =A{1,...,n} and edges E C {(i,7) | i € V,j € V,i < j}. The adjacency matrix A of G is the
n X n matrix that reposes in its ¢th row and jth column the value

1, if(i,j)e Eor(j,i)eE
(A = :
0, otherwise.

The Laplacian L of G is the n x n matrix defined as L = D — A, where D is the diagonal matrix
whose ith diagonal element contains the degree of node i. Thus its rows sum to zero LL1,, = 0, and L
always has 0 as an eigenvalue. Since D and A are symmetric, so too is L. L encodes the topology of
the graph via local information (the edges in the adjacency matrix) and can be used to define what
“smoothness” means on a graph: not too much variation across the edges. Note that A, D, and L
can be defined for graphs with nonnegative weighted edges in the obvious way: A stores the edge
weights (or 0) between every pair of nodes and the degree of a node is the sum of the weights of the
edges it participates in.

An analogy with resistor networks is instructive: if f(x) encodes the potential at node x, and each
edge represents wire with unit resistance (or, in a weighted graph, if the weight of edge e is w(e), the
resistance along the edge is 1/w(e)), Af simply gives a current balance at each node; the harmonic
equation (Af)(z) = 0 is satisfied at nodes = with no source or sink of current. By the discrete version
of Liouville’s theorem, the only harmonic functions on an entire finite graph are constant over the
connected components. Our interpolation task with m = 1 consists in fixing the potential at certain
nodes and determining potentials at the remaining nodes so that their current is balanced.

Lemma 2.64. For m = 1, the discrete analogue of the Sobolev seminorm integration by parts

/(f'(a:))2 dz = —/ f(@)(Af)(z)dx (with appropriate boundary conditions),
X x

holds on graphs G (defined so as to prohibit self-loops).

Proof.
- Z £(i) = f(Lf)=f"Df — [*Af
= Z Dzzf Z Z Azyf
=1 j5=1
- Z FOP+FGP =2 Y F@OFG) = Y (f) =G
(i,9)EE (i,7)EFE (i,5)EF
We made the identification A = —L. O

In terms of our physics analogy, this simply states that fTLf gives the energy dissipated in
the circuit, that is, the sum of the square potential drops over the resistors. For m > 1, significant
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additional boundary conditions must be placed on a general graph for the equivalent relation to hold,
though for certain graphs, such as chains, the result [, f(2)(A™f)(z)dz = [, f(z)(A*" f)(z) dz can
be enforced with constraints analogous to the splines on the circle.

Corollary 2.65. L is a positive-semidefinite matriz.

Proof. By the spectral theorem, any eigenvalue A of the real, symmetric matrix L must be real;
moreover, it must be nonnegative, since Lu = A\u implies that

Mullz = M’u = u'Lu = Z (u; — uj)® > 0.

(i,9)eEE

Since ||u||3 must be nonnegative, A > 0; the matrix L is therefore positive-semidefinite. Indeed,
L = EE”, where the n x |E| edge-incidence matrix E is defined as follows:

]_, 1f€]:(l,)
E; =14 -1, ife;=/(i) (48)

0, if edge e; does not involve node <.

]

Remark 2.66. In discrete differential geometry [31], Lemma 2.6 follows from applying Green’s first
identity (integration by parts with the gradient product rule) on the entire graph,

/ (Vu, Vu)g: dV + / uAvdV = uVo-dS = 0,
v

%4 ov

after setting u = v, A = =L, and V = ET maps graph functions (functions defined on vertices) to
1-forms (functions defined on edges).

L is never strictly positive-definite, as 1,, is always an eigenvector with eigenvalue 0 (since a
vertex’s degree equals the number of edges it participates in), and any function that is constant over
each of the graph’s connected components is similarly an eigenvector with eigenvalue 0. Conversely,
if e is an eigenvector of L with eigenvalue 0, we see that

e =€’ Le =0= Z (e; — €;)?,
Oe (i,j)eE

so that no edge can join nodes for which their values differ; e; must equal e; for every edge (7, j) € E.
Thus, the null space of L is precisely the space of functions that are constant on each connected
component of G. If the 0 eigenvalue of L has multiplicity r, then G has r connected components [173].
The eigenvectors of L can be used as a Fourier basis useful in smooth approximation of arbitrary
functions. On unweighted chains, these eigenvectors are precisely the discrete cosine transform basis
functions, the specific type depending on the boundary conditions [143].

We are now ready to introduce the model space H in which we will find our splines.

Model space H: The space of functions on G. By the obvious isomorphism, we represent them
as vectors in R™ and consider H = R". The seminorm corresponding to our wiggliness penalty is

Jnu(f) = [TL"[.

Note that, since L is normal, the eigenvectors of L™ are the same as those of L; the eigenvalues are
simply modified by their being taken to the mth power.
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If G has r connected components, we can endow H with the inner product
(f,9)n =) mean, (f) - mean, (g) + f"L™g, (49)

where mean, (f) is the mean value of f on the connected component c.
Null space Hg: The null space of our penalty seminorm is the space of functions that are
constant on each connected component. Hy can be made into an RKHS with inner product

Ho — i meartl (f) - Inear. (g>
c=1

The representer of evaluation k, at a particular vertex v is the function 1.,)H, that is 1 on all nodes
on v’s connected component ¢(v) and 0 otherwise, and so inhabits the null space of J,, 3. Then if
J € Ho,

<f7 kv>7-lo = meanc(”) (f) 1= f(?)),

since f(v) = meanc(,) (f). The r distinct representers of evaluation {1;,...,1,} form an orthonormal
basis of Hg, and the orthogonal projection operator Py : H — H assigns to each vertex v the mean
of f on ¢(v), since the functions 1, € L™, and so

Pof = (f l)ule=» mean, (f)L.
c=1 c=1

In terms of the graph Laplacian, Hy = nullL™ = null L (with the latter equality holding because
L is normal-diagonalize it in unitary eigenvectors). Since H, is finite-dimensional, its kernel is
fully specified by its rank r, n x n Gram matrix Ky, in whose ith row and jth column rests the
value 1.;)—c;)- If G has one connected component, Ky is the ones matrix; more generally, K, is
permutation-similar to the block-diagonal matrix whose cth diagonal block is the ones matrix of size
le| X |c|, where |¢| is the number of nodes in the cth connected component.

Space of wiggly functions H;: We define H; to be the space of signals that have zero mean on
each connected component. By construction, for all f € Hy, we have ||f|[3, = >_._, mean, (f)* =0
and for all f and g in Hy, (f,9)n, = 0. Moreover, the bilinear form

(f.9)m, = f'L"g,

is definite on H; (since the DC functions over each connected component {1;,...,1,} form a basis
of null L™, and functions in #; are zero-mean), and coincides with (f, g)3 on its restriction to H;.

For any matrix A, the operator AA' is the orthogonal projector onto range A (and ATA the
projector onto range A*). Moreover, if A is normal, AAT = ATA = A™(AN™ = (AH"A™ (diago-
nalize it in unitary eigenvectors). For any graph signal g € H;, we have that g L {1;,...,1,}, with
respect to both (-, )%, and (-, -)gn, and so g € (nullL)* = range L. The orthogonal projection of g
onto range L then recovers g: LL'g = g. Thus, since L is a normal matrix (it is real and symmetric),
(LH"L™ = LL' and

(LNY™ey, g)p, = el (LN)"L™g = el LLg = el g = g(v), (50)

g

m

where e, is the vth standard basis vector of R™. Equation (50) shows that the vth column of (L)
(and row, since L—and therefore (LT)™is symmetric) is the representer of evaluation k, = eI (LT)™

at vertex v. Since L is real and symmetric, with eigenvalues \; = ... = A\, = 0, we have that
L= Z)\iuiu Z Niw;ul, and so (LN)™ Z A (51)
=1 i=r+1 i=r+1
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Then the vth column of (LT)™

n

b= )" Ee] = Y0 S,
i=r+1 ~?
is a weighted sum of n — r linearly independent eigenvectors u; of L with eigenvalue \; > 0. Since
the {u;}!, form an orthonormal system for R” and u; = 1; for ¢ = 1,...,r, we have that, for
i=r+1,...,n,u; L {1y,...,1,} with respect to (-, -, )gn and hence are zero-mean on each connected
component. For v = 1,...,n, then, k, € H;. Taking the inner products (-, )3, between the

representers of evaluation, we see that the kernel over the finite-dimensional H; is fully specified by
its Gram matrix K; = (LT)™.

Remark 2.67. The above analysis holds with Laplacians of weighted graphs or normalized graph
Laplacians. Moreover, the eigenvectors of the Laplacian (and hence the eigenvectors of the Laplacian
pseudoinverse kernel) are used to define many other kernels, with different eigenvalues. For instance,
the diffusion kernel, which, like the Gaussian kernel, is a solution to the diffusion equation, has the
same eigenvectors [83].

Solving the Spline Smoothing Problem on Graphs. We can now adapt Algorithm 3 to
solve the spline smoothing problem on a graph with n vertices, of which n., are observed. In
the pseudocode, we set the n,, x r matrix (T)opg, = lc[obs], where obs is a list of indices of
the n.,s observed nodes, and K; selects the n,,, observed rows and columns of our n X n matrix
(LT)™. We can also replace the evaluation functionals z; — u(z;) with arbitrary bounded linear
functionals, replacing K; with the corresponding matrix 3 of the inner products of the representers
of the functionals, as in (35).

In Figures 2-5, we demonstrate the use of graphs to perform spline smoothing (Equation (27))
in R2, with graphs specifying similarity of vector elements. We assign the 12 months in which we
considered Mauna Loa CO, readings from Figures 1c-1d to nodes in the graph G or G. (Figures 2
and 3, respectively), display their representers of evaluation with m = 3 (Figure 4), and show
solutions of the spline smoothing problem on these 12 data points (Figure 5).

t1,t to,t ti11,t
@ w(ty,t2) @ w(ta, t3) @ @ w(tn 12)@

Figure 2: Weighted chain graph G associated with the sample points ¢; < 5 < ... < t12. Given our (approximately—some
months are abridged!) regularly spaced months in time X’ = {1,...,12}, we may want a similarity metric on X" induced by
the graph in which we give each edge equal weight: for instance, we can set ¢; = 7 — 1 and give edges weight 1. If human
activity matters more than seasonality, we may not wish to link January (1) with December (12).

Thin-plate splines on graphs are summarized in Algorithm 6.

Remark 2.68 (Graph approximations of compact Riemannian manifolds). We can use graphs to
derive splines over a compact manifold. We approximate the manifold as a finite point cloud—an e-net,
for instance, or randomly scattered points on the manifold—and add edges between nearby points using
one of many techniques from computational geometry: k-nearest neighbors, Delaunay triangulations,
Gabriel graphs, etc. With the compact manifold embedded in a Euclidean space R, we can set edge
weights according to the Fuclidean metric of the space dga(x,y) = ||z — yl||, so that the vertices
associated with two nearby points x,y in our point cloud are bridged by an edge whose weight is
inversely related to ||z — y||?, which is a good approximation (an underestimate good to order /) of
the squared geodesic distance on our compact manifold. In a so-called Gaussian-weighted graph, the
edge weight is as follows: w(x,y;0) = e~ le=vl* " This choice guarantees that the graph Laplacian
of a random point cloud converges to the Laplace-Beltrami operator pointwise and in spectrum [15].
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Algorithm 6: Our index set X consists of the n vertices (in r connected components) of a
graph G, whose n x n (weighted or unweighted) Laplacian matrix is L. Define the seminorm
wiggliness penalty of a graph signal g € R" as J,, x(9) = ||P1gl[3,, = ¢" L™g, where (P1g)(z)
is g(r) — mean,)(g)-that is, it subtracts from each vertex x the mean over z’s connected

Nobs

component of g. Spline smoothing in H = R", given observations {y; }.2}* at vertices {z; } %",
is the following empirical risk minimization problem

) 1 Nobs 5 -
u* = arg min u(x;) —vi)” + Au” L™u.
u€Rm  Tobs ; ( ( ) )

The representer theorem (Proposition 2.60) allows us to write its solution as

Nobs

u = Z djlj + ZCZ(LT)m[, .’L‘Z]
j=1 i=1

where ¢;(i) = 1; = 1 in the jth connected component and &' (:, z;) is the z;th column of (LT)™. This
algorithm finds the vectors of weights ¢ and d. Be warned: for notational simplicity, in this
pseudocode, we use 1-indexing.

Nobs

Data: A set of ngs sample locations {z;}; %" in X = {1,...,n} and nys corresponding
sample values y; € R. The graph G whose Laplacian L defines our seminorm penalty
has r connected components.
Parameters: A regularization penalty A > 0 and (implicitly) a choice of model space
H = Ho ® H, with reproducing kernel k£ = k° + k! and seminorm wiggliness
penalty [Py - |[3,,, whose finite-dimensional null space #, has basis
{b1,...,Pm}. Here Hg =span{ly,...,1,.} and
Hy = span {(LN)™[:,1],..., (LN)™[:,n]}.

Result: A set of basis function weights ¢ € R"s and d € R" specifying the empirical risk

minimizing function u*.
Get the indices of the observed vertices obs « [z1,...,Zy,,.];
Compute the ngs X ngs Gram matrix Ky

K, < (L)™[obs, obs];
Compute the ng s X r matrix T, whose ¢ and column is
T[:, ] «+ 1;[obs];

Augment the Gram matrix of &' on our data set with null-space basis function matrix T to
form an (ngs + 1) X (s + 7) matrix K and set y accordingly

Kl + )\nobsInobSXnobs T Yy .
K<—< T7 0. and y 0,)

a— Ky (or, if A =0, a « Kiy);

Solve Ka =y,

Return the spline weights ¢ < o[l : n] and d < a[n+ 1 : n+ m];
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w(ty,t12)

w(tyy,t12)
11

Figure 3: Weighted cycle graph G. associated with the sample points ¢; < t3 < ... < t12. We add the edge with weight w
between nodes 1 and 12, modeling similarity between the first and last months. We may choose w to be less than the other
weights as a compromise between seasonality effects (such as CO5 exchange in deciduous forests at the latitude) and the
gigatons of CO, emitted in the interim by combusting fossil fuels. If we wish the resulting smoother to be “more periodic”,
we can even set w to be greater than the other weights.

Representers of evaluation in the chain graph G, m=3 Representers of evaluation in the cycle graph G., m =3
0.0259 * = representer of evaluation at node 5 4 *
« representer of evaluation at node 0
representer of evaluation at node 6 0.0005 1
0.020 4 representer of evaluation at node 11
0.0004 4
0.015 4
0.0003 - « representer of evaluation at node 5
« representer of evaluation at node 0
0.010 4 representer of evaluation at node 6
0.0002 7 representer of evaluation at node 11
0.005 A
000014 . H L
0.000 = L $---e .
0.0000 . [ . . . . .
* . . - ° - -
o . . . o
. N H H
00051 T T T T T T —0.0001 = T T T
2 9 6 8 10 12 2 4 6 8 10 12
node number node number
(a) (b)

Figure 4: (4a) plots the representers of evaluation in #H; (with order m = 3), i.e. k} = k'(-,t), of the kernel k! associated
with the chain graph G (shown in Figure 2) on X = {1,...12} at t = 1,6,7, and 12. (4b) gives the same, but for the
kernel associated with the cycle graph G, (shown in Figure 3). In both cases, all edges assume the same weight (12).
Dashed lines interpolating between the nodes are included as a visual aid but carry no meaning.
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Spline smoothing in the chain graph G, m=3

x  observations x
arr24 smoother, A= 0.1 . .
. .
s smoother, A=0.01 ¢
417.0 4
» smoother, A=0.001
£ ther, A=0 ¥ore
S 4168 = smoother, '
= .
g
£ 416.6 1 A
L . * M .
2 . . o ¢ x
® 416.4 4 . P
£
8 416.2 4 !
. -
416.0 1
458 .+  x
T T T T T T
2 4 6 8 10 12
node number (month)
(a)
Spline smoothing in the cycle graph G, m=3
»  observations x
alrz2- smoother, A= 0.1
s smoother, A=0.01
417.0 4
s smoother, A= 0.001
E smoother, A= 0 L
S 41684 ' -
= .
g .
416.6 -
E . . N s . " . " 3 H § 1
= . . . H
z : ooee
o 416.4 4 x
£ .
o .
8 416.2
416.0 -
415.8 4 x
T T T T T T
2 4 6 8 10 12
node number (month)
(c)
Spline smoothing in the cycle graph G., m=3
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Figure 5: For four distinct choices of wiggliness penalty parameter X, (5a), (5c¢), and (5e) give the smoothing splines
after observing nodes {2,4,8,9,10}; (5b), (5d), and (5f), after observing all nodes 1-12. The top row corresponds to the
chain graph G (Figure 2, all edge weights 12); the middle, G. (Figure 3, edge weights 12); and the bottom, G
G. but with w(ty,t12) set to 144 to further penalize the non-periodicity of the smoothing splines (though a constrained
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optimization or smooth-periodic decomposition can be applied).
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2.6.4 Thin-plate Splines in Euclidean Space

Two-dimensional splines can be constructed via the product of two one-dimensional splines; the
corresponding RKHS is the tensor product of the kernels’ RKHSs. If H; is an RKHS with reproducing
kernel k; and H, an RKHS with reproducing kernel ks, then H; ® H, is an RKHS with reproducing
kernel k((z1,vy1), (za,y2)) = ki(x1,22)ka(y1,y2) (see, e.g., [4], Part I, Section 8, Theorems I-II).
Thus, two-dimensional splines in the plane, for instance, can be constructed via natural polynomial
splines on each axis and two-dimensional splines on a cylinder or sphere can be constructed via a
natural polynomial spline on the non-periodic axis and a periodic polynomial spline on the periodic
(longitudinal) axis. More generally, one can create splines by aggregating one-dimensional splines fit
on many data-aligned or random projections of the index set?”

However, this method is unsatisfactory in certain applications. Kernels express a notion of simi-
larity on the index set and related notions of smoothness of functions in the RKHS. One particularly
sensible and well-motivated wiggliness energy on Euclidean space, which generalizes the natural cubic
splines’ wiggliness penalty, gives rise to the thin-plate splines.

The thin-plate splines were introduced by Harder and Desmarais [61] and by Duchon [39, 40],
with early theory developed by Duchon, Meinguet [99, 100, 101], depending on results from At-
téia [5, 6], Deny and Lions [37], and Matheron [97]. While the original theory was based on the
integration by parts of the energy functional and not the reproducing property, the splines were
found to fit nicely into the reproducing kernel Hilbert space (RKHS) framework [158], with the thin-
plate spline interpolant of scattered data being a nice application of Wahba’s representer theorem
(Proposition 2.60).

The thin-plate splines in Euclidean 2-space minimize the energy>®

oo oo 0%u\ 2 9?u \?2 0%u\ 2
2 = — 2| ——— — dr;d 2
Jo r2 (1) /OO /OO (&E%) + <8$10x2) + <0x§) 7y dxs, (52)

which, via Hooke’s law, represents the bending energy of a thin®’ interpolating sheet of an isotropic
material like steel in the linear elastic regime, with in-plane deformation unpenalized?’.

37Given k directions vy, ..., v; in X = R?, placed in a k x d matrix V, with k > d when sparse representations of the
data distribution in X are unavailable, one can fit a spline or Gaussian process regression to each of the k projections
of the data set {({x;, v1)pa,..., (zi, 'Uk->]Rd)T ,¥i}71. This vector of splines predicts, at any = € X, k values. They can

be aggregated, for instance, by inverting our geometric model VT and applying it to the predictions. We can also take
into account the local informativeness of each projection — an inverse proxy for which is the error bar on the spline or
Gaussian process of direction j at (x,v;)ga.

380ther sorts of bending energies based on local geometry can be imagined. Given a cross field on a surface, for
instance, we could interpolate scattered data to minimize the local bending energy of the interpolant along the two
orthogonal axes associated with each point, defined using a frame field operator [111]. We would thereby fit to scattered
data orthotropic thin-plate splines.

39For sufficiently thin plates, the Kirchoff-Love hypothesis holds that points on a normal of the middle plane of the
plate remain on the (surface) normal after deformation and that axial deformation, which maps vectors normal to the
midplane before deformation to vectors normal to the deformed midsurface, is an isometry.

40Tf v represents the vertical displacement of a thin sheet whose mid-plane, before deformation, is placed in the

zy-plane, then, with the Hessian matrix as
8%u 8%y
_ Ox2 Ox0y
H = 3?u Pu |

Oyox 0y?

the total deformation energy [8, 147] (ignoring the relative dilation of the plate in the lateral direction orthogonal to
the bending, or, equivalently, if the material’s Poisson ratio is 0) is proportional to

9%\ 2 u \? 9%\ >
trace (HQ) = <8a:f) + 2 (83018332) + (835%) .
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By extension, they are solutions to the more general scattered data fitting problem of functions
on R? involving the penalty functional of order m

Tppa(u) = > ad/ / (81’ T >2dx1...dxd. (53)

Oé1+~~~+0<d:m

Formally integrating (53) by parts (e.g., assume u is sufficiently smooth and rapidly decreasing), we
can write the penalty functional in terms of the mth-iterated Laplacian A™, where the Laplacian in
R? is . 52
u u
Aud:ef——i-~--+—;
x? dx?

namely, we can write

e / / w(zy, ... xq) - (A™u) (xq, ..., xq)dey .. dayg. (54)

Notice that we penalize wiggliness throughout R¢. Recall that, when constructing the natural
polynomial splines on X = R!, we penalized interpolant wiggliness only in the interval between
the smallest and largest sample location-without loss of generality, on (0,1). The optimal solution
happens to exhibit no wiggliness beyond the sample data (i.e., natural cubic splines, with m = 2,
extrapolate beyond the data samples as a degree-m — 1 polynomial: an affine function). As Attéia
demonstrates in Section 2 of [6], when X = R? for d > 2, the situation is rather different. The
choice of domain in which to enforce the wiggliness penalty affects the structure of the solution. We
decide, therefore, to apply the penalty everywhere. For this approach to work, we need the technical
constraint m > d/2.

This functional J,, ga is induced by a bilinear form with which the fundamental solution ®4,, of
the mth iterated Laplacian formally satisfies the reproducing property. Since

A" Dy, [z — 2'||ga) = d(x — 2)

as distributions, we can see the reproducing property via integration by parts: for u in the Schwartz
space S of rapidly decreasing functions,

" [ B i) (A™0) o = ) do = [ (A"l = alae)) o) o = )

by the sifting property of the Dirac delta. Note that the inverse Fourier transform of A™u(z — -)
is w — (—1)me @@k |w||2,t(w), which we can see using integration by parts and the fact that
the complex exponentials z — e ®“)x¢ are (generalized) eigenfunctions of the m-iterated Laplacian
with corresponding eigenvalues (—1)™||w|[27. Accordingly, we can show®! that if Dy (||| |ga) =

41The manipulations here are permissible as the function ® we have identified by enforcing the reproducing property
has “generalized Fourier transform”~of order I = m—[%]+1 on R?\ {0} (see [162], Theorems 8.16-8.17) and t(w)||w| |27
is in S and is O(||w|[27") as ||w||ga approaches 0. The function ® is then conditionally positive definite of this order,
and in particular of order m > [ (see [162], Theorems 8.2 and 10.36). The generalized Fourier transform of order
m coincides with the classical Fourier transform for functions in L!(R?) and the distributional Fourier transform on
the subset, of the Schwartz space that converges toward 0 sufficiently rapidly: O(||w||27"). However, it enables us to
give a characterization of conditionally positive-definite radial basis functions that extends the characterization of
Bochner, which is stated in terms of the Fourier-Stieltjes integral of nonnegative Borel measures, when we do not have
integrability before we “project out” polynomials. The generalized Fourier transform of a polynomial of degree at most
2m — 1 is the zero function, of order m.
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(2m)~4/2 ||w||ﬂ§§m, the reproducing property appears to hold*?

07 B llae) Al =)o = (1) [ Ballolfes) - 1 (Al = ) o
= (1) @) Pl (1) ol () ds

= (2m)" %2 ) U(w)e" ™t dw = u(z).
R

In the spatial domain,

|5 —¢| 127, if d is odd;

P s—1 =
am(l ) nd{Hs—tHfgdlogHs—tHRd, if d is even,
where 773 > 0 is a proportionality constant. Dividing out 74 from ®4,,, we will write

1
En(s,t) = —(|[s — t|[ga)-
Md

Importantly (and not surprisingly!), this function E,, (like ®4,,) depends only on the Euclidean
distance between its arguments, and is therefore called a radial basis function in the literature. But
it is not a reproducing kernel. While the function E,,(|| - —t||ge) reproduces evaluation at ¢ with
respect to our bilinear form, it is not positive definite®. Moreover, it is not of finite wiggliness.

It is, however, conditionally positive-definite. This means that, for all n € N, all pairwise distinct
sets {z;}7_; C R, and all @ € R satisfying Y7 a;p(z;) = 0 for all polynomials p of degree at
most m — 1, the quadratic form » 77" | >°7 | c;e;®(|[x; — 2[|ga) > 0. In other words, 4, is positive
definite on the space of functions “orthogonal to” the polynomials of degree at most m — 1.

We can derive a positive-definite kernel through the decomposition of Section 2.4. In effect, we
can do so by limiting F,, to have partial derivatives of order m of finite energy by projecting out
polynomial functions of each argument. This kernel is not, however, radial (see Figure 6), as it
depends on the choice of basis for the penalty null space — a space of polynomials. Fortunately, only
the reproducing kernel, not the wiggliness seminorm, is affected by this choice of basis.

In past examples, our wiggliness penalty — once appropriate conditions were placed to ensure def-
initeness — was expressed using a positive-definite kernel and the model space was the corresponding
RKHS. In this case, however, the wiggliness penalty is determined by a conditionally positive-definite
function. We must take greater care in identifying the model space, which is not simply the closure
of the span of the representations of evaluation on the index set, as it is with positive-definite kernels.

Model space: Suppose m > d/2. Let H = BL,,(L?(R%)) be the Beppo Levi space'* of order m,
that is, the space of distributions whose weak partial derivatives of total order m are in L?(R%)%.
Thus,

BL(L*(RY) = {u € S'(RY) | D*u € L*(R?), for all |a| = m},

42This reproducing property only works if we place certain restrictions on w. For instance, if we add a harmonic
function h to u, h will be annihilated, and u + h cannot exhibit the reproducing property. One way out of this pickle
is to not reproduce a single pointwise evaluation but rather a weighted sum of evaluations such that the weighted sum
always annihilates harmonic functions, as in [162], Theorem 10.41.

43See Remark 2.27 and Proposition 2.26. A radial function that yields a positive-definite kernel in Euclidean space
of any dimension cannot have zeros. More generally, those that are positive definite in a fixed Euclidean space R¢
have a Hankel transform characterization.

#4These are often called homogeneous Sobolev spaces. Beppo Levi was not fond of the appellation [106].

45The Beppo Levi spaces, more generally, can take any separable complete space in the place of L?(R%) [37].
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where a > 0 is a multi-index in N¢ with |a| = Zle a;, D* the corresponding weak partial derivative,

and 8'(RY) the tempered distributions. The space H is endowed with the semi-inner product

|
(f9)n = Z %<Daf7 Dg) 2 (ray

|a|=m

-y /°° /°° omf oy
B Oél'ad' —OO..‘ _Ooax?laxgdax?laxgd 1.-- d >

a1+ Fag=m

with weights chosen so that the seminorm matches our Laplacian-based wiggliness penalty (A™ =
> lal=m mD®). In particular, any member of BL,,(L*(R?) has finite seminorm || - ||. The space
can also be defined on the Fourier side, using the multinomial theorem. This penalty is the final
term of the usual Sobolev norm, so that we do not penalize as wiggly the polynomials of degree at
most m — 1. Since we apply the penalty throughout Euclidean space, the Beppo Levi space does not
coincide algebraically with the classical Sobolev space, as was the case for the natural polynomial
splines. For example, the affine functions are included in the Beppo Levi space of order 2 but not
the corresponding classical (inhomogeneous) Sobolev space.

By a classic result’®, the null space H, of the seminorm penalty J,, ga in H = BL,,(L*(R?)) is
the M = (m+§_1)—dimensional [42] space of polynomials in the variables 1, ..., x4 of total degree at
most m — 1, for m > d/2.

Deny and Lions [37] showed that the quotient space H/H, is a Hilbert space in which the semi-
norm (54) is a definite inner product. This is due to the fact that the compactly supported test
functions C§°(RY) are not just elements of BL,,(L?(R%)) — all derivatives of order m are continu-
ous and compactly supported — but dense in BL,,(L*(R%)) (see, e.g., [162], Theorem 10.40, or [37],
Theorem 2.3). This density allows us to write the semi-inner product on BL,,(L*(RY)) as follows":

(= ()" [ F@)A"g)(a)d.

Using the decomposition principle, we can view the Beppo Levi space as an RKHS of slowly growing,
continuous functions.

Null space Hy: The null space H, of the seminorm J,, ga is the M = (m+j_1)—dimensional [42]
space of polynomials in the variables 1, ..., x4 of total degree at most m — 1. A finite-dimensional
space of continuous functions, it is an RKHS. With the most common penalty (52), d = 2 and m = 2,
so we get M = 3; the null space is spanned by {¢1, ¢2, @3}, where ¢1(z1,29) = 1, ¢o(z1,22) = 71,
and ¢3(z1,x9) = x9 form the basis of Hy. We endow H, with the following inner product

M

-1

(fyg)u, = Zf(xi)g(xi), given a unisolvent set U = {xy,...,zp} of M = (m +j ) points.
i=1

Recall, a unisolvent set in R? is a set of M = (m+§_1) points such that the only polynomial in
x1,...,xq of total degree at most m — 1 that evaluates to zero at each of the points is the zero
polynomial*®. In particular, the evaluation functionals at the points in U are linearly independent.
Thus, the unique partition of unity in Hy of U—that is, a set of polynomials p1,...,py such that

46In effect, the only slowly growing harmonic functions are polynomials. See [133], on p. 60, the corollary to
Theorem VI. Alternatively, see [162], Lemma 10.38, or [37], pages 366-368.

47See the technical conditions on the density result of [162], Theorem 10.40, and their use in Theorem 10.41.

48Put another way, the least-squares regression of observations at each of the M points in the set U on the M
polynomial basis functions of total degree at most m — 1 is unique: the matrix whose ith row and jth column contains
the ith such polynomial evaluated at the jth point in the set is of full rank.

79



Max DunNiTz

p;(x;) = d; j—forms an orthonormal basis of the M-dimensional RKHS H, (as in Lemma 2.58). With
respect to this basis, we can find the representer of evaluation k, € Hy by expanding it on the
basis functions k; = Zf\il a;p; and setting a; = p;(t), so that, for any polynomial f € H, written
f= Zf\il Bipi, we establish the reproducing property

(fs eymy = Z (Z 5;19]) (:) (ij(t)pj) (z:) = Zﬁipi(t) =

=1 7j=1

Using our orthonormal basis, define the operator Py : H — Hg by f — Zf\il f(z;)p;. Then for any

f,g in our Beppo Levi model space, some unisolvent set U of M points x1,..., 25 in R?, and the
corresponding partition of unity py, ..., pa satisfying p;(x;) = d;;, we have that
M
(Pof, Pog)ay = Y (Pof)(w:)(Pog)(x:)
i=1

= Z (Z f(fvj)pj> (Zg )p ) ;) = Zf(xi)g(l‘i)

Wiggly space Hi: Define H; to be the space of codimension M whose representative elements
are functions that evaluate to 0 on each point in U. Thus, their projection onto Hy is 0; they are
orthogonal to H,: for each j € {1,..., M}, we have that

O— fpj Zf xz Z f(x])

6”

The projection operator P; = I — Py from H to H; that satisfies Py f = f — Zf\il f(z;)p; thereby
projects out the “polynomial component” of f.
We endow H; with the inner product

(f,9)m, = (=)™ g f(x) - (A™g)(x) dz .

By construction, for each f; € Hy, (-, fi)n, = 0; for each fy € Ho, we have, moreover, that (-, fo)n, =
0, since fy is a polynomial of total degree at most m — 1. Since the smooth, compactly supported
test functions C5°(R?) are dense in BL,,(R?), we know a reproducing kernel for #; must satisfy the
following: for all f € C°(R%),

(Pif)(@) = (f = Pof k)w, = (fiky)wy = (1) » F@)(A™k)(y) dy = (f, (=1)"A™k,),
where (-, -) is the canonical dual pairing. But since obviously, for any f € C5°(R9),
(P1f)(x sz = ( Zpl - ) ,
our reproducing kernel k' must satisfy the following distributional differential equation:
(1) Ak, = 4(- sz — ;).
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By superposition, we can give a solution to the above equation in terms of the fundamental solution
E,, of (=1)"A"f =6

candidate k!(y): C.(y) = sz m (T, Y)-

The above candidate function does not reside in H; but it does reside in H if m > d/2. (This does
not hold for E,,, with one argument fixed. It is an easy matter to verify that its order-m partials do
not have finite energy.) Thus, for each fixed z, subtracting out a weighted sum of partial evaluations
of E,, (with the weights being a polynomial in x) from y — E,,(z,y), which is not in the Beppo Levi
space H = BL,,(L*(RY)), forms y + C,(y), which is. This function y — C,(y) is thus “a polynomial
away” from being in H;. This polynomial difference, moreover, can (using a density argument) be
added to either side of the ; innner product (-,-)3;, (but not both!) without changing its values.
We orthogonally project the function y — C,(y) onto H; to form the reproducing kernel for H;

ka(y) = (P1Ca)(y) = ( sz m (i, Y ) —ij(y) ( (,2;) sz %%))

= Epn(z,y) — sz(ﬂﬁ m (T3, Y ZP; m (2, 7;) + Z Zpi($)Pj(y)Em($i>$j)-

This reproducing kernel preserves the reproducing property but affects the wiggliness penalty in gen-
eral. However, for certain linear combinations of the conditionally positive-definite kernel evaluated
on a data set {E,,(-,x})}", projecting out polynomials does not affect the wiggliness penalty. In-
deed, given n data points {z}}"_; (the ’ distinguishes the data sample locations from our unisolvent
set {z;}11,), for any vector ¢ € R™ such that Y ¢p;(2}) =0 for j =1,..., M, we have that

Im.d (i c#i;) =cTKe = Z Z cicik' (2}, ;

=1 i=1 j=1
n n M
= ZZQC]' (E Lss g ZE i, w)pi(w ZEm Ly, T j )i () +
z-l]\/[]-lM =1
)P ILANCALNCN)
=1 ¢g=1
M
(ZZCZC] 17 ] > ZczzEm xmxl chpl
i=1 j=1 i=1 =1
0
n M n n
ZCJZE’” Xy, T Zc,pl —i—ZZE Ty, Tq) (Z cipl(x’i)) (Z cqu(x;)>
j=1  I=1 i=1 =1 ¢=1 i=1 =1 )
0 0 o
= iiczc]Em 2;,2%) = "Ec = Jina (ch (e 2 ) ,
=1 j=1

where K is the Gram matrix of k' and E the Gram matrix of E,, on our sample locations {z}}1_,
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With a unisolvent set of (n > M) sample points {2}, we assumed that

forall j € {1,..., M}, Zcipj(x

or, equivalently,
c € null T, where (T),; = p;(z}) and the n x M matrix T has rank M.

We found that this constraint forced the wiggliness penalty of the Y7 | ¢;k'(-, 2}) to equal the wig-
gliness penalty of Y7 | ¢;E(-,2}). This is explained by the fact that any ¢ € null T? is called a
generalized divided difference |69, 118, 158| of order m since it annihilates all polynomials of total
degree less than m, much as first differences annihilate constant functions, second differences linear
functions, and so forth. In particular, the difference between ¢’ Kc and ¢’ Ec is annihilated.

Thus, from our conditionally positive-definite kernel E,, — whose partial evaluations do not even
reside in H — we have twice “projected out the null space” to compute a positive-definite kernel for

Ha

M M M
k’l(Sﬂf) = Em<3>t) - Zf%( xz» Zp] t .QZ] + Zzpz p] .CE],.CEI)
=1 =1 j=1

With fixed ¢, then, we have that, modulo a polynomial in s of degree at most m — 1 (i.e., the last
two terms above),

k! (s) = k'(s,t) = Ci(s) = sz m (24, 8) ([100], equation 19), (56)

so that P&/ is given by the M + 1 terms on the right-hand side of (56) (and Pok; does not affect
the wiggliness penalty). If m > d/2, the k} so defined resides in H; and serves as its representation
of evaluation at ¢. Indeed, we can confirm that Pok! = ¢g(¢) is identically zero as Equation (56)
annihilates polynomials of degree at most m — 1. As the n = M + 1 points w; = (t,x1,..., %)) are
a unisolvent set, with ¢ = (1, —p1(t),..., —pm(t)), we have a generalized divided difference

M+1 M

Z cipj(w;) = p;(t) — Zpi(t)pj (z;) = p;(t) — pj(t) = 0 ([158], equation 2.4.28).

=1

In summary, FE,, is not a reproducing kernel for H; because its partial evaluations E,,(-, z) for
any =z € R? do not reside in H;; however, it does reproduce function evaluation in #;. With one
argument fixed, it is “a polynomial away” from being in H;. Removing this polynomial forms k!,
which is not radial (see Figure 6) but is a reproducing kernel for #,. For any nondegenerate data
set {z}}" | of size n > M, if we choose ¢ € R" so that

for j =1,..., M, the basis function of Hop; satisfies Z cip; () =0,

i=1

then the wiggliness of I | a;k,/ is the same as the wiggliness of » 7" | a;Ep(-, ;). Moreover, we

(g

have, by the generalized divided difference of the right-hand side of Equation (56), that
kl(s,t) = (Cs, C)n,
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Example 2.69. Let d = 2 and m = 2 so that E,,(s,t) = ||s — t|[3: log]||s — t||r2 (we have divided
out a positive constant ng from ®,, ). Consider the set of points S = {(0,0)7,(0,1)7,(0,2)T}. The
Gram matrizc Kjgm of E,, on S is not positive definite

0 0 4log2
Kg = 0 0 o0 |,
4log2 0 0

a nonzero matrix with zero trace, has both positive and negative eigenvalues.

We define Ho so that we can “project out” the polynomial contributions to E,,. The set U =
{x1, 29,23}, with x; = (0,0)7, 25 = (1,0)7, and x3 = (0,1)7, is obviously unisolvent (not collinear).
A simple calculation®® shows U has the following partition of unity

pi(@) = (=1 -1)" 2)re + 1;  pa(z) = ((1,0)", 2)ge; ps(@) = {(0,1)", 2)ze.
In particular, pi(x;) = 6;; (Kronecker delta) and for all x € R?,
pi(x) + pa(z) + ps(x) = (=1, =1)" + (1,0)" + (0,1)", 2)p2 + (1 + 0+ 0) = 1
and
9171291(33') + l'ng(.%’) + x3p3($) = (xT(la O)T) : (17 O>T + (xT(Ov 1)T> ’ (07 1)T = Z.

Then we can define an inner product on Hoy, the space of affine functions, for which {p1,p2, s}
serves as an orthonormal basis

3

for all affine functions f and g on R?, {f, g)n, = Zf(xi)g(xi),

=1

where {xy, 5,23} = U. Let f = 2 — olx + B be an arbitrary affine function; for any x € R?,
k, =t— Z‘;:lpi(x)pi(t) reproduces evaluation at x

(fska)mo = ;f(xz’)kx(%) = ;(&Txi +8) ;MM(%) = ZZ:;(O&T% + B)pi()

3 3
=o' (Z 9Czpz($)> + 5 (ZPz(I)) =o'z + B = f(x).
=1 i=1
For all t € R?, we can define

ktl = kl('7t> = Em(Wt) - POEm('vt) = Em('7t> - sz()Em(Qiz,t)
= (Il —tllr2) — (11(0,0)" = #llr2) (1 = (1, 1)") = ([[(L,0)" — t[lr2) ((1,0)"-) =
(110, 1) — tllg2) ((0,1)").

49For i and j in {1,2}, let 27 (a?) be the jth element of x; (a;), using 1-indexing. Set py = z + oz + B1;ps = =
al'z + Ba; and p3 = x +— o'z + B3. Solve the following system for the o and 3 parameters to recover the partition of

unity
ol o &) (¢l o} o)
1,2 2 .2 .2
as a5 o xi w5 x5 | = Isxs.
ay a3 Bs 11 1
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where o(r) = r*log(r). Moreover, the reproducing kernel for Hy can be evaluated as follows: for all
(s,t) € R x R%, with s = (s1,82) and t = (t1,t3), we compute

H@w:wa—mwma—mmmh—/ ) AR () de

- /RQ (Em(x,t) — Zpl(x (i, t ) ( ij m (25,8 )) dz

3
_Z i ) mza m]a +Zzpz pj 'Tﬂxj)

= ¢(l[s — t[|r2) + log 2(t1s9 + s1t2) — (1 — 51— s2)@(|]t|[r2) — s1p(|[t — (1,0)7||z2)—
s2@([[t — (0, 1) |Jg2) — (1 — t1 — ta)p(||s]lr2) — trp(||s — (1,0)]|r2) — tap(|ls — (0, 1)"||z2).

For each s € R?, the Beppo Levi wiggliness of k! is the following:

Mw

(ko ko), = k'(s,5) = (2log 2)s155 — 2(1 — 51— s2)0(([sl|r2) — 2s10(]]s — (1,0)"[[2))
— 2s2¢(Ils — (0, 1)"|zee)

If v = x; for some x; € U, the wiggliness is 0. Otherwise it is positive, and it grows quadratically
with the distance to the unisolvent set.
The Gram matriz of k* (the reproducing kernel for Hi) on S is symmetric, positive semidefinite

00 0
Ki =100 0
0 0 8log2
The conditionally positive-definite kernel E,, has partial evaluations that do not reside in BL,,(L*(R?));
the associated measure of similarity grows with the Euclidean distance between its arguments. On
the other hand, the positive-definite kernel k*, which is derived from E,, by “projecting out” the semi-

norm null space, better expresses similarity on the index set. And it serves as a reproducing kernel
for BL,,(L*(R?))/Py_1. See Figure 6.

We summarize the argument as follows. The only solutions of AmE =4 in the Beppo Levi space
H = BL,,(L*(R%)) with Beppo Levi seminorm ||u||pr,,(12ra) )™ Jga u (z) dz are the
polynomials of degree at most m — 1, which span the null space of the norm. ThlS Beppo Levi space
is a semi-Hilbert space of Continuous, slowly growing functions when m > d/2. We can make definite
the semi-inner product of the Beppo Levi space by applying an inner product on its null space. We
do this by creating a partition of unity for the space H, of polynomials of degree at most m — 1. A
reproducing kernel for the Beppo Levi space after projecting out the polynomials of degree m — 1
must satisfy the distributional partial differential equation

(=1)"A™EL = (- Zp] — ;);
i.e. these two sides integrate against test functions identically. The fundamental solution to

(~)mArnf =

is known to be F,,, whose order-m partials do not satisfy the square-integrability criteria for inclusion
in the Beppo Levi space. Projecting out the polynomial component of F,, gives a particular solution
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Comparison of k°, k*, and E, on a uniformly distributed data set Comparison of k°, k*, and Er, on the line y = x

o Em 10 o Em
Kl o K
o
15 o k0 o K o8
k=k0+kl

10 0.6

F0.4

radial function value

0.2

0.0

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

T T T T
0.0 0.5 1.0 15 2.0
Euclidean distance between a pair of the random points in [-1, 1]2 Euclidean distance to reference point, ||(t, )" - (.5, .5]||

Ep. k% and k!, each evaluated on (.5,.5)7 and {(t, 7 [t €[0, 1]}

(a) Em, k0, and k! evaluated pairwise on points placed uniformly (b) E,, and k' evaluated on y = x, compared to a fixed reference
in [—~1,1]2, using the unisolvent set of Example 2.69. (0.5,0.5)T. Clearly k0 and k! are not radial.

3 - 1 1 1
Metric daa(x, y) = ‘/k b X+ K2y y) — 23, y) Beppo Levi wiggliness of representations of evaluation

4

251 I 200

20 A
r 150

15 4
r 100

Metric value

10 4

y-coordinate of rperesentation of evaluation
o

50
3
54
4
4 -3 -2 -1 0o 1 2 3 4
04 " . .
: . i . i i . x-coordinate of representation of evaluation
o] 2 4 6 8 10 12
Pairwise norm between random points on [-5, 512 (d) The Beppo Levi wiggliness of the representations of evaluation

at a point vary substantially with the distance of the point to the
(c) k' involves a relatively sensible notion of distance on the index unisolvent set. This is troubling as the unisolvent set is chosen
set, though it is influenced by proximity to the unisolvent set. independently of the data we wish to interpolate.

Figure 6: The (normalized) fundamental solution E,, of (—1)™A™ f = ¢ in Euclidean space is a radial function, but not a
positive-definite kernel for all d: as a function of the Euclidean distance between its two inputs, it has one zero when d is
odd and two zeros when d is even and thus fails Schoenberg's criterion (the second item of Proposition 2.26). Having fixed
our unisolvent set as in Example 2.69, the function k! is positive definite and exhibits a more sensible notion of distance
on the index set (though highly dependent on the choice of unisolvent set used to define #;!) than does E,,, according
to which the similarity between points grows more than quadratically in the Euclidean distance separating them (for larger
distances, with d = m = 2). But it is not radial, as the clouds in (6a) and plots with color gradient in (6b) attest. Values
of the pseudometric (it is indeed pseudo- as there are distinct points—on the unisolvent set-that have distance zero) between
points chosen uniformly at random on [—5,5]? are plotted against the Euclidean distance in (6c). The wiggliness of the
representers of evaluation are plotted against their position in (6d), along with the three points of the unisolvent set.
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of the above differential equation

£ = Bnl,2) = 30y (0) Bu(1).

An argument based on the distributional Fourier transform and approximation by convolution can
show that, when m > d/2, the space H; is an RKHS of continuous functions that contains k! and
for which k! serves as a representation of evaluation at x. Then H = Hy & H; is an RKHS with
defined inner product

(;9)n = (Pof, Pog)a, + (L= Po) f, (1= Po)g)u, = Z f(i)g(x:) + (1= Po)f, (1= Po)g) pL,, (r2®a)-

Solving the Spline Smoothing Problem. Provided that 2m — d > 0 and that c is a general-
ized divided difference for the n scattered data locations {z;}! ,, we can write the minimum-norm
interpolant u*

n

u*(t) = argmin Z(u(a:z) —yi)? + M, g2 (),
wEBLy (L2(RY)) ‘7

in the form
M n
u*(t) = Z dip;(1) + Z ¢iEp (i, 1), (57)
j=1 i=1

where p; is the jth polynomial in the basis of Hy, the space of all polynomials in zy,...,z4 of
maximum degree at most m — 1.

We give pseudocode for the thin-plate splines in Algorithm 7.

Wahba’s representer theorem (Proposition 2.60) reduces this empirical risk minimization problem
over an infinite-dimensional space to finite-dimensional linear algebra. The complete solution is given
in [100] and summaries may be found in [41, 158, 167].

Remark 2.70 (The m > d/2 constraint). The technical constraint of a well-known Sobolev embedding
theorem, that 2m > d, ensures that the Sobolev space W™?(X) embeds continuously in C°(RY), the
space of continuous functions on R? endowed with the L™ norm. This constraint does the same for
the Beppo Levi space BL,,(L*(RY)). This means that as functions approach each other in the Sobolev
norm, they approach each other pointwise, and the pointwise evaluation operator is continuous. For
the kernel of the thin-plate splines, this constraint assures the integrability of the reproducing property.
Thus, in high dimensions, to get an RKHS, we need to define wiggliness in terms of high-order partial
derivatives in order to implement thin-plate splines in Euclidean space. This restriction can lead to
poor modeling choices in high dimensions. Strategies for working in high dimensions with a wiggliness
penalty depending on partial derivatives of low total order include dimensionality-reduction techniques
(random projections, t-SNE, UMAP, PCA, etc.), constructing a kernel via tensor product of lower-
dimensional kernels, and approrimating the space by a point cloud with a proximity graph structure.

2.7 Thin-plate Splines on the Sphere

Motivated by meteorological applications, Wahba and Wendelberger [154, 156, 158, 161] in the late
1970s and early 1980s considered extending the thin-plate splines (and the periodic splines on the
circle) to the (d— 1)-sphere in R%. (In the present article, we restrict our attention to the 2-sphere S?
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Algorithm 7: An algorithm that fits thin-plate splines on X = R based on the Beppo Levi

space seminorm penalty J,, ga. By the representer theorem (Proposition 2.60), the solution
to

1 n
u* = argmin — Y (u(z;) = 4:)> + My pa(u)

n
ueH i—1

takes the form

M n
ut = Z djpj + Z CiEm(=Ti7 ')7
j=1 i=1

subject to the constraint (56), which guarantees a finite seminorm energy. This algorithm

recovers ¢ € R™ and d € RM from samples {y;}",, y; € R, taken at scattered values {z;}7,,
x; € R¢.

Data: A set of n sample locations {z;}"_, in R? and n corresponding sample values y; € R.
Parameters: A regularization penalty parameter A > 0 and order m for the seminorm
wiggliness penalty J,, v. We require that the penalty order m > d/2.
Result: A set of basis function weights ¢ € R™ and d € R specifying the empirical risk
minimizing function u*.
Compute the n x n Gram matrix E in whose ¢th row and jth column reposes the value

(E)” — Ep(zi, 7;),

where

i — x| A if d is odd
Em<xi,xj>:{“x ks e (58)

|| — xjH?ng*d log||x; — x||ga, otherwise.

Form the null-space basis function matrix T = hstack([1,, z[;,1],z[:,2]...]), where each
column is one of the M basis functions on the data set (z; — 1,x; — x;[1],...). This matrix
will be used to ensure c is a generalized divided difference of order m (i.e., ¢ € null T7).

(T)ij = pj(s)-

Augment the Gram matrix of E,, to form an (n + M) x (n + M) matrix K and set y

accordingly
E -+ nl,«n T Yo\
K« ( T7 0M><M) and y < (OM) ;

o K_ly;

Solve Ka = y:

Return the spline weights ¢ <— a[l : n] and d < a[n + 1 :J;
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in R3; readers interested in thin-plate splines on the sphere S¢~! for d > 3 are referred to [11].) Using
the analogue of A on the 2-sphere, the Laplace-Beltrami operator (see [105], Section 14, and [14])

2 2
)ZCSCQ(G)a—u+Co‘c Ou | Ou

Asu = 052 )59 * o

(59)

1 6’2u+ 1 9 (. 0Ou
sin?(0) 0¢?  sin(6) 90

sm(&)@

where 0 € [0, 7| is the colatitude®® and ¢ € [0, 2] the longitude®, they define a penalty functional
analogue of (54) of order m on the 2-sphere as

L ( Ag”/2u>2 sin(6) df de m even
T2 (1) = 2 (Alm=1/2,))? %0
s2(u) % 027r f()ﬂ- ((a¢ <Asisn2(6) )) I (% (Agm—l)ﬂu))z) sin(f)dfde, m odd. (60)

If w is sufficiently smooth, then this matches, via Green’s first identity and the product rule for
gradients,

oo () = (=)™ /0 ’ /0 " (0, 6)(Au)(8, ¢) sin(9) dB do (61)

Rather than searching for a closed form of the Green’s function of the mth iterated Laplace-Beltrami
operator on the sphere (as we did for the natural cubic splines or thin-plate splines in Euclidean
space), we use Mercer synthesis (Section 2.2.1). Because the spherical harmonics form a complete
orthonormal system for L?*(S?) and are eigenfunctions of the Laplace-Beltrami operator, defining
the splines on the “Fourier side”™as we did with the periodic splines—simplifies the derivation. The
resulting kernel exhibits the Funk-Hecke multiplicities (the eigenvalue of Ag on the eigenfunction Y;"
depends on the degree [ but not the order n; see Proposition 2.40) and is therefore isotropic; we can
accordingly use the results from Section 2.2.3.

2.7.1 A Series Form of the Thin-plate Spline Penalty on the Sphere

By the completeness of the spherical harmonics [78], any function v € L*(S?) can be written
o0 l
u(@, ¢) ~ Z Z (u)l,n}/}n(ea ¢)7
=0 n=-1

where the right-hand side converges to the left-hand side in L*(S?) and the Fourier expansion of u is
given by

1 27 s
(Wi, n = (u, Y] ) p2(s2) = E/o /0 u(f, ¢)Y;"(0, $) sin(6) df de .

It is easy to see that the penalty (as (60) or (61)) can be formally written as an infinite series
in terms of these Fourier coefficients, using (18) and the orthonormality of the spherical harmonics.

50 According to the “physics convention” of spherical coordinates, the colatitude is 5 minus the “math convention”
latitude; that is, the colatitude is 0 at the “North Pole”-along the positive rectangular z-axis—and 7 at the “South
Pole”.

51The longitude is the azimuthal angle measured counterclockwise from the positive rectangular z-axis, through

which our reference meridian passes.
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Indeed, for the case (60) with m even,

m/2 2 .
I, s2(u sm(@) df de
47T

/ / NG (zz WY, ,>> AT (Z Z(u»,nme,@) sin(6) df dg

=0 n=-1 =0 n=-1
l 00 l
=0 n=—1 =0 n=-1 L2(S?)

00 l
=D > (i, A+ 1) (YY) e

=0 n=— 1

oo l 00 l
=D ()Y (Wi, => U+ > (Wi,

=0 n=-1 =1 n=-—I

where the second equality on the last line follows from the fact that Ag annihilates the DC compo-
nent of a signal. Thus, the DC component of a signal (u)o contributes nothing to the wiggliness.
Intuitively, subtracting a mean from a function should not affect the penalty.

We want to be careful to ensure that the penalty J,, s2(u) is finite. Proceeding as in Section 2.2.1,
we let H be the space of functions™ u € L?(S?) for which J,, s2(u) is finite. Define

(f,9)% = mean(f)mean(g) + Z %

Observe that if u € H has zero mean, then

) l
2
m SQ Z l+ 1 Z (u>l,n = <’U,,U>H = HuH%i
1=0 n=-1

2.7.2 The Decomposition H = Hy @ H; for the Thin-plate Splines of Order m

Null space Hy: To define a penalty seminorm on the Fourier side, we must define which Fourier
components do not contribute to wiggliness. The natural choice, first introduced by Wahba and
Wendelberger in the early 1980s [154, 158, 161], is simply to exclude the DC component, since this
is the only spherical harmonic annihilated by Ag. Other authors have proposed a richer wiggliness
penalty seminorm null space and therefore different kernel by allowing for certain spherical polynomial
trends to escape penalization [11].

Thus, Hy = span {1}. The space H, endowed with the inner product

(f, 9)n, = mean(f)mean(g) 47T/ / f(0,¢)sin(0) df dg - —/ / )sin(6) d6 d¢

is trivially an RKHS. The reproducing kernel for H, is the constant function 1, since 1 € span{1}
and
Vf € Hoand all z € S?, f(z) = mean(f) = mean(f) - 1 = (f, Dz,

52The elements of # are the continuous class representers of equivalence classes of functions that coincide almost
everywhere (with respect to the Lebesgue measure) with continuous functions.
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The orthogonal projection Py onto H, consists of extracting the mean, i.e., taking the coefficient g
of u € H on the DC spherical harmonic Yy .

Wiggly space Hi: In direct analogy with the circular splines, H; is the space of zero-mean
functions with well-defined wiggliness penalty. That is, their Fourier coefficients decay sufficiently
quickly so that the wiggliness penalty is finite. Letting

Z Z l—m l+ 1 — (no DC component),

this means that, writing the Fourier coefficient of the expansion of u onto the spherical harmonic of
degree [ and order n as (),

00 l
u € H; <= mean(u) =0 and |u|7, = Z Z (14 1)™((u)0)? < 0.

=1 n=-1

The orthogonal projection P; onto H; consists of subtracting out the mean. Thus, functions v € H;
can be written with an expansion of the form

) l

u= Z Z (u)1nY;" (no DC component),

=1 n=—

which converges uniformly in ; by Proposition 2.24 and the results of Section 2.2.3%3. Consequently,
the penalty J,,,s2 on H; exhibits definiteness

u€ My = (u)oo; then if J,,s2(u) =0, (u),; = 0V(n,l) € N* and u =0,

since all eigenvalues of the Laplace-Beltrami operator Ag on spherical harmonics of nonzero degree
are strictly positive.

The orthogonality of Ho and H, is easily shown. For any f € H, ||f|[}, = mean(f)? =0. On
the other hand, observe that the constant functions in Hy have no wiggliness; they satisfy

feHo = |Ifll3, =0

Ho and H, are therefore orthogonal, and H, is indeed the null space of the norm || - ||5,: if f € H
and ||f||x, = 0, then f € Ho. The norm || - ||#, is in fact positive-definite on H;: in H;, only the
zero function has norm zero.

Noting that {™(I + 1)™ are the eigenvalues associated with the spherical harmonics of order [ of
A7, using Mercer synthesis (Proposition 2.38), we can obtain the reproducing kernel for 7, by giving
it a Fourier expansion on the spherical harmonics with weights a; = 7" (I+1)™™ (see Section 2.2.3).
Using Equation (22), we can identify the reproducing kernel for H;

o0

= (2l + D)y 1 2z+1 PO (cos
banlp) = 32 LB P o) = 423 i s a ) (2
By the addition theorem for spherical harmonics (19), with p = (6, ¢) and p' = (¢, ¢'),

[e%S) l
kBm p» IZ Z (lm l—|— }ﬁn(97¢)) En(9/7¢/),
1 n= _

~~

(kS,m('vp))l,n

31f m > 1, the sequence {\; , }°, given by A\, ; = oy = 7™ (I +1)~™ satisfy {llelill)m} € (', and all the results in
(141)

that section hold. If m = 1, the sequence {a;(20 + 1)}, = {l(lT

k31 has a singularity (at p = p/, i.e., cos(<t(p,p')) = 1).

}°0 is in €2\ £1; as a result, the resulting kernel
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and the reproducing property holds

l n Y"(0,9)
VF € Ha (f, ksm(op ZZ & z(ml;jrl) )

=1 n=-1

—ZZ FlnaYi"(0,0),

=1 n=-1

which we know converges uniformly to f(p) for m > 1 by Proposition 2.38, since f has zero mean.
Here the 3 in the index of ks, indicates that we are working in §* C R? (so that our notation
agrees with that of [11]).
Since H = Hy @ Hi, we can sum the two orthogonal subspace kernels to find the reproducing
kernel for the space H [3]

o0

1 20+ 1
k™ ! = kM / k m , / =1 —_ _—
(pap) 0 (pap)+ 3, (p p) + A7 lz:; lm(l+ 1)m

P (cos(<t(p, 1)))-

Pseudocode for solving smoothing problems on the sphere using this kernel is given in the next
section.

The notorious uselessness of series expression for (62) derives from its slowness to converge.
Fortunately, there are closed-form formulas (in terms of a special function) for ks, for m = 2, 3, and
in some cases the series definition (62) can be used in practice. More details on how to compute this
kernel are given in the following section.

3 Implementing Thin-plate Splines on the Sphere

The chief implementation challenge of the thin-plate splines on the sphere consists in computing the
kernel sum (62) for m = 2 and m = 3. Wahba suggested that we modify their numerators to yield
a topologically equivalent seminorm, more willing to being manipulated into closed form and more
amenable to practical use [154] (later corrected in the erratum [155]).

Keller and Borkowski found that, despite its slow convergence, just 40 terms of the sum (62)
are needed in practice [77]. Indeed, this seems to be the case with the data set presented in the
Example 4.1, as Figure 7g indicates. Nevertheless, closed-form expressions for the kernel simplify
many calculations in practice: from the reproducing kernel of an RKHS 7, one can obtain the
representer of any bounded linear functional on H-not just the representers of evaluation at points
on the index set of H—if one can easily apply the bounded linear functional to the kernel’s arguments
(see Section 2.5). Additionally, even if 40 terms of a slowly converging series that defines the kernel
may be sufficient to represent evaluation functionals for interpolation, many more terms may be
required to recover a bounded linear function, such as a regional mean or derivative, applied to the
interpolant.

While not widely known, there exist closed-form expressions (in terms of the polylogarithm) for
some kernels of thin-plate splines.

3.1 Closed-form Formulas for the Reproducing Kernel of Thin-plate Splines

Closed-form expressions (in terms of special functions) for the thin-plate spline on the sphere have
been found by Wendelberger, Martinez-Morales, and Beatson and zu Castell.
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For the (uninteresting) case of the order-1 splines, it is easy to derive

T P cos(<(o. ) = i) oL

o

kSlpp

where we set x = cos(<t(p,p’)). In hlS thesis [161]7 Wendelberger derived formulas for ks and ks 3
(giving them the argument = = cos(<((p,p’)) rather than two points on the sphere)

o

20+ 1 1 — Lig(1) 4 Li, (2=
hsa( ~ ir Z 2(+ 1) Bi(r) = x >47r 2 () , for |z| <1 ([161], Corollary 4.4.1);
1 o~ 20+1 1 , . (1+x
k3 3(z _Zgﬁ’l—i—l?’ (x) = 47T(—2+L12(1)+2L13(1)—L12( 5 >+
1-— 1— 1—
n ( 2 x> Li, ( 9 x) — 2Li; ( 5 x) ) for || < 1 ([161], Corollary 4.5.1).
On the boundary, we take the limiting values: as z — +1, k33(z) — —2(4(3_1) and as © — —1,

kss(x) — %. While we proved that ks, like ks, is continuous on [—1, 1] in Section 2.2.3, this
closed-form representation of ks 3 is not well-defined on the boundary (the product term evaluates
to 0o - 0 when = = 1).
Here, Li, is the polylogarithm [88, 89| of order s
Lis(z) = 2 vl
which is valid for arbitrary s € C and all z € C for which the sum converges, though we consider
only s € {2,3} and z € [—1,1]. Its name comes from a recursive relation, which shows that the

polylogarithm is a repeated integral of lower orders of itself

ZTL

z L'
Ligt1(2) = / 15T(t)dt, with Li;(2) = —In(1 — 2).
0

This recursive formula comes in handy when using Theorem 4.2 to estimate derivatives or gradients
of a function, with access only to its scattered observations. In our Python-based IPOL demo, we use
the mpmath package [73] to calculate the polylogarithms; the calculation may be sped up by altering
the parameter mp.dps to reduce the number of decimal places of precision.

The Wendelberger formulas for k3 » and ks 3 agree® with those independently derived by Beatson
and zu Castell in [11], which are presented in section 6 of that work. Defining u(z) = 5%, these
formulas are as follows:

. 2 2 1+
(47r)-k;372(9c):ng(l—u(w))+1—%:1—%+L12( 256),

2

(47) - () = 2Ly (u(2)) — L (1 = (@) + I (w()) iy (u(x)) + 2(3) + = — 2

-2+ e () () - () -ma (55

6

Using an operator defined by Martinez-Morales [96], Beatson and zu Castell found recurrence
relations that facilitate the derivation of some thin-plate splines for higher-dimension spheres (and
for penalties with different null spaces), although advances in special function theory are likely
needed to derive an expression for the sum that produces the order-4 thin-plate spline on S?, that is,
ksa [11, 161].

>Up to the factor of 47, which comes from the addition theorem and which is omitted in Beatson and zu Castell [11].
2

Simply note that Lis(1) = ¢(s) and ¢(2) = %
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3.2 Pseudocode for Thin-plate Splines on the Sphere

Smoothing and interpolation thin-plate splines are found by solving the linear system (38). We
provide pseudocode for thin-plate splines on the sphere in Algorithm 8.

Algorithm 8: Find the {a;}?; weights on the spline basis functions (representers of eval-
uation at the n data points) and mean .

Data: A training set consisting of n latitude and longitude values
x; = (0;,¢;) € [0, 7] x [0,27) and n samples y; € R, for i = 1,...,n. The parameters
consist of a regularization penalty A > 0 and an order m € {2,3}. (Those seeking an
interpolator with order m > 3 have recourse to the infinite series that defines ks ,,(-).)

Result: A global mean value o and basis function weights {a;}7,.

Compute the cosine of the spherical angle < between each pair of data points

cos (<(z, z;)) = cos(0;) cos(#;) + sin(6;) sin(6;) cos(¢p; — ¢;).

Compute the n x n matrix Ky in whose ith row and jth column reposes the value
(Kl)ij ks (i, 7)) -

(Expressions, in terms of the polylogarithm, for ks, k32, and ks 3 are given in Section 3.1.)

Kl + n>\In><n ]-n
K «+ ( 17 0 ) .
Solve Ka = y,
a+— Ky

Recover the {o;}" ; and mean value oy:
ap < af—1]
for i in [1,n] do
|y ali — 1]
end

4 Using Splines to Compute Integrals and Derivatives and to
Solve Inverse Problems

Many approaches to the problem of computing an average of a quantity over a sphere from scattered
data are in use [66, 67, 150]. Some require latitude-longitude gridding [51, 103] and others more
sophisticated forms of gridding®. Irregular meshes and multiscale approaches are put to use for
global interpolations and averaging of data that are highly nonstationary over the sphere (such as
topography) [54, 67, 72].

While some of these methods possess computational advantages and offer theoretical performance
guarantees, they can be difficult to use with scattered data. After all, they reduce what is effectively
an interpolation problem (computing a global average requires some understanding of the behavior of
the unknown function between the scattered samples) to regridding—another interpolation problem,

53For instance, grids derived to be equidistributed and to minimize the discrepancy of the grid to the Laplace-
Beltrami operator (an error term based on the Hlawka-Koksma theorem); see [67], Chapter 14.
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often no easier. In practice, many real-world global averaging systems incorporate domain-specific
knowledge of how the quantity under consideration varies spatially to map scattered data from the
spherical surface to an interval, where the averaging problem becomes easier. In Example 4.1, we
consider how global measurements of greenhouse gases are produced in practice and compare these
estimates with those produced using thin-plate splines on the sphere.

Example 4.1 (Computing averages of scattered data on the sphere). In this example, we seek to
estimate the global average of COy from scattered measurements. On FEarth, atmospheric transport
via horizontal winds curtails the variance of greenhouse gases across each parallel. As a result, we
can perform zonal averaging (average scattered measurements over binned latitudes) or fit a curve to
the scattered data values plotted against their latitudes.

The surface integral is thereby reduced to a single integral, which, thanks to a clever choice of
latitude parameterization, can take a particularly simple form. The NOAA GML Carbon Cycle Group
computes global averages of surface greenhouse gas concentrations using calibrated, weekly latitude-
averaged measurements taken from marine boundary layer air [30, 1/6]. A curve of greenhouse
gas concentration versus sine latitude is fit to weekly measurements and used to compute the global
average. If the concentration T depends only on the latitude 0, or this approximation is justified by
the atmospheric transport model and distribution of measurement sites relative to sources and sinks
of the gas, then we can write

w/2 T /2 1
mean(T) = i /_ . /_ T(0)cos(6) do o = % /_ T cos(0) a0 = % /_ T@E)dr.  (63)

after making the substitution x = sin(0). Accordingly, the global mean can be computed by fitting an
interpolant to the scaltered data plotted in sin(latitude) and estimating its 1-D integral®. In the last
five rows of Table 2, we apply variations of this technique to all measurements of site monthly averages
of flask-air COy available from the Global Monitoring Laboratory network for the most recent month
available at time of analysis. The scattered data of COy concentration vs. sin(latitude) are used to fit
natural cubic splines, Gaussian process regression curves, first-order hold curves, and second-order
hold curves to the data, from which the integral (63) is computed. We also use FEuclidean thin-plate
splines based on the penalty (52) and thin-plate splines on the sphere to compute global averages
directly over the sphere simply by calculating the global average of the interpolating surface, over
[0,71] x [0,27) and over S?, respectively. (In the latter case, the global average is given “for free” in
the form of «g.)
Additional results are given in Figures 7-8.

Because the null space H, of the thin-plate spline on the sphere is spanned by {1}, the parameter
g gives the spherical mean. However, for the planar thin-plate spline in the example above, we
fit the spline surface and then calculate the mean value of that surface over [0, 7] x [0,27], not
R2. Similarly, the Berkeley Earth Surface Temperature project uses Kriging to fit an interpolating
surface from scattered data on Earth’s surface and integrates the interpolant over the land surface
to compute a global average land surface temperature [122]. In many Earth science applications,
spatial correlations of an observed parameter between two points tend to follow known transport
phenomena, such as lateral winds. Consequently, Kriging methods, using this outside knowledge,

56Tn practice, a low-pass Butterworth filter of order six is used on resampled data, rather than a spline fit to scattered
data. Individual measurements are, depending on their quality, replaced with 1-10 measurements, equally spaced in
sin(#), so that a digital Butterworth filter may be applied without having to numerically solve a difference equation
(taken from the transfer function of the order-6 filter) on scattered data. This process is repeated twice with different
cutoff frequencies. For further details, see [146]. In Table 2, we instead use more standard curve-fitting techniques for
scattered data.
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Figure 7: (7a) Scattered data of December 2021 monthly averages of flask-air CO5 readings at 44 sites in the Global
Monitoring Laboratory network®”. (7b)-(7c) Spherical and planar thin-plate spline fits of these data, respectively, both
of order 2. The spherical thin-plate spline interpolant is more coherent with the geometry of the sphere. The planar
interpolation surface lacks longitudinal periodicity and embarks on a mean-altering but wiggliness-minimizing excursion
beyond the sample points in the top-right corner of (7c). (7d)-(7e) display samples of the same surfaces as in (7b)-(7c),
respectively, but these sample points, uniformly spaced in the plane under an equirectangular projection, are mapped back
onto a sphere, which throws into relief the meridional discontinuity of planar thin-plate interpolating surface. In the top-right
corner of (7c), the interpolating surface, outside the convex hull of the planar control points, loses its curvature. (7f)-(7g)
show the differences between the spherical and planar thin-plate splines, trained on all 44 points, in their reconstruction of
a mesh of points between 0° E and 60° E longitude, and 20° N and 60° N longitude.

can lead to better global average estimates than thin-plate splines, which encode spatial correlation
via geodesic distance.
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Method Global Average, CO: (ppm)
Thin-plate (spherical, 416.73
Thin-plate (planar, )\ =0) 414.63
Natural cubic (A = 0.001) 417.16
Natural cubic (A = O 1) 417.26
Kriging (o = 1) 417.23
Trapezoidal approximation of (63) 415.36
Simpson’s approximation of (63) 415.56

=
>~
Il
(a=)
~

Table 2: Computation of the integral in (63) using different scattered data interpolation techniques.

Mean CO, vs. A Mean Absolute Interpolation Error (MAE) vs. A

order 2 spherical TPS
422 order 3 spherical TPS

order 2 spherical TPs
101 4 order 3 spherical TPS

418

Mean Value of Interpolating Surface (ppm)

=
ba]
]

MAE of Interpolation at Scattered Data (ppm, log scale)
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A (log scale) A (log scale)

(a) (b)

Figure 8: (8a) A plot of the global mean CO5 of the interpolating surface as a function of the regularization parameter A
used in constructing it. With low values of )\, the order 2 and order 3 spherical splines interpolate the data and, due to
their different wiggliness penalties, form different interpolating surfaces with different mean concentrations of CO5 to do
so. With high values of ), the order 2 and order 3 spherical splines agree, as they each yield what is effectively an element
of Ho = span {1} due to the excessive penalty imposed on wiggliness. With high, but not excessive values X, erroneous
averages may be found. (8b) The mean absolute error in interpolation at the data points increases with the regularization
penalty A, until the interpolation surface is essentially constant.

A theorem from Wahba and Kimeldorf [80, 153, 158] situates this seemingly ad-hoc approach—fit
a curve to data using a wiggliness penalty, then apply a functional to the curve-in Wiener-Hopf-
Kolmogorov linear estimation [109] and Gaussian process [76] theory.

Theorem 4.2 (Wahba [158], Theorem 1.5.2). We can estimate the posterior mean value of a bounded
linear functional Lo applied to a signal given scattered data by applying the functional to the spline
fit of the data if we put a Gaussian process prior on the signal.

Specifically, suppose Y is a zero-mean Gaussian process over an index set X with covariance

E[Y(s)Y (t)] = k'(s,t) for all (s,t) € X?. Let
= iei@(s) + bY2Y (s) for all s € X,

where the linearly independent, deterministic basis functions ¢; are known and the parameters 6;
and b'/? are unknown but fized. Suppose we have a collection of n noisy observations X; of bounded
linear functionals Ly, ..., L, applied to F (for instance, evaluation or observation through certain

5T"The raw data were accessed July 31, 2022, from the GML Data Finder (https://gml.noaa.gov/
dv/data/index.php?parameter_name=Carbon’2BDioxide&type=Flask&frequency=Monthly%2BAverages), and the
positions of and COs; measurements taken at the 44 sites with available December 2021 monthly av-
erage data are available in one convenient spreadsheet (https://www.kaggle.com/datasets/maxdunitz/
scattered-spherical-data-mean-monthly-co2-dec21/).
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instruments at points in X or means taken over regions in X))
XzleF—f—E“ fOTi: 1,...,TL,

where the measurement error is independently and identically distributed: ¢; ~ N(0,0°T). Our goal
is to estimate LoE given our observations the Xi,...,X,. Let H, be the RKHS of the kernel k',
Ho = span{o1,...om}, H = Ho © Hi and Py be the orthogonal projection from H onto Hy. Solve
the spline smoothing problem (identical to (33), with X = o2/(nb)) using the representer theorem
(Proposition 2.60)

n

1 o?
*: 1 — XZ_Lz 2 — P 2 .
f* = argmin = > (X = Lif) + 2|1 £l

n
fer i=1

Then Lof* is the minimum variance, linear, unbiased with respect to 0 estimate 17077 of LoF'. That
18,

— 2 — n —
Lof* = argminE [LOF — LOF} subject to LoF = Zﬁz% and E [(LOF — LoF)|0
BER™ i=1

Remark 4.3. Using this theorem, we can recover and extend some classic quadrature rules. (See [38,
80, 81, 158].) In Ezample 2.6, the representer of evaluation at x was 1.<, and the kernel associ-
ated with the RKHS is k(z,2') = (L.<g, L.<p)r2(0,1)) = min(z,a’), which is the kernel of a Wiener
process (Brownian motion) W. Thus, W is the stationary, zero-mean stochastic process, satisfies
W(0) = 0 and has stationary, independent increments (see [135, 158]). Given a set of observations
at ti,...,t,, the spline smoothing interpolant is the first-order hold, which is easy to see, since, by
the representer theorem (Proposition 2.60), f € span{l.<;,,...,1.<;, }. From Theorem 4.2, we can
see that if we model the prior on a signal f as Brownian motion W, that is, as a Gaussian process
with kernel k(x r') = fol Gi(z,u)G(2',u) du = min(z, 2'), then our Bayesian posterior mean esti-

mate of fo t)dt given measurements {f(t;)}™, is the area under the spline fit, which corresponds
to the standard trapezoidal rule applied to these measurements. If we model the prior on f as once-
integrated®® Brownian motion, with measurements subject to i.i.d. Gaussian noise, then Bayes’s rule
is equivalent to fitting a natural cubic spline to the observed data and integrating that [38, 60)].

This theorem, we reiterate, extends beyond Bayesian quadrature (deriving rules to approximate
an integral by taking a linear combination of (noisy) function samples) to encapsulate the use of
arbitrary bounded linear functional evaluations to approximate another arbitrary bounded linear
functional. It associates with each spline smoothing problem a Bayesian estimation problem, where
the penalized RKHS space H; has the same kernel as the Gaussian process prior’s covariance and the
unpenalized RKHS space H corresponds to a deterministic process. The duality between RKHS and
Gaussian processes—identified by Parzen [112], Wahba’s thesis supervisor, using work from Loéve,

m—1
58The m — 1th integrated Wiener process X,,_1( fo m(t,u) dW (u), where G,,(t,u) = (t(;?ﬁ)! as defined in

Section 2.6.1. Thus, the once-integrated Wiener process is X (¢ fo Gao(t,u) dW (u) fo )+ dW (u). From the
stationary independent increments property of Wiener processes it can be seen that the m — 1th integrated process
X,n—1 has covariance

E[X - 1(8) Xm_1(t)] U G (s, u) dW (u / G (t,u) dW (u } / G (5,u) G (t,u) AW (u) = k' (s, 1),
where k! is the reproducing kernel for the space H; (defined in (41)) associated with the natural polynomial splines
of order m, whose squared norm is fol(f(m) (z))?dx. For the once-integrated Wiener process X1, E[X;(z)X;(y)] =

zymin(z,y) — ¥ min(z,y)? + & min(z, y)? (see Algorithm 4).
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Parzen’s supervisor—can be used as a confidence check for our modeling assumptions. In this article,
we started with wiggliness penalty seminorm and identified the corresponding spaces H, and H;
and the kernel k!'; do these choices seem reasonable when framed as probabilistic assumptions?
Additionally, the theorem can aid the design or deployment of measurement instruments to survey
a natural process that can profitably be modeled as a Gaussian process.

Important technical clarifications are given in the note by Angelika van der Linde-Ploumbidis [152];
the posterior variances of the Bayesian estimates of a linear functional given observations of other
linear functionals are particularly influenced by modeling assumptions. For example, one can arrive
at different error bars on the value of an integral even if the posterior mean is given by the same
quadrature rule. A comprehensive, modern review of the connections between Gaussian processes
and kernel methods is given in [76]; see also [145].

5 IPOL Demo

The IPOL demo® takes as input a csv file with three columns: one called ¢ ¢latitudes’’, which
stores string representations of floating-point numbers corresponding to each observation’s latitude
(degrees in [—90,90]); one called ¢ “longitudes’’, which gives the observations’ longitudes (degrees
in [—180, 180)); and one called ‘observations’’, which stores the real-valued samples to interpo-
late. Alternatively, one can give a png image, which will be interpreted as samples of the grayscale
image value at regularly spaced points under an equirectangular projection, and from which 200
samples will be selected uniformly at random® to construct the thin-plate spline.

Due to computational time constraints on the demo server, if a csv file with more than N =
200 samples is provided, the demo randomly selects a subset of N data points and proceeds. As
implemented, the limiting computational step is not the inversion of the modified Gram matrix K
used to solve the linear system (38) but rather the evaluations of the polylogarithm (to 15 decimal
places of precision, using mpmath) and their conversion to floating point numbers. To speed up the
demo, we precompute the values of Liz(x) and Lis(x) for # € linspace(-1,1,2e6+1) and quantize
cos(7y) to the nearest multiple of 1e-6 before computing Lis(cos(y)). As with the modified Gram
matrix’s inverse, these polylogarithm evaluations can be precomputed in applications with a fixed set
of measurement locations (or, as we have done, an arbitrary set of measurement locations quantized
to fixed precision) and a fixed set of points at which to evaluate the resulting interpolating surface
(or its image after applying a bounded linear operator).

5.1 Comparison with Planar Thin-plate Spline Interpolant

We also output, for the sake of comparison, the result of a thin-plate spline smoother (Algorithm 7)
of order 2 (that is, using Jo g2 in Equation (52)) for the same penalty parameter A and the image
displaying the pixelwise error between the two methods. We compute the spherical mean of the
interpolating surface f

ﬁ /O ' /0 " 10, 6)sin(6) 0 . do (64)

Using the order-2 planar thin-plate spline expansion

N

f(0.0) = ao + @18 + azd + Y iz [|(6,6) = (65, 64)l[ze W [[(6: &) — (B, 6:) e

=1

Shttps://doi.org/10.5201/ipol.2026.451
60We take random vectors in R?, project them on the sphere (if the norm is not too small), and find the corresponding
pixel in which it lies.
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we compute the interpolant’s spherical mean (64) by noting

/ / apsin(0) dd de = ag
21

/ a10sin(f) dfde = —a1
0 2

27 s
/ aspsin(f) df do = mas,
o Jo

and precomputing on quantized measurement locations (6;, ¢;) € [0, 7| x [0, 27]

L[ [
7/0 /0||(0,¢)—(9i,¢i>||§21n|y<e,¢>—(ei,ebz-)I!stin(@)dedqs:wi_

The integral (64) may be given as a linear combination of the weights « learned in fitting the spline
with Algorithm 7

2w N
™
/ f SlIl )d& d¢ = Qg + 50&1 + T + E W;Qiyo. (65)

=1

We use this procedure to output the mean value of the interpolating surface.

5.2 Comparison with Natural Cubic Spline Interpolant of Data Versus
Sine Latitude

Finally, we use a natural cubic spline fit (Algorithm 4) to fit the observations, plotted in one di-
mension, against sine latitude, as in Example 4.1. Note that these sine latitude data are defined on
[—1,1], not [0,1], as was the case in Algorithm 4. We adapt that algorithm with a reparameteri-
zation; see Remark 2.62 for details. The basis functions of H, are mapped to 1 and 1 + x and the
kernel of the space of wiggly functions

1
x+ymm@wy+§mm@w%

k[1071](x7 y) =2y min(x, y) _

becomes
ki - i 1) - 25Y i 2 1y 4 L 341
Fa (@) = ey(min(e, ) +1) - == (min(z,y)" + 1) + 3 (min(z,y)" + 1)

Integrating this natural cubic spline fit, we estimate the global mean of the inputted data. In some
use cases, this is actually quite reasonable: horizontal winds ensure roughly constant measurement
values at each latitude parallel; if this assumption does not hold, this approach to estimating the
global mean may still be of use if the measurements are sufficiently rich and varied that the spline
fit approximates the average observation value at each (sine) latitude parallel.

We precompute the area under the representers of evaluation at x; of the natural cubic spline on
[_17 1]> 1

1 1 1 7 17

so that the integral (63) can be computed from the natural cubic spline fit u term by term
u(sin(0)) = ag + a1 (1 + sin(0)) + Z i1kt (sin(0), sin(6;)),

99



Max DunNiTz

and hence

1 1 1 1
(ﬁ sin(0;)" — G sin(6;)® + = sin(6;)” + zsin(ei) + —7> . (66)

N
. iyl
mean(u(sin(f))) = ag+ oy +
(u(sin(0))) = a0+ ;:1: 5 1 6 24
The demo places each spherical mean estimate on the image corresponding to the interpolant used
to produce the estimate.

6 Discussion

6.1 Challenges

Kernel methods for interpolation, smoothing, and solving inverse problems based on scattered data
are useful only insofar as (38) can be solved in practice, which means their scalability is limited by the
size and conditioning of the Gram matrices (whose size grows quadratically with the number of data
points). While solving (38) clearly poses challenges for machine learning practitioners working with
large data sets, those seeking, for instance, to interpolate or compute averages of sparse measurements
taken over a sphere or region thereof-a common task in geosciences [67] and graphics [23]-are likely
to arrive at a solution to (38) without difficulty.

Classic techniques for dealing with large ill-conditioned Gram matrices include taking care to
choose an appropriate solver [59] for (38), using only a random subset of the data, and finding low-
rank approximations of the Gram matrix. For the latter task, the Nystrém method is a common
choice and implemented in popular software packages such scikit-learn [53, 113]. Wood suggested
using the Lanczos algorithm, though this too poses numerical stability challenges [167].

New techniques for finding low-rank approximations of n x n Gram matrices or k£ x k Gram
matrices, with & < n, that perform well are contributing to a resurgence in the popularity of RKHS
interpolation methods, such as Gaussian process interpolation [9, 28, 33, 115, 165]. For instance,
rather than forming a Gram matrix (K); ; = k(x;, ;) from a data set {z;}!", and {y;}",, one uses
automatic differentiation to choose a set of control points {x;};“,zl and {y; ;?':fnot necessarily among
the data one has access to—such that spline fit learned by solving (38), namely

m K
o(z) =Y didi(w) + Y ek (w,27),
j=1 i=1

to these control points minimizes some loss on the data set one has access to. The Gaussian process
literature calls the sample locations found via such an approach “inducing variables” [65]. In practice,
it is much easier to optimize over {z/}¥ ,, {y/}¥,, and X than {2/}¥,, ¢, and d, due to the greater
interpretability (unless K is exceptionally well-conditioned more reasonable gradients) of the former.
When trying to fit splines to many examples, it can be more efficient to use neural networks to learn
the inducing points from the examples®..

Such techniques are useful not just after data acquisition but can be used prospectively, with
domain knowledge or simulated data, to optimize the design of instrument arrays or the deployment
of sensors in the field. When considering the problem of estimating an interpolating surface of
greenhouse gas concentrations across a spherical model of Earth, knowledge of areas with significant
greenhouse gas exchange or high variance can be used to identify new sensor locations.

61'We update Isaac Jacob Schoenberg’s [130] dictum that “polynomials are wonderful even after they are cut into
pieces, but the cutting must be done with care”. The cutting can be done with keras.
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6.2 Extensions

Discontinuities—for instance, along coastlines, mountain ranges, or fronts—can be encoded via the
decomposition principle, explained in detail in [157]. Other forms of nonlinearities—present in the
observation functionals in (33), rather than the native space H-are discussed in [110, 157, 169].
Convex constraints such as monotonicity can be incorporated into the smoothing problem (33) with
techniques such as [10, 166].

Splines for vector-valued functions on the sphere have also been considered; see [138] for an
application to estimating Earth’s magnetic field based on scattered measurements. Moreover, splines
have been adapted to sphere-like surfaces, most often using mesh methods in practice, though a wide
variety of techniques are available [2, 35, 45, 92].

6.3 Other Splines on the Sphere

Of course, thin-plate splines (and Wahba’s approximation thereof) are far from being the only splines
from which scattered data fitting applications can profit. A veritable zoo of such functions can be
found in Chapter 10.6 of [78], along with further development of RKHS theory, as well as in [43]. The
characterization and study of positive-definite [129] and strictly positive-definite functions [171, 26]
on the sphere remains an active research area, with many applications to machine learning (as these
are the correlation functions of isotropic Gaussian processes) [12, 56, 71, 108, 170].

6.4 Other Implementations

Wood has implemented several splines on the sphere, including the thin-plate “pseudo-splines”
in [154], for the R programming language in the library mgcv [168].
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