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Abstract

In many applications, planar spline interpolations of scattered data on the sphere are unsatisfac-

tory; spherical splines are desired. Wahba (1981) de�ned the thin-plate splines on the sphere by

analogy with the polynomial splines on the circle and the thin-plate splines in Rd. The thin-plate

spline �t to a scattered data set on the sphere is the solution to an empirical risk minimization

problem that penalizes the in�delity of the �t to the data as well as its �wiggliness�. This latter

term is the square of a seminorm penalty based on the Laplace-Beltrami operator. The mini-

mization problem is posed in a reproducing kernel Hilbert space (RKHS) of functions of �nite

wiggliness, whose reproducing kernel is isotropic and, due to a result by Schoenberg (1942), given

by a Legendre series. A closed-form expression (in terms of the polylogarithm) for the kernel

was found by Wendelberger (1982) and re-discovered by Beatson and zu Castell (2018). These

closed-form expressions make not just spline interpolation but also downstream signal-processing

tasks, such as cubature or resolution of inverse problems, more tractable in �elds where scattered

data and spherical models are common, such as remote sensing, geostatistics, motion planning,

graphics, and medical imaging. In this paper, we present a tutorial on spline methods in RKHSs

and show how they can be used to interpolate, smooth, and numerically integrate scattered data

on the sphere and solve related inverse problems. The accompanying demo compares thin-plate

spline interpolation over the sphere with thin-plate splines on an equirectangular projection and

natural cubic splines on a one-dimensional latitudinal projection used in greenhouse gas mon-

itoring. Global mean values of the interpolation surfaces are presented as well, to illustrate

how this isotropic spherical kernel�which penalizes interpolant wiggliness without concern for

application-speci�c factors like atmospheric winds�a�ects the computation of global averages.

Source Code

A Python implementation of the algorithms described in this article is available at the associated

web page1. Usage instructions are included in the README.txt �le of the archive. The associated

online demo is accessible through the web site.

Keywords: spherical signals; geostatistics; cubature; approximation; scattered data; inverse

problems; interpolation; RKHS; reproducing kernel Hilbert space; splines; thin-plate splines
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1 Introduction

Among signal-processing practitioners, the word �spline� often conjures up a limited set of techniques
for interpolating data that are sampled at regular locations (such as images). In the statistics
and inverse-problems communities, spline models are used to solve a richer set of variational data-
�tting problems, such as interpolating data, smoothing data, and solving inverse problems based on
observations of bounded linear functionals. They can be applied in diverse settings, including on
compact Riemannian manifolds such as the sphere, or in �nite simple graphs. Their �exibility makes
them suitable for scattered data applications�that is, on data sets that are irregularly sampled�
without the need for gridding the data. While certain less �exible methods for interpolation used in
image processing do not generally require a matrix inversion, this relative advantage often vanishes
in the context of an inverse-problem processing chain that requires an inversion anyway.

In the reproducing kernel Hilbert space (RKHS, introduced in Section 2.1) framework, splines are
not just an element of a signal-processing chain but also a language in which to express the solution
to the empirical risk minimization problem the processing chain seeks to resolve. The positive-
de�nite kernel associated with each RKHS model space expresses the similarity between points in
the index set (which can be arbitrary). Accordingly, the curve-�tting properties of spline models
depend on how the kernel expresses similarity on the index set. Kernels can be de�ned using the
geometric properties of the index set, statistical models expressing similarity (covariance) between
elements the data set, or computed features. For problems posed on index sets with geometric
structure�such as Euclidean space, compact Riemannian manifolds, and graphs�and in the absence
of additional information apart from a preference for smoothness, the thin-plate splines are a natural
choice of interpolant. In Euclidean space, they represent the bending energy of a thin sheet in the
linear elastic regime (see Section 2.6.4). They are, moreover, based on the Laplacian, which yields
desirable invariance properties. The use of the Laplacian, which maps functions to functions and
possesses a spectrum that exposes geometric and topological properties of the index set, also lends
the approach interpretability and generalizability.

Derived using a smoothness seminorm penalty involving the iterated Laplacian, the iterated
Laplace-Beltrami operator of a compact Riemannian manifold, or the iterated Laplacian matrix of a
graph, the space of thin-plate splines is equipped with a notion of �wiggliness� that is adapted to the
metric of the index set and that possesses the same isometry-invariance properties of the Laplacian.
The minimizer of empirical risk, therefore, is a function over the Euclidean space, manifold, or full
set of vertices in the graph that minimizes disagreement with the scattered observations as well as
this measure of wiggliness.

1.1 What Do We Mean by �Spline Model�?

Spline models are, in general, solutions to an empirical risk minimization problem formulated over a
hypothesis space of functions over an index set. These problems penalize disagreement with a set of
observations (often scattered pointwise evaluations) and prior knowledge.

In geostatistics, this prior knowledge usually takes the form of a Gaussian process. To each point
on the index set (typically identi�ed with time or Euclidean space), we associate a random variable
corresponding to the real variable we wish to interpolate. We assume the joint density of any �nite
set of these variables is Gaussian. The mean of the observed value depends only on the observed
location � and is often constant. The covariance of any two random variables assumes a parametric
form that depends on the displacements between the two corresponding index locations � for isotropic
models, on their Euclidean distance alone. Non-isotropy may be introduced to incorporate knowledge
about prevailing winds, ocean currents, and so forth (with care to ensure valid covariance matrices).
Specifying the parametric form of the model amounts to choosing a function space and a distribution
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thereon. High covariance at small displacements favors smooth interpolants. An interpolating spline
is found by conditioning the Gaussian process on the values of noise-free observations; a smoothing
spline is found by incorporating a likelihood function modeling observation noise. In either case,
the mean value of the posterior distribution at a set of evaluation points is easily computed using
linear algebra (see, e.g., [164], Equation 2.23). In the kriging community, the parametric model of
covariance is called a variogram or semi-variogram; in the Gaussian process community, a covariance
function or kernel. With cokriging, auxiliary data, often sampled at di�erent scattered locations, can
lend further credibility to the interpolant. For instance, humidity measurements can enhance the
estimates of atmospheric temperature between scattered observations. Introducing prior knowledge
requires choosing a parametric family of covariance function (and, for cokriging, cross-covariance
functions) and selecting the parameters.

In applications where such prior knowledge is inaccessible or di�cult to model accurately, smooth-
ing splines are a common tool. These penalize the wiggliness of the function using the geometry of
the index set. Since, by Stokes's theorem, −div and ∇ are formally adjoint, penalizing the Dirich-
let energy�the squared Euclidean norm of the gradient �eld of the function over the index set�is
equivalent to penalizing a Laplacian-based term: u ·∆u∫

X
||∇u(x)||2 dx =

∫
X
⟨∇u(x),∇u(x)⟩ dx =

∫
X
−div(∇u(x)) · u(x) dx =

∫
X
u(x) ·∆u(x) dx .

More generally, the smoothing-spline wiggliness penalty of order m takes the following form:

Jm,X (f) =

{∫
X (∆

m/2f(x))2 dx , if m is even;∫
X ||∇(∆

(m−1)/2f(x))||2 dx , if m is odd.

This penalty can be written, where boundary conditions allow,

Jm,X (f) = (−1)m
∫
X
f(x) ·∆mf(x) dx . (1)

This sensible notion of wiggliness yields penalties that are invariant to isometries. That polyno-
mials of the Laplacian are translation- and rotation-invariant di�erential operators in Rd (indeed, the
only ones!) follows easily from the properties of the Fourier transform (see, e.g., [49], Theorem 2.1).
The wiggliness seminorm of thin-plate splines in Rd, de�ned using the iterated Laplacian, is invariant
to isometries: the wiggliness of spline interpolants can be de�ned in terms of a radial basis function
that depends only on the Euclidean distances between spline knots. On compact Riemannian man-
ifolds, the Laplace-Beltrami operator, de�ned using the metric, commutes with isometries (in fact,
the only di�eomorphisms that leave the Laplace-Beltrami operator invariant are isometries; see [64],
Proposition 2.4). On the sphere in particular, all positive-de�nite kernels that depend only on the
geodesic distance between points have a simple characterization in terms of their expansion on the
eigenfunctions of the spherical Laplacian. The wiggliness of a spline interpolant can be given in terms
of such a kernel. By a theorem of Schoenberg, expansions of such kernels on these eigenfunctions, the
spherical harmonics, must weight equally every harmonic of the same Dirichlet energy; see Section
2.2.3. This isotropy ensures that rotating the sphere will not a�ect the measured wiggliness of a
function thereon. A similar situation arises on graphs: wiggliness penalties based on the iterated
Laplacian are invariant to automorphisms (vertex permutations that preserve the edge structure);
the Laplace matrix of the transformed graph is permutation-similar to the original Laplace matrix
and thus has the same spectrum [57, 139].

The form (1) of the penalty is particularly useful for index sets X that are compact manifolds
like the sphere (and for graphs). Since the eigenfunctions of the Laplace-Beltrami operator form a
complete orthonormal system for L2(X ), with corresponding eigenvalues giving the Dirichlet energy
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of each mode, we can represent this penalty �on the Fourier side,� as an in�nite series of wiggliness-
weighted Fourier coe�cients. The space of functions for which this series converges�the functions with
�nite wiggliness penalty�is an RKHS. For certain manifolds like the circle and sphere, no truncation
of the in�nite series is required in practice as the series has a closed-form expression in terms of
special functions.

1.2 Natural Cubic Splines

To make things a bit more concrete, let us take a look at one of the best-known examples of these
splines, the natural cubic splines. The thin-plate splines in Rd or on the sphere can be seen as
generalizations of these splines. The natural cubic splines live in a space of well-behaved functions
that we call H, as it is an RKHS. The space H can be written as the direct sum of two RKHSs
H = H0 ⊕H1:

� H1 is an in�nite-dimensional space of continuous functions2 with continuous ordinary deriva-
tive and ordinary second derivative that exists almost everywhere and is square-integrable.
The squared norm of this space is the wiggliness penalty, designed to enforce smoothness by
measuring curvature on some index set X = [a, b], given by

J2,X (u) =

∫
X

(
u(2)(x)

)2
dx . (2)

To ensure the wiggliness penalty is a de�nite norm on H1, we require that all nonzero functions
in H1 be wiggly: u ∈ H1 and u ̸= 0 =⇒ J2,X (u) > 0. In Section 2.6.1, we will use boundary
conditions to enforce de�niteness.

� H0 is the �nite-dimensional null space of J2,X : u ∈ H0 =⇒ J2,X (u) = 0. H0 contains
the functions that are su�ciently well-behaved to live in H and su�ciently non-wiggly to be
assigned 0 by J2,X , which is a seminorm on H. In Section 2.6.1, we will see that H0 is the space
of a�ne functions on X .

We will give precise de�nitions of the spacesH,H0, andH1 associated with the natural cubic splines in
Section 2.6.1. The natural cubic splines are functions σ ∈ H that solve an empirical risk minimization
problem. Speci�cally, for each data set ({(xi, yi)}ni=1) with xi ∈ X and yi ∈ R and for each choice of
regularization parameter λ > 0, the associated natural cubic smoothing spline is the function σ ∈ H
that minimizes, over H, the empirical risk

R2,X ,λ(u) =
1

n

n∑
i=1

(u(xi)− yi)2︸ ︷︷ ︸
adherence to training data

+λ J2,X (u)︸ ︷︷ ︸
wiggliness
penalty

.

By the Wahba-Kimeldorf representer theorem [79, 131, 159] (see Section 2.5), the spline may be
written sparsely, or at least in a �nite manner, as follows:

σ =

dimH0∑
j=1

αjϕj +
n∑

i=1

βikxi
,

2The elements of H1 are equivalence classes of functions that agree almost everywhere. Here, by a Sobolev em-
bedding theorem, we can choose a unique representer for H1 that is absolutely continuous, has absolutely continuous
(ordinary) derivative, and has an (ordinary) second derivative that is de�ned almost everywhere and square integrable.
See Theorem 129 of [17] and Theorem 10.45 of [162].
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where the ϕj are a basis for the �nite-dimensional RKHS H0 and the kxi
are the representers of

evaluation at the scattered data, that is, the Riesz representations of the evaluation functionals at
the xi. (RKHSs are Hilbert spaces on which all evaluation functionals�that is, linear functionals
on H1 associated with a point x ∈ X that map a function f to its pointwise evaluation f(x)�are
bounded and therefore have Riesz representations.) By the kernel trick, we do not need direct access
to the representers of evaluation; our interaction with them is mediated by the Gram matrix of their
inner products (K)i,j = ⟨kxi

, kxj
⟩H1 . We will recall these details in Section 2.1.

1.3 Thin-plate Splines Are Generalizations of the Natural Cubic Splines

Natural cubic splines and their planar equivalent, the thin-plate splines on the plane, were �rst
introduced using integration by parts. The kernel can be computed using the Green's function of the
Laplacian. Since the Green's function of the planar Laplacian would vary with the geometry of any
choice of bounded domain over which the Laplacian-based wiggliness penalty is applied, typically X
is set to all of Rd, with the constraint that m > d/2.

We rewrite the penalty (2) to place it in a form that is consistent with the thin-plate splines in
Euclidean d-space. With appropriate boundary conditions3, two integrations of (2) by parts yield

J2,X (u) =

∫
X
u(x) · u(4)(x) dx =

∫
X
u(x) ·∆2u(x) dx , (3)

where ∆ = d2

dx2 is the Laplacian operator on R. The iterated Laplacian operator contributes similarly
to the de�nition of thin-plate splines in Euclidean space Rd. On the sphere, the iterated Laplace-
Beltrami operator ∆S plays the part of the Laplacian in de�ning thin-plate splines. This operator
is the restriction of the Euclidean Laplacian to the surface of the sphere; its isometry invariance can
be established without results from di�erential geometry by appealing to the isometry invariance of
the iterated Euclidean Laplacian and the restriction operator; see [68], Chapter 3.1, or [52], page
5. By analogy, splines can be de�ned on graphs using the Laplace matrix; the wiggliness penalty
is invariant to edge-preserving vertex relabelings, which leave the Laplace matrix's spectrum alone.
Our generalizations of the natural cubic splines to Rd use wiggliness penalties of the form

Jm,X (u) = (−1)m
∫
X
u(x) ·∆mu(x) dx ,

which have �nite-dimensional null space. On a restricted space of functions H1 of nonzero wiggliness,
these penalties are de�nite, and induced by a de�nite inner product ⟨·, ·⟩H1 given by

⟨f, g⟩H1 = (−1)m
∫
X
f(x)∆mg(x) dx .

We can use the Green's function Em(x, t) of the m-iterated Laplacian, which satis�es

∆mEm(t, x) = δ(t− x),

to establish the reproducing property

f(t) = (−1)m
∫
X
f(x) ·∆mEm(t, x)︸ ︷︷ ︸

δ(t−x)

dx = ⟨f, Em(t, ·)⟩H1 ,

3In de�ning the natural cubic splines�and, more generally, the natural polynomial splines (see [17], Theorem 68)�
our model space H1 will be de�ned using boundary conditions u(x1) = u(xn) = . . . = u(m−1)(x1) = u(m−1)(xn) = 0,
which do not necessarily permit the integration by parts to rewrite (2) as (3). However, it turns out that the functions
in the model space that minimize (2) also satisfy the natural, or Neumann, boundary conditions and are linear beyond
the scattered data: if X = [x1, xn], requiring that u(n)(x1) = u(n)(xn) = 0, for n = m,m + 1, . . . , 2m − 1, does not
change the solution [158].
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via the �sifting� property of the Dirac δ. Taking the inner product of a function f with a Green's
function Em(t, ·) of the m-iterated Laplacian, evaluated at one argument t, evaluates f at t; the
Green's function acts as a Riesz representation of evaluation at t in this restricted space of functions
and can be used to compute a reproducing kernel. We can then extend the solution to the direct
sum of H1 and H0, the null space of Jm,X . We cover this approach in detail in Section 2.6.

While the natural polynomial splines on R and the thin-plate splines on Rd are introduced using
a Green's function, thin-plate splines on compact manifolds such as the sphere and circle are derived
�on the Fourier side� using the eigenfunctions of the Laplace-Beltrami operator.

1.4 Certain Thin-Plate Splines Are Derived on the �Fourier Side�

It is well-known (see, e.g., [123], Theorem 1.29) that for any compact connected oriented Riemannian
manifold X , there exists a complete orthonormal basis of L2(X ) consisting of eigenfunctions {ϕn}∞n=1

of the Laplace-Beltrami operator whose eigenvalues {λn}∞n=1 are nonnegative, each with �nite mul-
tiplicity, accumulating only at in�nity. Zero is an eigenvalue of multiplicity one, whose associated
eigenspace consists of the constant functions, i.e., span {1}. This holds on a manifold without bound-
ary (as is the case for the sphere), or with boundary, provided we impose the Neumann or Dirichlet
boundary conditions. In Section 2.6.2, we de�ne the polynomial splines on the circle as splines on
the compact interval [0, 1] using Dirichlet boundary conditions.

Moreover, each eigenvalue λn of the Laplace-Beltrami operator gives the Dirichlet energy (a
common measurement of wiggliness) of the corresponding eigenfunction ϕn. Expanding a function
in f ∈ L2(X ) as a Fourier series on this basis,

f ∼
∞∑
n=1

(f)nϕn (where convergence is in the L2(X ) norm),

we can, using the orthonormality of the basis functions, write a seminorm penalty like

Jm,X (f) = (−1)m
∫
X
f(x) · (∆mf)(x) dx

in series form

Jm,X (f) = (−1)m
∫
X
f(x) ·∆mf(x) dx = (−1)m

∫
X

(
∞∑
n=1

(f)nϕn(x)

)
·

(
∞∑
n=1

(f)nλ
m
n ϕn(x)

)
dx

=
∞∑
n=1

(f)2nλ
m
n

∫
X
ϕn(x)

2 dx︸ ︷︷ ︸
1

=
∞∑
n=1

(f)2nλ
m
n .

The series converges whenever the Fourier components {(f)n}∞n=1 decay su�ciently quickly to over-
come the weighting the iterated Laplace-Beltrami operator places on the wiggly, high-Dirichlet-energy
(high-λn) components. In such situations, as we will see with the thin-plate splines on the circle and
on the sphere, the functions of �nite wiggliness penalty are so well-behaved that they can be evalu-
ated pointwise and constitute an RKHS. The Fourier expansion f ∼

∑∞
n=1(f)nϕn in fact converges

pointwise for any spline of order m > 0.
We develop these ideas more explicitly and rigorously in Section 2.2. The process of constructing

an RKHS and corresponding reproducing kernel by penalizing the functions' components on certain
the eigenfunctions is described in Proposition 2.38. To see how weighting spherical harmonics by
their Dirichlet energy yields an isotropic kernel, see Section 2.2.3.
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1.5 Outline

The remainder of this article is organized as follows. In the next section, we give a tutorial on RKHSs
and on solving certain variational problems in these spaces�problems where the regularization penalty
has a null space of �nite dimension. The solutions to these problems are what we call splines. We
develop the motivation given by Wahba for the thin-plate splines on the sphere [154, 158] in part
by enumerating their kin, the splines that belong to the family of, in the words of Duchon, �splines
minimizing rotation-invariant seminorms in Sobolev spaces��the thin-plate splines [40].

Those interested only in implementation details of thin-plate splines on the sphere may safely skip
to Section 3, where the kernel for thin-plate splines on the sphere is given, along with pseudocode for
�nding the thin-plate spline interpolants of scattered data on the sphere. In Section 4, we stress that
the (nearly) closed-form expressions for the reproducing kernels of the thin-plate splines on the sphere
allow us not just to learn interpolants of scattered data, but also to estimate the values of a linear
functional applied to an unknown continuous function on the sphere from its scattered samples by
applying the functional to the interpolant. More generally, we can solve inverse problems where our
scattered data need not be mere (possibly noisy) evaluations of an unknown function on the sphere,
but can be measurements produced by arbitrary bounded linear measurement functionals. As an
illustration, we estimate the global mean of the atmospheric CO2 concentration based on scattered
measurements. This example can be run in the IPOL demo, which is described in Section 5. Finally,
in Section 6, we provide some brief discussion with pointers to extensions and other implementations
of the thin-plate splines on the sphere in the literature.

2 Thin-plate Splines on the Sphere: An Overview of the Math-

ematical Background

The solutions to norm-minimization problems that arise in approximation and inference contexts,
such as

argmin
x∈Rn

||Ax− b||Rm ,

can often be characterized with local criteria, since norm objectives are convex. When formulated in
a Hilbert space H, these local criteria take the form of orthogonality constraints. In such cases, the
norm objectives ∥·∥ are induced by an inner product ⟨·, ·⟩ = ∥·∥2. Squaring each norm objective term
|| · ||, we arrive at a problem that is equivalent to our original problem (when the objective consists
of a single term) or that serves as a tractable proxy for it4 (when the objective consists of multiple
summed norm terms). In our example, we get the following reformulation

argmin
x∈Rn

||Ax− b||2Rm = argmin
x∈Rn

⟨Ax− b,Ax− b⟩Rm ,

In this case, the objective's (Fréchet) derivative is proportional to the inner product5. The derivative,
taken at x, is the following bounded linear functional

∇x||Ax− b||2Rm = v 7→ 2⟨Ax− b,Av⟩Rm = 2⟨AT (Ax− b), v⟩Rn .

4For example, the problem of �nding a k-dimensional subspace of a Euclidean space Rd that approximates a data
set in Rd by minimizing its sum of squared Euclidean residual norms after orthogonal projections is solved by taking the
span of the �rst k principal components found by Principal Components Analysis (PCA). This problem is an example
of benign non-convexity as the problem is formulated over the non-convex manifold of subspaces, the Grassmannian.
However, replacing the sum of squared residual Euclidean norms with a sum of residual Euclidean norms eliminates
the benignity in the worst case (the problem becomes the NP-complete 2-1 norm matrix approximation problem [98]).

5In any real Hilbert space, the Fréchet derivative of the map x 7→ ||x||2H, evaluated at x ∈ H \ {0}, is the bounded
linear functional on H′ given by h 7→ 2 ⟨h, x⟩H . Hilbert spaces over C require greater care.
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As a result, norm-minimization problems reduce to an orthogonality constraint (called the normal
equations) via the �rst-order condition6

�nd x such that ∇x||Ax− b||2Rm ≡ 0 ⇐⇒ ∀v ∈ Rn, ⟨AT (Ax− b), v⟩Rn = 0 ⇐⇒ AT (Ax− b) = 0.

In Euclidean space, these equations ATAx = AT b always have a solution. Indeed, a solution always
exists when we replace the m×n matrix A with an arbitrary bounded linear map A from any Hilbert
space H1 to any Hilbert space H2, provided the range of A is closed in H2 (i.e., if A is bounded
below): we write ATAx = AT b, where AT is the adjoint of A (see [90], Section 6.9). In e�ect,
this is the Hilbert space projection theorem applied to the range of A; the solution applies to b the
Moore-Penrose pseudoinverse of A7.

When optimizing over spaces of large or in�nite dimensions, we can still struggle to express the
solution (or a Cauchy sequence that converges to it quickly) on a computer. However, if we know
the solution lies in a �nite-dimensional vector or a�ne subspace, or in the orthogonal complement
of a �nite dimensional space8, we can write the solution using �nite-dimensional linear algebra.

Using the theory of reproducing kernel Hilbert spaces, we can take full advantage of these results
about norm-minimization problems in Hilbert spaces to solve interpolation problems. In a reproduc-
ing kernel Hilbert space H, a constraint set consisting of a �nite set of pointwise evaluation equalities,
as in the interpolation problem

argmin
f∈H

||f ||2H subject to f(x1) = a1, . . . , f(xn) = an,

is an a�ne subspace that can be expressed in terms of the inner product ⟨f, k(·, xi)⟩H = ai, where
k is the kernel associated with the space. The solution to the interpolation problem can be found
by inverting the Gram matrix (K)i,j = k(xi, xj) associated with the kernel. Even if we relax the
interpolation problem into an empirical risk minimization problem

argmin
f∈H

n∑
i=1

loss(f(xi), ai) + λ||f ||2H,

with arbitrary loss (see [131], Theorem 1) or replace the function evaluations f(xi) with other bounded
linear functionals, the solution remains a �nite-dimensional linear algebra problem, even if H is
in�nite-dimensional. We can see that any minimizer of the above loss must lie in span {k(·, xi)}ni=1,
as projecting any potential solution onto this �nite-dimensional subspace cannot a�ect the data-
adherence loss term but can reduce the wiggliness penalty ||f ||2H. This striking result�that the
minimizer over a large or in�nite-dimensional space of a norm-minimization problem lies in a �nite-
dimensional space spanned by what are called the Riesz representations or �representers� of evaluation
at the data locations�is known as the representer theorem (see Section 2.5). It was introduced by
Grace Wahba and George Kimeldorf in the context of L-splines [79, 80], which include the splines in
this article as a special case. In short, for norm-minimization problems in Hilbert spaces, completeness
and convexity guarantees us the solution's existence; Hilbert space theory allows us to characterize
the solution in terms of inner products; and RKHS theory gives us an expression for the solution in
terms of the Gram matrix of the kernel. It is the last step that (in theory) brings tractability.

6Since the objective is convex and the set over which we are optimizing is convex, the Euler inequality is necessary
and su�cient for a global optimum. Since we are optimizing over the space H itself, every point is an interior point,
and the Euler inequality becomes the �rst-order condition.

7Which always exists in Hilbert spaces when the range of A is closed and, more generally, for von Neumann-regular
operators in C∗-algebras [62].

8After all, minimizing the distance (induced by the Hilbert norm) between a function f and a Hilbert subspace
M�i.e., �nding its orthogonal projection fM on M�is equivalent to maximizing the alignment between the di�erence
vector f − fM and any vector in M⊥.
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This section is organized as follows. In Section 2.1, we review RKHS theory. In Section 2.2, we
restrict our attention to index sets that are closed regions in Euclidean space and synthesize kernels
for such index sets using an ℓ1 sequence and a complete orthonormal system for the index set; we give
particular attention to the sphere, on which we characterize all positive-de�nite functions that are
isotropic. Then in 2.3, we return to a general context, where index sets can be arbitrary, and show
how norm-minimization problems like interpolation and smoothing can be solved in an RKHS using
�nite-dimensional linear algebra, for which pseudocode is provided. Sections 2.4-2.5 are devoted to
translating these results to the case of seminorm-minimization problems, where the seminorm has
null space of �nite dimension. Finally, in 2.6, we introduce the thin-plate splines over di�erent index
sets, including the sphere, as solutions to seminorm-minimization problems.

2.1 Reproducing Kernel Hilbert Spaces (RKHSs)

Much of the material in this section is standard and may be found, for instance, in [4, 17, 78, 93, 95,
132, 134, 141].

2.1.1 RKHS Basics

A Hilbert space9 is an inner product space that is complete with respect to the norm induced by its
inner product. The theory of reproducing kernel Hilbert space depends on the Riesz representation
theorem, which identi�es an isometric isomorphism between a Hilbert space H and its (�continuous�
or �topological�) dual space H′, that is, the space of bounded linear functionals from H to a complete
�eld (which we take to be R, rather than C). Through this isomorphism, any bounded linear
functional on H can be expressed as an inner product between the input and a �xed element of H,
often called the representer of the functional.

Theorem 2.1 (Riesz-Fréchet representation theorem). Let E : H → R be a linear functional on a
Hilbert space H. Suppose that E is bounded (or, equivalently, since it is linear, continuous). That is,
suppose there is a number M > 0 such that, for all u ∈ H, we have that

||Eu||R ≤M ||u||H.

Then there exists a unique element ηE in H, called a representer of the functional E, such that, for
all u ∈ H,

Eu = ⟨u, ηE⟩H;

moreover, ||ηE||H = ||E||H′.

Proof. See, for example, [36], Theorem 3.7.7.

Remark 2.2. This theorem tells us that every bounded linear functional has a representer. Its proof
involves the construction of a linear10 isometric isomorphism that maps the bounded functional E
to its representer ηE. Conversely, every u ∈ H is a representer of the bounded linear functional
Eu = · 7→ ⟨·, u⟩H.

In a reproducing kernel Hilbert space (RKHS), evaluation functionals have representers.

9While we work with real Hilbert spaces, the key results presented here all generalize to complex Hilbert spaces
when conjugated accordingly, except where stated otherwise. In proofs, replace words like �bilinear� with �sesquilinear�,
�symmetry� with �conjugate symmetry�, and so forth.

10Antilinear (conjugate-linear) if we take the �eld to be C.

9



Max Dunitz

De�nition 2.3 (RKHS: when you're here, your evaluation functionals are bounded). A reproducing
kernel Hilbert space (RKHS) is a Hilbert space H ⊆ RX over an index set X such that, for all x ∈ X
the evaluation functional at x

Ex : H → R
u 7→ u(x),

is a bounded linear functional.

Remark 2.4. This de�nition tells us that as functions in an RKHS approach each other in the
RKHS norm, their pointwise evaluations approach each other as well. Indeed, given an RKHS H
with inner product ⟨·, ·⟩H and induced norm || · ||H, we know that, since for all x ∈ X the evaluation
functional at x, Ex, is bounded, by the Riesz representation theorem, there is a unique representer
kx = ηEx of Ex such that, for all f ∈ H

f(x) = ⟨f, kx⟩H.

Using the Cauchy-Schwarz inequality, we can con�rm that a sequence of functions {fn}∞n=0 that
converges in H to a function f also converges pointwise at every x ∈ X

for all ϵ > 0, ||fn−f ||H < δx =
ϵ

||kx||H
=⇒ |fn(x)−f(x)| = |⟨fn−f, kx⟩H| ≤ ||fn−f ||H||kx||H < ϵ.

If there exists an M for which, for all x ∈ X , ||kx||H ≤M , then this convergence is uniform.
Pointwise convergence is assured in an RKHS even if fn converges to f only weakly in H.

for all h ∈ H, ⟨fn, h⟩H −→ ⟨f, h⟩H
implies that, in particular, for all x ∈ X ,

fn(x) = ⟨fn, kx⟩H −→ ⟨f, kx⟩H = f(x).

Before we present an example of an RKHS, let us recall the following de�nition of a Sobolev space
of positive integral order.

De�nition 2.5 (Sobolev space of positive integral order m). Let X be a bounded interval of the real
line. The Sobolev space Wm,2(X ) = {u ∈ D′(X ) | u(i) ∈ L2(X ) for i = 0, 1, . . . ,m}, where u(i) is
the ith weak (distributional) derivative. We can simplify this de�nition by noting (see [17], Theorem
129) that any distribution is in Wm,2(X ) if and only if it has a unique representer u that satis�es
the following:

1. its ordinary derivatives u(i) are absolutely continuous and square integrable on X for i =
0, . . . ,m− 1;

2. its ordinary derivative u(m) is de�ned almost everywhere and is square integrable on X .
Note that the spline literature uses nonstandard de�nitions of Sobolev norms11. The classical

inner product given to a Sobolev space is

⟨f, g⟩H =
m∑
i=0

⟨f (i), g(i)⟩L2(X ).

11For an open, bounded subset of R such as an interval (a, b), the space of functions assigned a �nite value by
this norm�the Beppo Levi norm�coincides algebraically with the Sobolev spaces because the Poincaré identity tells
us these norms are equivalent on the smooth test functions compactly supported on this subset [37]. Splines derived
from wiggliness penalties corresponding to standard Sobolev 2-norms on X = Rd, that is, ||u||Hm

=
∑m

i=1 ||u(i)||2L2(X )

(with m > d/2) are called Matérn kernels and can be expressed in terms of the modi�ed Bessel function of the second
kind. A variety of other Sobolev-like penalties have been considered for constructing splines such as the splines with

tension that minimize a di�erence between the m+ 1-iterated Laplacian and the weighted m-iterated Laplacian [21].
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However, the wiggliness penalties of thin-plate splines are symmetric bilinear forms that exclude the
�rst m− 1 derivatives from the penalty

⟨f (m), g(m)⟩L2(X ), (4)

which does not possess de�niteness on the model spaces we care about, such as the Sobolev space of
order 2 on X = [0, 1] (the model space for the natural cubic splines). We call any such semide�nite
bilinear form a semi-inner product or an inde�nite inner product. In Section 2.6.1, we will use the
decomposition principle (see Section (2.4)) to complement the inde�nite inner product with an inner
product over its null space, rendering it de�nite. The Sobolev spaces of integral order m ≥ 1 are
RKHSs [17, 100] with this extension to the inner product (4), as we will see in Section 2.6.1.

The �rst example of an RKHS we consider is the Sobolev space of order m = 1 on X = [0, 1].
We impose boundary conditions on the space so as to make (4) strictly de�nite over the space. In
Section 2.6.1, we show how to remove these boundary conditions by using the decomposition principle
to complement the inde�nite inner product (4) with an inner product on its null space.

Example 2.6. Let H be the Sobolev space of absolutely continuous functions f : [0, 1] → R with
derivative f ′ ∈ L2([0, 1]) and for which f(0) = 0, with inner product

⟨f, g⟩H =

∫ 1

0

f ′(u)g′(u) du = ⟨f ′, g′⟩L2([0,1]).

Thus, the induced norm

||f ||2H = ⟨f, f⟩H =

∫ 1

0

(f ′(u))2 du = ||f ′||L2([0,1])

is a sort of measure of wiggliness.
Note that the condition of absolute continuity and boundary condition f(0) = 0 together guarantee

the positive de�niteness of ⟨·, ·⟩H: ∀f ∈ H, if ||f ||2H =
∫ 1

0
(f ′(u))2 du = 0, then f = 0. The full proof

that H is a Hilbert space can be found in [17].
For any x ∈ [0, 1] and f ∈ H, the evaluation functional at x

Exf = f(x) =

∫ x

0

f ′(u) du =

∫ 1

0

f ′(u)1u≤x(u) du = ⟨f ′,1·≤x⟩L2([0,1]) = ⟨f,min(·, x)⟩H

is bounded since it is expressible as an inner product between f and a �xed element of H (∀x ∈ [0, 1],
the function min(·, x) ∈ H since it is absolutely continuous, has square-integrable derivative 1·≤x,
and satis�es the boundary condition: min(x, 0) = 0). Indeed,

|Exf | = |f(x)| = |⟨f,min(·, x)⟩H| ≤ ||f ||H

√∫ 1

0

(1·≤x(u))
2 du =

√
x · ||f ||H.

Since H is a Hilbert space whose evaluation functional is bounded (with representer of evaluation at
x given by min(·, x)), it is an RKHS.

The Fourier coe�cients f̂ of functions f in the space H in Example 2.6 decay in a manner
concomitant with the smoothness of its functions; in fact H can be de�ned [17, 162]

H =

{
f ∈ L2([0, 1])

∣∣∣∣ ∞∑
n=−∞

(1 + n2)|f̂(n)|2 <∞

}
.
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The Fourier coe�cients are weighted or �low-pass �ltered� by an ℓ1 sequence given by λn = 1
1+n2 so

as to excise from H all functions whose Fourier coe�cients do not decay su�ciently quickly. Only
functions for which

∞∑
n=0

(1 + n2)|f̂(n)|2 <∞.

are kept. We will see in Section 2.2.1 that this Fourier characterization can be used to construct
RKHSs, including that of the thin-plate splines on the sphere. As we observe in our �rst example
of a Hilbert space that fails to be an RKHS, this �ltering by the sequence λn is needed to enforce
regularity.

Non-example 2.7. The Hilbert space L2([0, 1]) is not an RKHS, since pointwise evaluation is not
well-de�ned in L2([0, 1]). Moreover, while the Dirac delta's �sifting property� allows it to formally
play the part of a Riesz representation of the evaluation functional

∀x ∈ (0, 1), f(x) =

∫ 1

0

δ(u− x)f(u) du = ⟨f, δ(· − x)⟩L2([0,1]),

the tempered distribution δ(· − x) is neither bounded nor in L2([0, 1]).

RKHSs�and the Riesz representations of bounded linear evaluation functionals that reside therein�
are closely associated with functions called positive-de�nite kernels.

De�nition 2.8 (Positive-de�nite kernel). A positive-de�nite kernel on a set X is a function k :
X × X → R that is symmetric

∀(x, x′) ∈ X 2, k(x, x′) = k(x′, x)

and de�nite�that is,
n∑

i=1

n∑
j=1

aiajk(xi, xj) ≥ 0 (5)

holds for all n ∈ N, (x1, x2, . . . , xn) ∈ X n, and a = (a1, a2, . . . an) ∈ Rn.

When the inequality (5) is strict for all n and choices of (x1, x2 . . . , xn) ∈ X n and nonzero weight
vector a ∈ Rn, we call the positive-de�nite kernel strictly positive-de�nite. This convention is,
unfortunately, not aligned with the one we use for matrices. We call a symmetric n × n matrix M
positive-de�nite only if the quadratic form xTMx > 0 for all nonzero x ∈ Rn�that is, only if the
symmetric bilinear form ⟨x, y⟩ = xTMy is a (de�nite) inner product.

Remark 2.9. De�ne the Gram matrix K of k on any collection of n points (x1, x2, . . . xn) in X n by

(K)i,j = k(xi, xj).

Then k is a positive-de�nite kernel if and only if every Gram matrix K based on k is a symmetric
positive-semide�nite matrix; k is strictly positive-de�nite if and only if every associated Gram matrix
K is symmetric positive-de�nite.

Remark 2.10. While X is an arbitrary set, and not necessarily an inner product space, a positive-
de�nite kernel k de�ned on X 2 nevertheless behaves a bit like an inner product. In particular, it
obeys the Cauchy-Schwarz inequality: for all (x, x′) ∈ X 2,

k(x, x′)2 ≤ k(x, x)k(x′, x′),

12
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since the Gram matrix associated with the points x and x′,

K =

(
k(x, x) k(x, x′)
k(x′, x) k(x′, x′)

)
,

has only nonnegative eigenvalues, since the Rayleigh quotient

λ =
xTKx

xTx
≥ 0 ∀x ∈ R2 (and, in particular, for eigenvectors of K)

and thus nonnegative determinant

k(x, x)k(x′, x′)− k(x, x′)2 ≥ 0,

by the symmetry of k.

In fact, positive-de�nite kernels are inner products�just not on X . As shown by Kolmogorov [137]
(for countable index sets X ) and Mercer [102] (for compact X ) and later extended by Aronszajn to
arbitrary index sets X [3], a positive-de�nite kernel k de�ned on an index set X expresses an inner
product in a Hilbert space H associated with k and X .

Proposition 2.11 (Aronszajn-Moore theorem). A function

k : X 2 → R

is a positive-de�nite kernel if and only if there is a Hilbert space H and a mapping

ϕ : X → H

such that
∀ (x, x′) ∈ X 2, ⟨ϕ(x), ϕ(x′)⟩H = k(x, x′).

Thus, each positive-de�nite kernel k takes in pairs of values from the index set X and outputs an
inner product between pairs of functions in the Hilbert space H that Aronszajn associated with k.

Before proving Proposition 2.11, let us �rst introduce an alternate characterization of an RKHS.

De�nition 2.12 (RKHS: we have the reproducing kernel). Let X be a set and H ⊆ RX be a Hilbert
space of functions on X with inner product ⟨·, ·⟩H. Then H is an RKHS if there exists a reproducing
kernel, that is, a function

k : X 2 → R

for which

� H contains, for all x ∈ X , the function kx
def
= k(·, x)

kx : X → R
y 7→ k(y, x).

� For all x ∈ X and f ∈ H the reproducing property holds

f(x) = ⟨f, kx⟩H.
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The reproducing property is another way of saying that kx = k(·, x) acts as the Riesz representer
of the Ex : H → R. A reproducing kernel, therefore, allows us to evaluate any function f ∈ H ⊆ RX

at a point x ∈ X simply by taking an inner product with a function determined entirely by the
kernel: kx = k(·, x) ∈ H.

We can see immediately the equivalence of De�nition 2.12 with De�nition 2.3. Since for all
x ∈ X , we have that kx ∈ H and f(x) = ⟨f, kx⟩H, if H is associated with a reproducing kernel, then
all evaluation functionals are linear and bounded

|Exf | = |f(x)| = |⟨f, kx⟩H| ≤ ||f ||H||kx||H =
√
k(x, x)||f ||H,

by the Cauchy-Schwarz inequality. Conversely, if all evaluation functionals are bounded, their Riesz
representers all exist in H and can be used, via their inner products, to de�ne a reproducing kernel

∀(x, x′) ∈ X 2, k(x, x′)
def
= ⟨kx, kx′⟩H = kx(x

′) = kx′(x).

It is straightforward to use the reproducing property to show that if a Hilbert space has a repro-
ducing kernel, it is unique.

Lemma 2.13. If k and k′ are both reproducing kernels associated with an RKHS H ⊂ RX , then
k = k′.

Proof. Suppose k and k′ are both reproducing kernels. Then by the bilinearity of ⟨·, ·⟩H, we must
have, for all x ∈ X that

||kx − k′x||2H = ⟨kx − k′x, kx − k′x⟩H = ⟨kx − k′x, kx⟩H − ⟨kx − k′x, k′x⟩H. (6)

But since k and k′ are both reproducing kernels, kx = k(·, x) and k′x = k′(·, x) both reproduce
evaluation at x; the di�erence (6) becomes

(kx − k′x)(x)− (kx − k′x)(x) = 0.

Since || · ||H is de�nite, kx = k′x for all x ∈ X . For all (x, y) ∈ X 2,

k(x, y) = ⟨ky, kx⟩H = ⟨k′y, k′x⟩H = k′(x, y).

Moreover, any reproducing kernel k : X 2 → R and index set X is associated with a unique RKHS.
We can therefore speak of �the� reproducing kernel of an RKHS or �the� RKHS of a reproducing
kernel.

By the reproducing property, we can evaluate a reproducing kernel k on a pair (x, y) ∈ X 2 by
taking the inner product ⟨kx, ky⟩H. A reproducing kernel must be symmetric, then, by the symmetry
of the inner product

k(x, y) = kx(y) = ⟨kx, ky⟩H = ⟨ky, kx⟩H = ky(x) = k(y, x).

Since a reproducing kernel k is symmetric, we must have, for all x ∈ X , kx = k(x, ·) = k(·, x). A
reproducing kernel is, moreover, positive-de�nite.

Proposition 2.14. A function k : X 2 → R is positive de�nite if and only if it is a reproducing
kernel associated with an RKHS H ⊂ RX .
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Proof. We start by showing that a reproducing kernel is positive de�nite. (We have just seen that
it is symmetric.) Let k be a reproducing kernel on index set X associated with some RKHS H. To
see that k is positive de�nite, let (x1, x2, . . . xn) ∈ X n for some n ∈ N and let (a1, a2, . . . , an) ∈ Rn.
Then by the bilinearity of the inner product

n∑
i=1

n∑
j=1

aiajk(xi, xj) =
N∑
i=1

n∑
j=1

aiaj⟨kxi
, kxj
⟩H =

〈 n∑
i=1

aikxi
,

n∑
j=1

ajkxj

〉
H
=

∥∥∥∥∥
n∑

i=1

aikxi

∥∥∥∥∥
2

H

≥ 0.

To show the converse, suppose k : X 2 → R is a positive-de�nite kernel. We will construct the space
H whose functions k reproduces. Form the linear manifold H by taking all �nite linear combinations
of the kx = k(·, x) for x ∈ X

H = span {kx}x∈X .

We can therefore express any f ∈ H and g ∈ H as linear combinations of the kx functions

f =
m∑
i=1

aikxi
and g =

n∑
j=1

bjkyj for (x1, . . . , xm) ∈ Xm, and (y1, . . . , yn) ∈ X n. (7)

We endow this space with the following inner product

⟨f, g⟩H =

〈
m∑
i=1

aikxi
,

n∑
j=1

bjkyj

〉
H

=
m∑
i=1

n∑
j=1

aibj⟨kxi
, kyj⟩H =

m∑
i=1

n∑
j=1

aibjk(xi, yj).

We can see that ⟨f, g⟩H does not depend on the choice of expansion in (7)

⟨f, g⟩H =
m∑
i=1

n∑
j=1

aibjk(xi, yj) =
n∑

j=1

bj

( m∑
i=1

ajkxi
(yj)

)
︸ ︷︷ ︸

f(yj)

=
n∑

j=1

bjf(yj), and

⟨f, g⟩H =
m∑
i=1

n∑
j=1

aibjk(yj, xi) =
m∑
i=1

ai

( n∑
j=1

bjkyj(xi)

)
︸ ︷︷ ︸

g(xi)

=
m∑
i=1

aig(xi).

Thus, ⟨·, ·⟩H is a symmetric bilinear form. Moreover, the kx reproduce evaluation at x: letting
f =

∑m
i=1 aikxi

and kx =
∑1

i=1 1kx,

⟨f, kx⟩H =
1∑

j=1

m∑
i=1

1 · aik(xi, x) =
m∑
i=1

aik(xi, x) =

(
m∑
i=1

aikxi

)
(x) = f(x).

That ||f ||H ≥ 0 follows directly from the bilinearity of ⟨·, ·⟩H and the positive de�niteness of k

||f ||2H = ⟨f, f⟩H =

〈 m∑
i=1

aikxi
,

m∑
i=1

aikxi

〉
H
=

m∑
i=1

m∑
j=1

aiajk(xi, xj) ≥ 0.

Then the Cauchy-Schwarz relation holds and, in particular,

|f(x)| = |⟨f, kx⟩H| ≤ ||f ||H
√
k(x, x).

Thus ||f ||H = 0 entails that f(x) = 0 for all x ∈ X and thus f = 0.
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This linear manifold H is therefore an inner product space as ⟨·, ·⟩H is a strictly positive-de�nite
symmetric bilinear form. Moreover, in this space, norm convergence implies pointwise convergence.
Let {fn}n∈N be a Cauchy sequence of functions in H. We know that for all m ∈ N, n ∈ N, and
x ∈ X , the Cauchy-Schwarz inequality and reproducing property guarantee that

|fm(x)− fn(x)| = |(fm − fn)(x)| = |⟨fm − fn, kx⟩H| ≤ ||fm − fn||H
√
k(x, x).

Since {fn}n∈N is Cauchy in the norm || · ||H, for any ϵ > 0 there is an Nϵ > 0 such that for all
m,n > Nϵ, ||fm − fn||H < ϵ. For every x ∈ X the sequence of values {fn(x)}n∈N is Cauchy in R: for
all ϵ > 0, we can choose ϵx = ϵ√

k(x,x)
; then for m,n > Nϵx ,

|fm(x)− fn(x)| ≤ ϵx
√
k(x, x) = ϵ.

This Cauchy sequence {fn(x)}n∈N of real values therefore converges in R to some value f(x). We
de�ne f in this manner to be the pointwise limit of the Cauchy sequence of functions {fn}n∈N.

Let H be the result of adding the pointwise limit functions of all Cauchy sequences in H. It
is straightforward, but tedious, to show that the inner product continues to be well-de�ned, that
k remains a reproducing kernel, that H = span {kx}x∈X is dense in H, and that the evaluation
functionals remain bounded. H is the RKHS for which the positive-de�nite function k acts as a
reproducing kernel.

Remark 2.15. There is another way to see that the span of the representers of evaluation at the
points in the index set span {kx}x∈X must be dense in an RKHS H. The sequence {kx}x∈X forms a
complete system for H, since any f ∈ H orthogonal to the representers of evaluation at all x ∈ X
must be identically 0: f(x) = ⟨f, kx⟩X = 0 for all x ∈ X .

We can now prove Proposition 2.11.

Proof. Suppose k is a positive-de�nite kernel de�ned on the set X . We just showed that there is an
RKHS H corresponding12 to k. Consider the map from the points in the index set to their Riesz
representers of evaluation

ϕ : X → H
x 7→ kx.

Then for all pairs (x, x′) ∈ X 2 we have that k(x, x′) = ⟨kx, kx′⟩H = ⟨ϕ(x), ϕ(x′)⟩H is a reproducing
kernel. Indeed, the reproducing property follows from the fact that kx is a Riesz representer of
evaluation at x: ∀f ∈ H, ∀x ∈ X , f(x) = ⟨f, kx⟩H. Conversely, suppose there is a Hilbert space H
and a mapping

ϕ : X → H
x 7→ kx,

such that for all (x, x′) ∈ X 2, we can de�ne a reproducing kernel k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩H. Then for
any n ∈ N and (a1, a2, . . . an) ∈ X n, we see, by the bilinearity of ⟨·, ·⟩H, that k is positive de�nite

n∑
i=1

n∑
j=1

aiajk(xi, xj) =

〈
n∑

i=1

aiϕ(xi),
n∑

j=1

ajϕ(xj)

〉
H

=

∥∥∥∥∥
N∑
i=1

aiϕ(xi)

∥∥∥∥∥
2

H

≥ 0.

12In the proof of Proposition 2.14, we used a bar to emphasize that H was the completion of the span of the
representers of evaluation at each point in the index set; here we jettison the bar as H is understood to be complete.
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Remark 2.16 (The kernel trick). We have now seen that a kernel k maps pairs of points in an
index set X to the inner product between functions�the representers of evaluation at these points�in
H ⊆ RX . These functions are often called �feature vectors� by machine learning practitioners, and
the map ϕ the �feature map�. To solve many learning and approximation problems in practice, one
does not need access to the representers of evaluation kx or the space H in which they live, so long
as one is con�dent they are suited to the application and one can compute the kernel k on pairs of
inputs in the space. One of the most commonly used kernels has a native space H that is di�cult
to characterize [142], and the feature map need not be uniquely speci�ed given an RKHS and its
kernel [34]. The machine learning literature calls �the kernel trick� this ability to solve problems in
in�nite-dimensional spaces without full access to the functions that live there, using only the inner
products k(x, x′) = ⟨kx, kx′⟩H between select functions in the space. In the context of approximating
functions with splines, this trick was identi�ed by Wahba and Kimeldorf with the representer theorem
(see Section 2.5).

Positive-de�nite kernels also assesses the similarity between points in X . With respect to this
similarity metric, the RKHS norm || · ||H indicates a function's smoothness or regularity (the smaller
the norm of a function, the smoother it is). The RKHS H and its norm are therefore useful to
consider in applications such as spline smoothing, even when one can make use of the kernel trick.

Remark 2.17. Positive-de�nite kernels encode a metric or pseudometric on the index set X ac-
cording to which any function f in the associated RKHS H is Lipschitz continuous with Lipschitz
constant M = ||f ||H

dR(f(x), f(x
′)) = |f(x)− f(x′)| = |⟨f, kx − kx′⟩H| ≤ ||f ||H︸ ︷︷ ︸

M

||kx − kx′ ||H =MdX (x, x
′),

where

dX (x, x
′) = dH(kx, kx′) = ||kx − kx′||H =

√
⟨kx − kx′ , kx − kx′⟩H =

√
k(x, x) + k(x′, x′)− 2k(x, x′).

Positivity of dX need not hold, so dX is in general a pseudometric. However, if k is strictly positive-
de�nite, its Gram matrix on x and x′ ̸= x has a positive determinant: k(x, x)k(x′, x′) > k(x, x′)2.
But then, by the inequality of arithmetic and geometric means, we have that

k(x, x) + k(x′, x′)

2
≥
√
k(x, x)k(x′, x′) > k(x, x′),

so for any x ̸= x′, we can establish the positivity of dX

1

2
dX (x, x

′)2 =
k(x, x) + k(x′, x′)

2
− k(x, x′) > 0.

Strict positive de�niteness is a su�cient but not necessary condition for dX to be a metric. Consider
the positive-de�nite kernel of Example 2.6, which is not strictly positive-de�nite (the Gram matrix
on {0, 1} ⊆ X has eigenvalues {0, 1}). Nevertheless, the associated distance metric exhibits positivity

dX (x, x
′) = ||min(·, x)−min(·, x′)||H =

√
min(x, x) + min(x′, x′)− 2min(x, x′) =

√
|x− x′|.

This metric dX illustrates, moreover, that the distances between elements of the index set possess
di�erent properties from elements of the RKHS and its reproducing kernel. With one argument �xed,
dX is not su�ciently well-behaved to reside in the RKHS H of Example 2.6 as its derivative is not
square integrable on [0, 1]. Moreover, it is not a positive-de�nite kernel (the distance matrix of dX
on {0, 1} has eigenvalues {1,−1}).
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Remark 2.18. If X is a real inner product space, its dual space is an RKHS. For each x ∈ X , the
representation of evaluation at x is the functional ϕ(x) = ⟨·, x⟩X ; the kernel is the inner product:
k(x, y) = ⟨kx, ky⟩H = ⟨x, y⟩X . Solutions of spline interpolation problems in this RKHS are given by
ordinary linear regression; smoothing problems, ridge regression13. The metric on X induced by the
linear kernel is the same as the metric induced by inner product of X

dX (x, y) =
√
||x||2X + ||y||2X − 2⟨x, y⟩X = ||x− y||X .

Linear kernels de�ned over a Euclidean inner product space, for instance, induce a Euclidean metric
over the index set.

On the other hand, kernels can endow an inner product space with metrics that disagree sharply
with the metric induced by the inner product. While the Euclidean space X = R can be endowed
with a Euclidean metric by the linear kernel, di�erent kernels, associated with di�erent RKHSs of
functions on X , can equip X with vastly di�erent metrics. The Paley-Wiener space of �nite-energy
bandlimited signals

PWπw = {f ∈ L2(R) | support(f̂) ⊆ [−πw, πw]}

is the RKHS induced by the sinc kernel: k(x, y) = sin(πw(x−y))
π(x−y)

. This strictly positive-de�nite kernel
induces a bounded, oscillating metric on R

dR(x, y) = ||kx − ky||PWπw =

√
2

(
w − sin(πw(x− y))

π(x− y)

)
.

Norm-minimizing solutions to interpolation and smoothing problems over this space exhibit charac-
teristic wiggles that are related to the nature of this distance metric.

When there is additional structure on X , there is more to say about the relationship between the
properties of k and those of the functions in H. The boundedness (and, if X is a topological space,
the continuity) of the kernel k depends on the boundedness (respectively, continuity) of the feature
map.

De�nition 2.19 (Feature map). We shall call the map

ϕ : X → H
x 7→ kx,

introduced in the proof of Proposition 2.11 the feature map of the kernel k or RKHS H.

De�nition 2.20. We say a kernel is bounded if

sup
x∈X

k(x, x) <∞.

Remark 2.21. Note that the maximum absolute value of k must occur on its �diagonal�. Clearly,
we have that imposing the diagonal constraint cannot increase the maximum kernel absolute value

sup
(x,x′)∈X 2

|k(x, x′)| ≥ sup
x∈X

k(x, x).

(We omitted the absolute value sign on the right-hand side because k(x, x) = ||kx||2H.)
13To pose the problem over the richer space of a�ne functions, not just the dual space, the direct-sum decomposition

principle can be used (see Section 2.4).

18



Thin-plate Splines on the Sphere for Interpolation, Computing Spherical Averages, and Solving Inverse Problems

On the other hand, by the Cauchy-Schwarz inequality and monotone continuity of the square root
function, we have the opposite relation

sup
(x,x′)∈X 2

|k(x, x′)| = sup
(x,x′)∈X 2

|⟨kx, kx′⟩H| ≤ sup
x∈X

√
k(x, x) ·

x′∈X
sup

√
k(x′, x′) = sup

x∈X
k(x, x). (8)

Thus,
sup
x∈X

k(x, x) = sup
(x,x′)∈X 2

|k(x, x′)|.

Proposition 2.22. A kernel is bounded if and only if its feature map is bounded. In this case, every
function in H is bounded.

Proof. The �rst statement holds because

∀x ∈ H, ||ϕ(x)||2H = ⟨kx, kx⟩H = k(x, x).

The second since, for all f ∈ H and all x ∈ X ,

|f(x)| = |⟨f, kx⟩H| ≤ ||f ||H
√
k(x, x).

We have already seen that convergence in an RKHS implies pointwise convergence. We can
expand on this, with the following result from Aronszajn [3].

Proposition 2.23 (Convergence in H and pointwise convergence). Let H ⊆ RX be an RKHS. Then

1. The sequence of functions {fn}∞n=0 converges weakly in H to f if and only if (a) for each x ∈ X ,
fn(x) converges to f(x) in R and (b) {||fn||H}∞n=0 is bounded.

2. The sequence {fn}∞n=0 converges strongly to f if and only if (a) holds and (b') limn→∞ ||fn||H =
||f ||H.

Proof. 1. Suppose {fn}∞n=0 converges weakly to f in H. Then for all g ∈ H

lim
n→∞

⟨fn, g⟩H = ⟨f, g⟩H,

and in particular, for all x ∈ X , we have that

lim
n→∞

fn(x) = lim
n→∞

⟨fn, kx⟩H = ⟨f, kx⟩H = f(x).

The uniform boundedness principle for Hilbert spaces, a consequence of the Banach-Steinhaus
theorem (see, e.g., [36], Theorem 3.3.15), allows us to immediately establish (b).

Now suppose (a) and (b) are established. We want to show that for any h ∈ H,

lim
n→∞

⟨fn − f, h⟩H = 0.

From (a), we know that, for all x ∈ X ,

lim
n→∞

⟨fn − f, kx⟩H = lim
n→∞

(fn(x)− f(x)) = 0.

Using (b), we can choose an M <∞ such that ||fn||H < M for all n ∈ N.
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Because {kx}x∈X is dense in H, for all ϵ > 0, property (a) allows us to choose a �nite sequence
of representers of evaluation {kx1 , . . . , kxm} and weights α1, . . . , αm such that the function h′

de�ned as the linear combination

h′ =
m∑
i=1

αikxi
(9)

is within an ϵ-neighborhood of h in the norm of H

||h− h′||H < ϵ.

In particular, with enough terms, the expansion (9) will satisfy

||h− h′||H <
ϵ

M + ||f ||H
,

for any ϵ > 0 and f ∈ H. Then

lim
n→∞

|⟨fn − f, h⟩H| ≤ lim
n→∞

|⟨fn − f, h− h′⟩H|+ lim
n→∞

|⟨fn − f, h′⟩H|

≤ lim
n→∞

||fn − f ||H||h− h′||H + lim
n→∞

∣∣∣∣∣
m∑
i=1

αi⟨fn − f, kxi
⟩H

∣∣∣∣∣︸ ︷︷ ︸
0, since fn

pointwise−−−−−−→ f

≤ lim
n→∞

(||fn||+ ||f ||) ·
ϵ

M + ||f ||H
< ϵ,

by the triangle inequality.

2. Weak convergence plus (b') is equivalent to strong convergence in Hilbert spaces (see, e.g., [36],
Theorem 3.3.13).

Aronszajn also considered the continuity properties of the kernel when X is a topological space.

Proposition 2.24 (Kernel and RKHS continuity over a topological space). Let H ⊆ RX be an
RKHS with reproducing kernel k, and X a topological space. Then the following statements related
to the continuity of k hold.

1. The map ϕ : x 7→ kx is continuous if and only if k is continuous along the diagonal.

2. Every function f : X → R in H is continuous in X if and only if every representer of evaluation
kx is continuous and the map x 7→ k(x, x) is locally bounded.

3. If X is locally compact and the feature map ϕ is continuous, then for every sequence of functions
{fn}∞n=0 that converges weakly in H, {fn}∞n=0 also converges uniformly over any compact set in
X . Thus, by the uniform limit theorem, if the map ϕ is continuous, then any weakly convergent
sequence of functions that are continuous on X converges to a continuous function.

4. Every family of bounded functions BM = {f ∈ H | ||f ||H ≤ M} is equicontinuous if and only
if the map x 7→ k(x, x) is continuous and each representer of evaluation is continuous. In this
case, k is continuous.

5. If X is separable and every function in H is continuous, then H is separable.

Proof. 1. Observe that ||kx||2H = ⟨kx, kx⟩H = k(x, x).
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2. Suppose f ∈ H is continuous and consider a sequence {yn}∞n=0 of points in X . Since representers
of evaluation are in H, they must be continuous; we therefore need only show (b), the local
boundedness of the map x 7→ k(x, x). For any continuous function f ∈ H, the reproducing
property implies that the representers of convergent sequences in X are weakly convergent in
H

lim
n→∞

yn = y =⇒ lim
n→∞
⟨f, kyn⟩H = lim

n→∞
f(yn) = f(y) = ⟨f, ky⟩H.

Since every function in H is continuous, kyn converges weakly to ky in H, and we can apply
part 1 of Proposition 2.23 to conclude that k(y, y) = ||ky||2H is locally bounded.

Conversely, suppose x 7→ k(x, x) is locally bounded and every representer of evaluation is
continuous, and consider any sequence {zn}∞n=0 in X that converges to a limit z. Then for all
n > N , for some N su�ciently large, the quantity ||kz||H + ||kzn||H must be bounded above
by twice the local bound M < ∞ of the map x 7→ k(x, x), evaluated at z; in other words,
||kz||H + ||kzn||H ≤ 2M . Since the (bounded) representers of evaluation are a dense subset of
H, we have that for any f ∈ H, there is a sequence of (bounded) representers of evaluation
{fm}∞m=0 strongly converging to f in H; then, for any sequence {zn}∞n=0 converging to z in X ,

|f(z)− f(zn)| = |(f(z)− fm(z)) + (fm(z)− fm(zn)) + (fm(zn)− f(zn))|
≤ |f(z)− fm(z)|+ |fm(z)− fm(zn)|+ |fm(zn)− f(zn)|
= |fm(z)− fm(zn)|+ |⟨f − fm, kz⟩H|+ |⟨fm − f, kzn⟩H|
≤ |fm(z)− fm(zn)|+ ||f − fm||H (||kz||H + ||kzn||H) ,

where on the third line we swapped the �rst and second terms in addition to applying the
reproducing property. For any ϵ > 0, we can choose m so that

||f − fm||H <
ϵ

4M
.

Since each fm is a representer of evaluation and therefore continuous, we can choose N ′ such
that for n > N ′, |fm(z)− fm(zn)| < ϵ

2
. Then for m su�ciently large and n > max(N,N ′), we

have that

|f(z)− f(zn)| ≤ |fm(z)− fm(zn)|+ ||f − fm||H (||kz||H + ||kzn||H) <
ϵ

2
+

ϵ

4M
· 2M = ϵ.

Thus, since f was arbitrary, all functions in H are continuous by the local boundedness, con-
tinuity, and density in H of the representers of evaluation.

See also [132], Proposition 24, and [17], Theorem 17.

3. The continuous ϕ maps a compact set X ′ ⊆ X to a compact subset H′ ⊆ H. Suppose the
sequence of functions fn −→ f weakly while remaining in H′. By Proposition 2.23 (the uniform
boundedness principle), {fn}∞n=0 is bounded; choose an integerM so that sup {||fn||H}∞n=0 < M .
In fact, {fn}∞n=0 converges strongly

14. By the compactness of X ′ and continuity of ϕ, for every
ϵ > 0, there is a �nite subcover of open balls of radius δϵ/4M centered at C = {y1, . . . , ym} such
that for every y ∈ X ′ there exists some center yl ∈ X ′ satisfying

d(y, yl) < δϵ/4M =⇒ ||ϕ(y)− ϕ(yl)||H = ||ky − kyl ||H <
ϵ

4M
.

14Any subsequence of {fn}∞n=0 has a convergent subsequence whose limit is necessarily f by the weak convergence.
But saying that every subsequence of a sequence in a metric space itself has a subsequence that converges to a �xed
limit implies that fn converges in the metric d(fn, f) = ||fn − f ||H!
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Then, choosing N such that for all n > N and yl ∈ C, |f(yl)− fn(yl)| < ϵ
2
, we see that

|f(y)− fn(y)| = |(f(y)− f(yl)) + (f(yl)− fn(yl)) + (fn(yl)− fn(y))|
= |⟨f − fn, ky − kyl⟩H + f(yl)− fn(yl)| ≤ |⟨f − fn, ky − kyl⟩H|+ |f(yl)− fn(yl)|
≤ ||f − fn||H︸ ︷︷ ︸

≤||f ||H+||fn||H
<M+M

||ky − kyl ||H︸ ︷︷ ︸
≤ ϵ

4M

+ |f(yl)− fn(yl)|︸ ︷︷ ︸
≤ ϵ

2

< ϵ.

Since N does not depend on y (i.e., no matter which open ball y falls in, its center point yl ∈ C
satis�es |f(yl)− fn(yl)| < ϵ

2
), fn converges to f uniformly.

4. Suppose every set of bounded functions in H is equicontinuous. Then every function in H is
continuous and by part 2, k is locally bounded on the diagonal. In particular, the representer
of evaluation at x, kx, is continuous for any x ∈ X . Since the function kx is continuous, we
have that for any sequence {xn}∞n=0 converging to x within the neighborhood of x in which
x 7→ k(x, x) is locally bounded,

|k(xn, xn)− k(x, x)| = |(k(xn, xn)− k(xn, x)) + (k(xn, x)− k(x, x))|
≤ |k(xn, xn)− k(xn, x)|+ |k(xn, x)− k(x, x)|
= |kxn(xn)− kxn(x)|+ |kx(xn)− kx(x)|,

by the symmetry of k and triangle inequality. Both terms tend to 0 as n −→ ∞ by the
continuity of the representers of evaluation. Hence, k is continuous along the diagonal.

Now suppose all representers of evaluation kx are continuous and that k is continuous along
the diagonal. Consider any sequences {xn}∞n=0 and {yn}∞n=0 converging to x and y, respectively,
for any (x, y) ∈ X 2. Accordingly, by the symmetry of k, reproducing property, and triangle
inequality,

|k(xn, yn)− k(x, y)| = |k(xn, yn)− k(xn, y) + k(xn, y)− k(x, y)|
≤ |kxn(yn)− kxn(y)|+ |ky(xn)− ky(x)|
= |⟨kxn , kyn − ky⟩H|+ |⟨ky, kxn − kx⟩H|
≤ ||kyn − ky||H||kxn||H + ||kxn − kx||H||ky||H.

Since k is continuous along the diagonal, ||kxn||H = k(xn, xn) −→ k(x, x) = ||kx||H as n −→∞.
Thus, we need only show that the sequences of representers of evaluation {kxn}∞n=0 and {kyn}∞n=0

converge in the norm to kx and ky, respectively. But both terms of

||kxn − kx||2H = ⟨kxn − kx, kxn − kx⟩H
= (k(xn, xn)− k(xn, x)) + (k(x, xn)− k(x, x))
= (kxn(xn)− kxn(x)) + (kx(xn)− kx(x)),

converge to 0 as n −→ ∞ by the continuity of the representers of evaluation kxn and kx. The
strong convergence of {kyn}∞n=0 to ky can be shown in the same way. Thus, k is continuous in
both arguments simultaneously, since for all (x, y) ∈ X 2 and all sequences {xn}∞n=0 and {yn}∞n=0

converging to x and y, respectively, we have that k(xn, yn) must converge to k(x, y).

Finally, suppose k is continuous in both arguments simultaneously. Consider the family of
functions BM = {f ∈ H | ||f ||H ≤ M}. We want to show that for all ϵ > 0 and all x ∈ X ,
there exists a δx > 0 such that for all f ∈ BM and all y ∈ X satisfying dX (x, y) < δx, we have
|f(x)−f(y)| < ϵ. But because k is continuous in both arguments, we can choose, for any ϵ > 0
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and x ∈ X , a δx > 0 such that for any y and z satisfying dX (x, y) < δx and dX (x, z) < δx, we
have that |k(x, x)− k(y, z)| < ϵ2

3M2 . Then for all y satisfying dX (x, y) < δx, we have that

||kx − ky||2H = ⟨kx − ky, kx − ky⟩H = (k(x, x)− k(x, y)) + (k(y, y)− k(y, x))
= (k(x, x)− k(x, y)) + (k(y, y)− k(x, x)) + (k(x, x)− k(y, x))

≤ |k(x, x)− k(x, y)|+ |k(x, x)− k(y, y)|+ |k(x, x)− k(y, x)| < ϵ2

M2
.

In that case, for any f ∈ BM ,

|f(x)− f(y)| = |⟨f, kx − ky⟩H| ≤ ||f ||H · ||kx − ky||H < M · ϵ
M

= ϵ.

5. In this case, the representers of evaluation R = {kx |x ∈ X ′} at a countable, dense subset
X ′ ⊆ X form a complete system for H. Indeed, if f ∈ H is orthogonal to each function in R,
it evaluates to 0 at each point in X ′. By the continuity of f , this means it must be identically
0. For any x ∈ X , let {xn}∞n=0 be a sequence of points in X ′ converging to x. Then, since f is
continuous,

f(x) = lim
n→∞

f(xn) = lim
n→∞

⟨f, kxn⟩H = 0.

For more examples of how constraints on X and k can endow the functions in the associated
RKHS H with desirable properties (such as di�erentiability), see, for instance, [132], Section 9; [3],
Section 5; and [4], Section 2.

We end this section by introducing two types of kernels on Euclidean spaces that arise in many
applications: the shift-invariant and radial kernels. These are related to the Fourier and Laplace
transforms of nonnegative Borel measures, respectively. In particular, the former can be seen to be
in�nite linear combinations of complex exponentials of di�erent frequencies; the latter, in�nite linear
combinations of Gaussians of di�erent scales.

De�nition 2.25 (Shift-invariant and radial kernels). We say a kernel k : Rd × Rd → R is shift
invariant if it satis�es, for all (x, y) ∈ Rd × Rd, k(x, y) = k′(x − y) for some �xed k′ : Rd → R. A
function k : Rd × Rd → R that satis�es k(x, y) = k′(||x− y||Rd) for some k′ : [0,∞)→ R is called a
radial function. If, for all d ∈ N≥1, k′ determines a positive-de�nite kernel k : Rd ×Rd → R, we say
that k′ is a radial basis function.

Proposition 2.26. 1. A continuous shift-invariant function k : Rd × Rd → R is positive de�nite
on X = Rd if and only if it can be expressed k(x, y) = k′(x−y), where k′ is the Fourier-Stieltjes
transform of a �nite nonnegative Borel measure µ

k′(τ) = µ̂(τ) =
1

(2π)d/2

∫
Rd

e−i⟨τ,x⟩Rd dµ(x) .

2. For a �xed d ∈ N≥1, a continuous radial function k : Rd × Rd → R is positive de�nite if
and only if it can be written k(x, y) = k′(||x − y||Rd), where k′ is the Hankel transform of
a �nite nonnegative Borel measure on [0,∞) not concentrated at the origin, µ. A function
k′ : [0,∞) → R yields a positive-de�nite radial function k(x, y) = k′(||x − y||Rd) on Rd for all
d ∈ N≥1 if and only if

k′(r) =

∫ ∞

0

e−r2t2 dµ(t)

for some �nite nonnegative Borel measure µ. Since the completely monotone functions are
the Laplace-Stieltjes transforms of nonnegative Borel measures, this is equivalent to saying
k′(r) = f(r2) for some completely monotone function.
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Proof. 1. This was shown by Bochner in a book on Fourier integrals in 1932 [19] and an article
[18] in 1933, �rst handling d = 1 and then the general case. (The theorem is sometimes also
attributed to Khinchin [136] and is closely related to the Wiener-Khinchin theorem.) In the
full proof, the exponential must be handled with care given the improper boundary. However,
the only direction we need is easy: for any n ∈ N≥1 and c ∈ Rn, we have that

n∑
j=1

n∑
k=1

cjckk(xj − xk) =
n∑

j=1

n∑
k=1

cjck
1

(2π)d/2

∫
Rd

e−i⟨(xj−xk),x⟩Rd dµ(x)

=
1

(2π)d/2

∫
Rd

(
n∑

j=1

cje
−i⟨xj ,x⟩Rd

n∑
k=1

cke
−i⟨xk,x⟩Rd

)
dµ(x)

=
1

(2π)d/2

∫
Rd

∣∣∣∣∣
n∑

j=1

cje
−i⟨xj ,x⟩Rd

∣∣∣∣∣
2

dµ(x) ≥ 0.

(This result is usually stated for complex-valued kernels, due to the conjugate used in the
proof.)

For the other direction, see [162], Theorem 6.6. It is generalized to characterize conditionally
positive-de�nite functions in Theorems 8.12 and 8.14 of that work, which also provides su�cient
conditions for strict positive de�niteness (e.g., if the carrier of µ has nonzero Lebesgue measure).

2. See [128], Theorems 2-3.

Remark 2.27 (Certain familiar one-dimensional shift-invariant kernels are not radial kernels in
higher dimensions.). Suppose φr(·) determines a positive-de�nite kernel in Euclidean space of every
dimension�that is, for all d ∈ N≥1, the function φ : Rd×Rd → R de�ned by φ(x, y) = φr(||x− y||Rd)
is positive de�nite. But then, by the second part of Proposition 2.26, there is a nonnegative Borel
measure µ for which

φr(||x− y||Rd) =

∫ ∞

0

e−||x−y||2
Rd

t2 dµ(t) .

In particular, φr can never be negative or equal zero by the positivity of the exponential on real
arguments and nonnegativity of the measure: for any distance d0 ≥ 0, φr(d0) =

∫∞
0
e−d20t

2
dµ(t) > 0

unless µ is the zero measure (in which case φ is the zero kernel).
This is why familiar reproducing kernels on the real line like the cardinal B-spline of even order

(which is compactly supported) or Paley-Wiener sinc kernel of the Shannon-Whittaker-Kotel'nikov
series (whose oscillations around zero bring its value �beyond the zero�) are not radial basis functions.
However, one can use Bochner's theorem to de�ne sinc-like kernels in a given dimension by taking the
Fourier transform of the indicator function over a domain such as a rectangle, a disk, or a hexagon
in the plane (or extensions thereof in higher dimensions).

2.1.2 Mercer Kernels

Historically, the �rst proof of Proposition 2.11 for a non-�nite index set X is due to Mercer; in this
case, X was a real interval, though the result is readily generalized to any compact Hausdor� space
endowed with a strictly positive, �nite Borel measure [93]. We give a version of this result now, as
it aids in the design of kernels on the sphere.
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Proposition 2.28 (Mercer). Let X be a closed, bounded region in Rd. Consider a Hilbert-Schmidt
integral operator on L2(X ), that is, an operator Lk

Lk : L
2(X )→ L2(X )

f 7→ Lkf, with (Lkf)(x) =

∫
X
k(x, y)f(y) dy and

∫∫
X×X

|k(x, y)|2 dx dy = B <∞. (10)

Suppose k is symmetric. Then

1. The operator Lk is compact and self-adjoint.

2. The eigenfunctions of Lk {ϕn}∞n=0 form a complete orthonormal system for L2(X ). Moreover,
we can expand k into products of these eigenfunctions, weighted by the corresponding real eigen-
values λn

k(x, y) =
∞∑
n=0

λnϕn(x)ϕn(y);

this series expansion converges to k in L2(X × X ).

3. If, moreover, k is continuous in both arguments, and λn > 0 for all n ∈ N,15 then the expansion
of the kernel in the eigenfunctions

k(x, y) =
∞∑
n=0

λnϕn(x)ϕn(y)

converges uniformly, not just in the mean.

Proof. We �rst observe that the operator Lk is bounded

||Lkf ||2L2(X ) =

∫
X
|(Lkf)(x)|2 dx =

∫
X

∣∣∣∣∫
X
k(x, y)f(y) dy

∣∣∣∣2 dx
≤
∫∫
X×X

|k(x, y)|2 dx dy
∫
X
|f(y)|2 dy = B||f ||H,

by the Cauchy-Schwarz inequality, the integral absolute value inequality, the kernel boundedness
condition (10), and Fubini's theorem, which guarantees that

∫
X |k(x, y)| dy is �nite a.e. and integrable

in x.

1. Then compactness follows, for instance, via [78], Theorem 5.1, and the �nite norm of k in
L2(X × X ) stipulated above. If {ϕn}∞n=0 is complete orthonormal sequence in L2(X ), then
{ξl}∞l=1

def
= {ϕnϕm}∞n,m=1 is a complete orthonormal sequence in L2(X × X ) and the Fourier

coe�cients of k on this basis are in ℓ2. Indeed, by the Parseval relation, the Fourier coe�cients

λl = ⟨k, ξl⟩L2(X×X ) =

∫∫
X×X

k(x, y)ξl(x, y) dx dy > 0 = ⟨Lkϕm, ϕn⟩L2(X )

satisfy
∞∑
l=0

λ2l =

∫∫
X×X

|k(x, y)|2 dx dy = B <∞.

15Or, more generally, all but a �nite number of nonzero eigenvalues have the same sign [121].
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When the Mercer assumption of kernel continuity holds, compactness can also be shown more
directly via Ascoli's theorem, using the uniform boundedness and equicontinuity of the image
of any bounded sequence of functions under the operator Lk.

Self-adjointness follows from the kernel's symmetry

⟨Lkf, g⟩L2(X ) =

∫
X
g(x)

∫
X
k(x, y)f(y) dy dx =

∫
X
f(y)

∫
X
k(y, x)g(x) dx dy = ⟨f,Lkg⟩L2(X )

(see [121], Section 92), since Lk is bounded.

2. Thanks to item 1, we can invoke the spectral theory of compact self-adjoint operators ([36],
Theorem 4.10.1 and Corollary 4.10.2) to show 2. The key is to use the orthonormal system
{ϕn}∞n=0 of L2(X ) to form the orthonormal system {ξl}∞l=1 for L2(X × X ) and expand k as a
Fourier series on that basis; the Fourier coe�cients of this expansion are the eigenvalues of the
integral operator (10). The result was �rst stated in Erhard Schmidt's thesis [127], and proofs
can be found in [121], Section 97, or [78], Theorem 6.2.

3. Originally shown by Mercer in 1909 [102]. A more concise proof uses Dini's theorem to show
that the monotonically increasing partial sums of nonnegative continuous terms converging
pointwise to the continuous k(x, x) thereby converge uniformly

∀x ∈ X ,
N∑

n=0

λnϕn(x)
2 uniformly−→ k(x, x).

The Cauchy-Schwarz relation

|k(x, y)| ≤ k(x, x)1/2k(y, y)1/2

allows this convergence result to be generalized to all pairs (x, y) ∈ X 2. Details are given in
Riesz and Sz.-Nagy [121], Section 98, and Jörgens [74], Theorem 8.11. A similar proof in a
more general context is available in the appendix of [86].

De�nition 2.29 (Mercer kernel). We will call any symmetric positive-de�nite kernel de�ned on
a compact set X a Mercer kernel if it is continuous in both arguments (ensuring that the square
integrability constraint (10) is satis�ed) and the eigenvalues λn of the associated Hilbert-Schmidt
integral operator Lk are all nonnegative.

The assumption of eigenvalue nonnegativity turns out to be unnecessary; that k is a continuous
positive-de�nite kernel on a compact set implies that λn ≥ 0 and {λn}∞n=0 ∈ ℓ1 (see [34], Chapter III,
Proposition 2 and Corollary 3; [46], Theorem 1.1; or [86], Lemma 1).

Remark 2.30. The continuity of k in both arguments and compactness of X are su�cient to ensure
that the image of any L2(X ) function under Lk is continuous; in particular, the eigenfunctions
{ϕn}∞n=0 associated with eigenvalues λn > 0 are all continuous [34]. With µ denoting the Lebesgue
measure, we have, by the Cauchy-Schwarz inequality, that

|(Lkf)(x)− (Lkf)(x
′)| =

∣∣∣∣∫
X
(k(x, y)− k(x′, y)) f(y) dy

∣∣∣∣ = ∣∣⟨kx − kx′ , f⟩L2(X )

∣∣
≤ ||kx − kx′||L2(X ) · ||f ||L2(X )

≤
√
µ(X ) ·max

y∈X
|k(x, y)− k(x′, y)|︸ ︷︷ ︸

M

·||f ||L2(X ).
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Since k is continuous and X is compact, k is uniformly continuous, and the product
√
µ(X )·M <∞.

The image of any L2(X ) function under Lk is therefore continuous16.

Remark 2.31. Any non-degenerate Borel measure may be used in the de�nition of the integral
operator; this will a�ect the eigenfunctions and eigenvalues, as well as the representers of evaluation,
but not the unique RKHS associated with the kernel on X [93]. Thus, although there is a unique
RKHS associated with a kernel, the feature map needs not be unique.

Remark 2.32. Note that the condition (10) guarantees that the sequence of eigenvalues of the oper-
ator Lk resides in ℓ2, since, by the orthonormality of the {ϕn}∞n=0 (and Tonelli's theorem)∫∫

X×X

|k(x, y)|2 dx dy =

∫∫
X×X

(
∞∑
n=0

λnϕn(x)ϕn(y)

)(
∞∑
n=0

λnϕn(x)ϕn(y)

)
dx dy =

∞∑
n=0

λ2n.

In fact, for Mercer kernels, the sequence {λn}∞n=0 resides in ℓ1, and Lk has �nite trace, since

k(x, x) =
∞∑
n=0

λnϕn(x)
2 =⇒

∞∑
n=0

|λn| =
∞∑
n=0

λn =
∞∑
n=0

λn

∫
X
ϕn(x)

2 dx =

∫
X
k(x, x) dx <∞.

The spectral theory of compact self-adjoint operators requires only that the real λn → 0 as n → ∞.
This condition placed on the operator eigenvalues is strengthened greatly in the case of Hilbert-Schmidt
integral operators.

It is this condition�that the sequence of eigenvalues of Lk decays su�ciently quickly to remain in
ℓ2�that gives us a valid inner product when all eigenvalues λn > 0.

Corollary 2.33. Consider a Hilbert-Schmidt integral operator Lk of a Mercer kernel k. Let {ϕn}∞n=0

be its continuous eigenfunctions and {λn}∞n=0 the corresponding eigenvalues. Then for all (x, y) ∈ X 2,
the Fourier expansion of k(x, y) is an inner product in ℓ2 of the images of x and y under the continuous
feature map

ϕ : X → ℓ2

x 7→ ϕ(x) = (
√
λ0ϕ0(x),

√
λ1ϕ1(x), . . .).

(11)

Proof. By our construction, k(x, y) =
∑∞

n=0 λnϕn(x)ϕn(y) = ⟨ϕ(x), ϕ(y)⟩ℓ2 . Every x ∈ X is mapped
to an element of ℓ2 since

||ϕ(x)||2ℓ2 =
∞∑
n=0

λnϕn(x)
2 = k(x, x) <∞.

The feature map is continuous because xn −→ x implies

||ϕ(xn)− ϕ(x)||2ℓ2 = ⟨ϕ(xn)− ϕ(x), ϕ(xn)− ϕ(x)⟩ℓ2 = k(xn, xn) + k(x, x)− 2k(x, xn) −→ 0,

by the continuity of k.

This feature map ϕ, depends on our choice of measure in the de�nition of the integral opera-
tor (10), as do the eigenvalues {λn}∞n=0 and eigenvectors {ϕn}∞n=0. Nevertheless, we can use these
eigenvalues and eigenvectors to identify the unique RKHS associated with the continuous positive-
de�nite kernel k on the compact region X .

16Some authors de�ne the Mercer integral operator as the composition of Lk with the inclusion map, in which case
it maps L2(X ) equivalence classes to L2(X ) equivalence classes of functions that coincide µ-a.e. with a continuous
function.
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Corollary 2.34. Let k be Mercer kernel de�ned on a compact X and Lk the associated Hilbert-
Schmidt integral operator, with eigenfunctions {ϕn}∞n=0 and corresponding eigenvalues {λn}∞n=0. Then
the RKHS H associated with k (and X ) is de�ned as

H =

{
f ∈ L2(X )

∣∣∣∣∣ f L2(X )∼
∞∑
n=0

(f)nϕn such that
∞∑
n=0

(f)2n
λn

<∞

}
, (12)

and is endowed with the inner product between f with Fourier coe�cients (f)n = ⟨f, ϕn⟩L2(X ) and g
with Fourier coe�cients (g)n = ⟨g, ϕn⟩L2(X )

⟨f, g⟩H =
∞∑
n=0

⟨f, ϕn⟩L2(X )⟨ϕn, g⟩L2(X )

λn
=

∞∑
n=0

(f)n(g)n
λn

. (13)

Proof. First note that ⟨·, ·⟩H is indeed a valid inner product; in particular, it is de�nite, as λn > 0 for
all n by the Mercer condition17. Observe that the operator Lk is positive by the Mercer condition.
Thus, we can de�ne the operator18

L
1/2
k : L2(X )→ H

f
L2(X )∼

∞∑
n=0

⟨f, ϕn⟩L2(X )︸ ︷︷ ︸
(f)n

ϕn 7→ L
1/2
k f =

∞∑
n=0

(f)n
√
λnϕn, (14)

which is an isomorphism (by construction), so H is a separable Hilbert space since L2(X ) is a
separable Hilbert space. The series on the right-hand side converges pointwise since it converges in
the norm (by the compactness of Lk and thus L1/2

k ) and thus pointwise (since H is an RKHS, as we
will con�rm).

We know, moreover, that, being the eigenfunctions of the Hilbert-Schmidt integral operator of a
Mercer kernel, the ϕn are all continuous (see Remark 2.30). For any x ∈ X , de�ne the representer of
evaluation at x as

kx =
∞∑
n=0

λnϕn(x)︸ ︷︷ ︸
(kx)n

ϕn; (15)

then we can recover the Hilbert-Schmidt expansion using

∀(x, y) ∈ X 2, k(x, y) = ⟨kx, ky⟩H =
∞∑
n=0

(kx)n(ky)n
λn

=
∞∑
n=0

λnϕn(x)ϕn(y), (16)

and the representers of evaluation kx inhabit H

||kx||2H =
∞∑
n=0

(kx)
2
n

λn
=

∞∑
n=0

λnϕn(x)
2 = k(x, x) <∞.

The reproducing property then follows

∀f ∈ H, ⟨f, kx⟩H =
∞∑
n=0

(f)n(kx)n
λn

=
∞∑
n=0

⟨f, ϕn⟩L2(X ) · λnϕn(x)

λn
=

∞∑
n=0

(f)nϕn(x) = f(x). (17)

17This can be generalized to λ ≥ 0 by excluding the eigenfunctions ϕn associated with λn = 0 from our de�nition
of H, to avoid a division by 0 in the inner product de�nition without breaking the reproducing property or altering
the Hilbert-Schmidt expansion. Then ⟨·, ·⟩H will still be a valid inner product over H. In fact, we need only require
that all but �nitely many of the λn have the same sign [121]. See [34], Chapter 3, Remark 3.

18Here we use continuous functions as representers of equivalence classes of functions that coincide almost everywhere

with them. See [34] for a presentation where L
1/2
k is composed with the inclusion map, as is suggested by (12) rather

than our expansion (14).
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In summary, we started with a Mercer kernel k, which gave us a complete orthonormal system
{ϕn}∞n=0 for L2(X ), where the ϕn are continuous eigenfunctions (with eigenvalues λn > 0) of the
corresponding Hilbert-Schmidt integral operator Lk. Associated with this kernel is the unique RKHS
H with representers of evaluation at x given by (15). Thanks to the nonnegativity of the eigenvalues,
we can write a complete orthonormal system for H using the eigenvalues and eigenfunctions of Lk:
{
√
λnϕn}∞n=0 (orthonormality is immediate; using the de�nition of ⟨·, ·⟩H, completeness follows since

any function f ∈ H orthogonal to each of the ϕn has L2(X ) Fourier coe�cients (f)n = 0 for all
n ∈ N and thus is identically 0). We found two ways to express the kernel evaluations k(x, y) as an
inner product: in ℓ2, between ϕ(x) and ϕ(y) (de�ned in (11)), and in H, between the representers of
evaluation, kx and ky (given in Equation (16)).

2.2 Synthesizing Mercer Kernels on the Sphere

In this subsection, we derive positive-de�nite functions on the sphere by running the Mercer theorem
(Proposition 2.28) in reverse: we start with the sequences {λn}∞n=0 of nonnegative eigenvalues and
the continuous eigenfunctions {ϕn}∞n=0 and use them to synthesize a continuous kernel k. We begin
this work while continuing to let X be an arbitrary closed region in Euclidean space; later, we will
introduce results that are speci�c to X = S2.

2.2.1 Mercer Synthesis

We saw how a continuous kernel on a compact Euclidean domain can be expressed as the uniformly
convergent series

k(x, y) =
∞∑
n=0

λnϕn(x)ϕn(y)∀(x, y) ∈ X × X ,

where the weights λn are nonnegative eigenvalues in ℓ1 and orthonormal basis functions ϕn continuous
eigenfunctions of the associated Hilbert-Schmidt integral operator.

In this section, we consider the converse: can we instead start with a family {ϕn}∞n=0 of continuous
functions de�ned on the compact Euclidean domain X that form a complete orthonormal system
for L2(X ), as well as an ℓ1 sequence of weights {λn}∞n=0 with λn > 0 for all n ∈ N and derive a
continuous kernel? We require a few lemmas.

If X is compact, we can prove a result that follows from parts 1 and 3 of Proposition 2.24, but
that is nice to revisit in light of (13).

Lemma 2.35 (Strong convergence implies uniform convergence when X compact and k diagonally
continuous). Suppose H ⊆ RX is an RKHS of the form (12) with inner product (13) and �diagonally
continuous� kernel (i.e., the map x 7→ k(x, x) is continuous). Then convergence in the RKHS norm
implies uniform convergence.

Proof. Suppose {fm}∞m=0 converges to f in H. Letting {(fm)n}∞n=0 be the Fourier coe�cients of fm
on the orthonormal system {ϕn}∞n=0 for L

2(X ), then for any x ∈ X ,

|fm(x)− f(x)| =

∣∣∣∣∣
∞∑
n=0

((fm)n − (f)n)ϕn(x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

(fm)n − (f)n√
λn

√
λnϕn(x)

∣∣∣∣∣
≤

(
∞∑
n=0

((fm)n − (f)n)
2

λn

)1/2( ∞∑
n=0

λnϕn(x)ϕn(x)

)1/2

= ||fm − f ||H
√
k(x, x);
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thus, for all ϵ > 0, there exists N such that for all m > N and all x ∈ X ,

m > N =⇒ ||fm − f ||H <
ϵ

max
x∈X

√
k(x, x)

=⇒ |fm(x)− f(x)| < ϵ.

The result holds because the the continuous map x 7→ k(x, x) attains a maximum value on the
compact X .

Lemma 2.36 (Fourier expansion of a reproducing kernel). Given an RKHS H ⊆ RX with associated
reproducing kernel k and an orthonormal system (not necessarily complete) {ψn}∞n=0 in H, then

∀x ∈ X ,
∞∑
n=0

ψn(x)
2 ≤ k(x, x).

Proof. By the reproducing property, the Fourier expansion of the representer of evaluation at any
x ∈ X on {ψn}∞n=0 can be written

kx =
∞∑
n=0

⟨kx, ψn⟩Hψn =
∞∑
n=0

ψn(x)ψn.

Thus, Bessel's inequality gives

∞∑
n=0

ψn(x)
2 =

∞∑
n=0

|⟨kx, ψn⟩H|2 ≤ ||kx||2H = k(x, x).

This becomes equality when the system {ψn}∞n=0 is complete. In the Fourier-weighted Hilbert space,
ψn =

√
λnϕn, so

k(x, x) =
∞∑
n=0

λnϕn(x)
2,

where {ϕn}∞n=0 is a complete orthonormal system for L2(X ).

Remark 2.37 (Pointwise convergence of Riesz-Fischer limits in an RKHS). The Riesz-Fischer theo-
rem19 states that, given an orthonormal system {ψn}∞n=0 (not necessarily complete) in a Hilbert space
H and a sequence of weights {(g)n}∞n=0 in ℓ2, the sum

∞∑
n=0

(g)nψn −→ g

converges strongly in H to a limit g. If H is, moreover, an RKHS, over an index set X , then by
Remark 2.4, this convergence is also pointwise, and for all x ∈ X ,

|g(x)| =

∣∣∣∣∣
〈

∞∑
n=0

(g)nψn, kx

〉
H

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

(g)n⟨ψn, kx⟩H

∣∣∣∣∣ = ∣∣⟨{(g)n}∞n=0, {ψn(x)}∞n=0⟩ℓ2
∣∣

≤

(
∞∑
n=0

(g)2n

)1/2( ∞∑
n=0

ψn(x)
2

)1/2

≤
√
k(x, x)

(
∞∑
n=0

(g)2n

)1/2

,

by the Cauchy-Schwarz inequality and Lemma 2.36.
19The theorem we refer to was given in [47, 48, 119] in the context of L2(R) and quickly generalized to arbitrary

separable Hilbert spaces, as in [82], Section 16, Theorem 9, or [36], Theorem 3.4.10.
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Proposition 2.38 (Fourier-weighted Hilbert space synthesis of a Mercer kernel). Suppose we are
given a compact region in Rd X , a sequence of weights {λn}∞n=0 ∈ ℓ1 with λn > 0 for all n ∈ N, and
a sequence of functions {ϕn}∞n=0 that are continuous on X and form a complete orthonormal system
for L2(X ). Moreover, to ensure the local boundedness of

k(x, x) =
∞∑
n=0

λnϕn(x)
2

for each x ∈ X , we make the su�cient (but not necessary) assumption that the family {ϕn}∞n=0 is
locally bounded, i.e., for all x ∈ X there exists a neighborhood B(x) such that for all n ∈ N and all
y ∈ B(x), we have that |ϕn(y)| < Mx.

Then the weights {λn}∞n=0 and complete orthonormal system {ϕn}∞n=0 synthesize a Mercer kernel
in the sense that the kernel

k(x, y) =
∞∑
n=0

λnϕn(x)ϕn(y),

which converges in L2(X×X ) by the Riesz-Fischer theorem, also converges uniformly to a continuous
kernel.

Proof. De�ne20

⟨f, g⟩H =
∞∑
n=0

(f)n(g)n
λn

,

and

H =

{
f ∈ L2(X )

∣∣∣∣ f L2(X )∼
∞∑
n=0

(f)nϕn and
∞∑
n=0

(f)2n
λn

<∞

}
.

By construction, the Fourier-weighting operator

L
1/2
k : L2(X )→ H

f
L2(X )∼

∞∑
n=0

(f)nϕn 7→ L
1/2
k f =

∞∑
n=0

(f)n
√
λnϕn,

is an isometry

||f ||2L2(X ) =
∞∑
n=0

(f)2n =
∞∑
n=0

(
√
λn(f)n)

2

λn
=
∥∥∥L1/2

k f
∥∥∥2
H
,

the Fourier weighting injection an isomorphism. Thus, H is a separable Hilbert space, with complete
orthonormal system {

√
λnϕn}∞n=0.

The reproducing property (17) still holds, by construction, and the representers of evaluation are
given by

∀x ∈ X , kx =
∞∑
n=0

λnϕn(x)ϕn.

The ϕn are continuous, and therefore uniformly continuous (since X is compact). We now show
the kernel is continuous. First, observe that for all x ∈ X , the representer of evaluation at x

kx =
∞∑
n=0

λnϕn(x)ϕn =
∞∑
n=0

(√
λnϕn(x)

)
(
√
λnϕn),

20This generalizes immediately to the case where we merely require that the λn ≥ 0: we simply exclude those terms
where λn = 0 from the following sums.
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is in H by the Riesz-Fischer theorem, since {
√
λnϕn(x)}∞n=0 ∈ ℓ2, and, moreover, is continuous, since

for any sequence of points {xm}∞m=0 in X converging to x ∈ X and any y ∈ X , we have that

lim
m→∞

xm = x =⇒ lim
m→∞

ky(xm) = lim
m→∞

∞∑
n=0

λnϕn(y)ϕn(xm) =
∞∑
n=0

lim
m→∞

λnϕn(y)ϕn(xm)

=
∞∑
n=0

λnϕn(y)ϕn(x) = ky(x),

by Tannery's theorem (since the set {ϕn}∞n=0 is locally bounded, |λnϕn(y)ϕn(xm)| ≤ MyMx

n
−→ 0 for

su�ciently large m and n, where Mx is a local bound of {ϕn}∞n=0 in a neighborhood of x).
We now make the recognition that x 7→ kx(x) = k(x, x) is locally bounded, since

∞∑
n=0

λnϕn(x)
2 ≤M2

x

∞∑
n=0

λn,

and {λn}∞n=0 ∈ ℓ1.
Thus, by Proposition 2.24, part 2, the functions in H are all continuous on X . Using this, we can

see that kxm converges weakly in H to kx,

∀ f ∈ H, lim
m→∞

⟨f, kxm⟩H = lim
m→∞

f(xm) = f(x) = ⟨f, kx⟩H

and, moreover,

lim
m→∞

||kxm||2H = lim
m→∞

∞∑
n=0

λnϕn(xm)
2 =

∞∑
n=0

lim
m→∞

λnϕn(xm)
2 = ||kx||2H;

thus, kxm converges strongly to kx, so that the map ϕ : x 7→ kx is continuous and k is continuous on
the diagonal (by Proposition 2.24, part 1). It remains to be seen that the convergence is uniform.

We notice that the pointwise convergence of the monotonically increasing sequence of functions

kM(x, x) =
M∑
n=0

λnϕn(x)
2

to the continuous function

k(x, x) =
∞∑
n=0

λnϕn(x)
2

is uniform, by Dini's theorem. By the Cauchy-Schwarz inequality, we have also that

|k(x, y)| =

∣∣∣∣∣
∞∑
n=0

λnϕn(x)ϕn(y)

∣∣∣∣∣ ≤
∞∑
n=0

√
λn |ϕn(x)|

√
λn |ϕn(y)|

≤

(
∞∑
n=0

λnϕn(x)
2

)1/2( ∞∑
n=0

λnϕn(y)
2

)1/2

≤
√
k(x, x) ·

√
k(y, y).

Thus, the sequence of partial sums
∑N

n=0 λnϕn(x)ϕn(y) converges uniformly to k(x, y) on X ×X . By
the uniform limit theorem, k is continuous on X × X .
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Remark 2.39. The authors of [78] call the space H derived this way a �Fourier weighted Hilbert
space� because it applies selection to the elements of L2(X ) via the sequence of nonnegative weights
{λn}, which must penalize large Fourier coe�cients (f)n for large n, so that the sequence of coe�-
cients {(f)n/

√
λn}∞n=0 may remain in ℓ2 and thus give, by the Riesz-Fischer theorem, the expansion

weights of an element of H. (L2(X ) itself, which is not an RKHS, is (re)constructed by a much less
selective sequence of weights, not in ℓ1, given by λn = 1 ∀n ∈ N; nonnegative weight sequences in ℓ1

yield a Fourier weighted Hilbert space that is in fact an RKHS.)

The construction of a Fourier weighted Hilbert space via Mercer synthesis is summarized in
Algorithm 1.

Algorithm 1: Synthesis of a Mercer kernel and Fourier-weighted Hilbert space.
Data: An ℓ1 sequence {λn}∞n=0 of nonnegative weights λn ≥ 0 and a locally bounded

complete orthonormal system {ϕn}∞n=0 for L
2(X ). The ϕn are continuous on the

compact set X .
Result: A positive-de�nite kernel k on X and an associated RKHS H.
De�ne the kernel

∀(x, y) ∈ X 2, k(x, y) =
∞∑
n=0

λnϕn(x)ϕn(y).

The corresponding RKHS H
� consists of continuous functions on X ;

� has inner product ⟨f, g⟩H =
∑∞

n=0
λn>0

⟨f,ϕn⟩L2(X )⟨g,ϕn⟩L2(X )

λn
=
∑∞

n=0
λn>0

(f)n(g)n
λn

;

� satis�es f ∈ H ⇐⇒ ||f ||2H =
∑∞

n=0
λn>0

(f)2n
λn

<∞;

� has complete orthonormal system {
√
λnϕn}∞n=0;

� has representers of evaluation at x ∈ X given by kx =
∑∞

n=0
λn>0

λnϕn(x)ϕn.

Return the Mercer kernel k and RKHS H.

2.2.2 The Real Spherical Harmonics: A Complete Orthonormal System for L2(S2)

To synthesize kernels on �Fourier side� we require a complete orthonormal system for L2(S2). A
convenient choice is the real spherical harmonics {Y n

l | l ∈ N and n ∈ [[−l, l]]}, which form a complete
orthonormal system for L2 (S2) with respect to the inner product

⟨f, g⟩L2(S2) =
1

4π

∫ 2π

0

∫ π

0

f(x)g(x) sin(θ) dθ dϕ ,

and act as eigenfunctions of the 2-sphere Laplace-Beltrami operator ∆S

∆SY
n
l (θ, ϕ) = − [l(l + 1)]Y n

l (θ, ϕ). (18)

(We have adopted the notational convention [[a, b]] = {a, a+1, . . . , b}.) In Section 2.7, it is this latter
property (Equation (18)) that makes this choice of complete orthonormal system particularly suited
to the thin-plate spherical splines.
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To de�ne the real spherical harmonics, we �rst de�ne the complex spherical harmonics [160] as

Zn
l (θ, ϕ) =

√
2l + 1

4π

(l − n)!
(l + n)!

P n
l (cos(θ))e

inϕ,

where the P n
l are associated Legendre polynomials [87, 126], which can be de�ned by the Rodrigues

formula

for x ∈ [−1, 1], P n
l (x)

def
=

{
(−1)n

2ll!
(1− x2)n/2 dl+n

dxl+n (x
2 − 1)

l
, if n ∈ [[0, l]];

(l+n)!
(l−n)!

1
2ll!

(1− x2)n/2 dl+n

dxl+n (x
2 − 1)

l
, if n ∈ [[−l,−1]].

Observe that for n even, P n
l (x) is a polynomial; that P−n

l (x) di�ers from P n
l (x) by a scale factor;

and that P 0
l (x) is the standard (not �associated�) Legendre polynomial. The associated Legendre

polynomials are the canonical solutions of the general Legendre equation of degree l and order n,

d

dx

[
(1− x2) d

dx
P n
l (x)

]
+

[
l(l + 1)− n2

1− x2

]
P n
l (x) = 0,

which reduces to the Legendre equation if n = 0. (The other solutions to this equation, called the
associated Legendre functions of the second kind, have singularities at ±1.)

From the complex spherical harmonics Zn
l , we de�ne the (real) spherical harmonics of degree

l ∈ N and order n ∈ [[−l, l]] by extracting the real and imaginary parts and renormalizing [78]

Y n
l (θ, ϕ) =


√
2Re [Zn

l (θ, ϕ)] =
√
2
√

2l+1
4π

(l−n)!
(l+n)!

cos(nϕ)P n
l (cos(θ)) , n ∈ [[−l,−1]];

√
2Im [Zn

l (θ, ϕ)] =
√
2
√

2l+1
4π

(l−n)!
(l+n)!

sin(nϕ)P n
l (cos(θ)) , n ∈ [[1, l]];√

2l+1
4π
P 0
l (cos(θ)), n = 0.

A useful property of the spherical harmonics is the addition theorem for real or complex spherical
harmonics [70, 163], an analogue of the addition formulas for sinusoids

4π

2l + 1

l∑
n=−l

Y n
l (θ, ϕ)Y

n
l (θ

′, ϕ′) = P 0
l (cos(∢(p, p

′))) (19)

where P 0
l are, as before, the (standard, un-associated) Legendre polynomials and ∢(p, p′) is the angle

between p = (θ, ϕ) and p′ = (θ′, ϕ′). Setting p = p′ and noting that P 0
l (cos(0)) = P 0

l (1) = 1, we get
a corollary, sometimes called Unsöld's theorem [163]

l∑
n=−l

Y n
l (θ, ϕ)

2 =
2l + 1

4π
.

Let x be the map from spherical to Euclidean coordinates on the unit circle

x : [0, π]× [0, 2π)→ R3

(θ, ϕ) 7→ (sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ))T ,

and p = (θ, ϕ)T and p′ = (θ′, ϕ′)T be two points on the sphere. Then x(θ, ϕ) and x(θ′, ϕ′) are two
Euclidean vectors on the unit sphere in R3, and the cosine of the angle ∢(p, p′) between them is, by
the addition theorem for sinusoids, the following

cos(∢(p, p′)) = x(θ, ϕ)Tx(θ′, ϕ′)

= sin(θ) cos(ϕ) sin(θ′) cos(ϕ′) + sin(θ) sin(ϕ) sin(θ′) sin(ϕ′) + cos(θ) cos(θ′)

= cos(θ) cos(θ′) + sin(θ) sin(θ′) cos(ϕ− ϕ′).
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The spherical harmonics are not locally bounded. If a function f lies on the (2l+1)-dimensional
space Hl of homogeneous polynomials of total degree l, i.e., span {Y −l

l , Y −l+1
l , . . . , Y l

l }, then

sup
p∈S2
|f(p)| ≤

√
2l + 1

4π
||f ||L2(S2);

moreover, every one of these spaces Hl has an element for which this upper bound is attained on
some t ∈ S2 (see [52], Section 6).

However, the Legendre polynomials are bounded

∀u ∈ [−1, 1], |P 0
l (u)| ≤ 1 ([105], Lemma 2, p. 43).

The addition theorem therefore allows us to rewrite an expansion on a basis that is not locally
bounded (i.e., the spherical harmonics) as an expansion on a basis (the Legendre polynomials) that
is bounded everywhere in magnitude by unity.

Thus, even though the Riesz-Fischer theorem requires that, for every ℓ2 sequence of weights
{λl,n}∞, l

l=0, n=−l, the weighted sum of spherical harmonics must converge in L2(S2 × S2)

∞∑
l=0

l∑
n=−l

λl,nY
n
l (θ, ϕ)

L2(S2×S2)−−−−−−→ f,

we cannot apply Proposition 2.38 to synthesize a kernel using these weights

k(p, p′) =
∞∑
l=0

l∑
n=−l

λl,nY
n
l (θ, ϕ)Y

n
l (θ

′, ϕ′),

that converges for all pairs (p, p′) ∈ S2×S2. Nevertheless, if we require that the weights {λl,n}∞, l
l=0, n=−l

be constant over each degree�i.e., for all l ∈ N, λl,n = αl ≥ 0�then we have that

∞∑
l=0

l∑
n=−l

λl,nY
n
l (θ, ϕ)

2 =
∞∑
l=0

αl

l∑
n=−l

Y n
l (θ, ϕ)

2 =
∞∑
l=0

αl
2l + 1

4π

converges for all p = (θ, ϕ) ∈ S2 if and only if {αl(2l + 1)}∞l=0 ∈ ℓ1. Then by the Cauchy-Schwarz
inequality

k(p, p′) =
∞∑
l=0

l∑
n=−l

λl,nY
n
l (θ, ϕ)Y

n
l (θ

′, ϕ′) converges for all (p, p′) ∈ S2 ⇐⇒ {αl(2l + 1)}∞l=0 ∈ ℓ1.

Even though the spherical harmonics are not locally bounded, we can apply Proposition 2.38 after
requiring that the weights on the spherical harmonics exhibit a particular multiplicity, enabling the
application of the addition theorem, which restates the kernel expansion in terms of the Legendre
polynomials P 0

l .
As we will see in the next section, it turns out that this seemingly stringent restriction in the

form of the kernel�our choosing, in the Hilbert-Schmidt synthesis sum, the spherical harmonics as
the complete orthonormal sequence of L2(S2), as well as requiring that the ℓ1 sequence of weights
λl,n in the sum adopt a constant value αl ≥ 0 over each (2l + 1)-multiplicity eigenspace Hl of the
Laplace-Beltrami operator�is not limiting in practice, if we desire a property called isotropy.
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2.2.3 Mercer Synthesis and Isotropic Kernels on the Sphere

On the sphere S2, the spherical harmonics (see Section 2.2.2) are eigenfunctions for the Hilbert-
Schmidt integral operator of any continuous kernel that depends only on the cosine of the geodesic
(great circle) angle between the two points being considered. To see this, let us �rst recall a formula
that greatly simpli�es the Hilbert-Schmidt expansion of any such kernel.

Proposition 2.40 (Funk-Hecke formula). In spherical coordinates, let the colatitude and longitude
of any two points p and p′ be given by (θ, ϕ) and (θ′, ϕ′), respectively, and let x be the map from
spherical coordinates to Euclidean coordinates, so that ||x(θ, ϕ)||R3 = ||x(θ′, ϕ′)||R3 = 1. Consider any
kernel of the form

k ((θ, ϕ), (θ′, ϕ′)) = φ(x(θ, ϕ)Tx(θ′, ϕ′)), with φ continuous on [−1, 1].

Let Y n
l be a spherical harmonic of degree l and order n. Then Y n

l is an eigenfunction of the operator

Lφ : L2(S2)→ L2(S2)

f 7→ Lφf =

∫ 2π

0

∫ π

0

φ(x(θ, ϕ)Tx(θ′, ϕ′))f(θ′, ϕ′) sin(θ′) dθ′ dϕ′ ,

with an eigenvalue αl that depends only on the degree l and the function φ

αl = 2π

∫ 1

−1

φ(x)P 0
l (x) dx (20)

=
2π

2ll!

∫ 1

−1

φ(k)(x)(1− x)k dx (if φ is k times continuously di�erentiable on [-1,1]),

where P 0
l is the Legendre polynomial of degree l; the second equality holds by the Rodrigues formula.

Proof. Originally given in [50, 63]. Any continuous function on [−1, 1] has an almost everywhere
pointwise convergent21 Legendre expansion

φ
a.e.
=

∞∑
l=0

clP
0
l =

∞∑
l=0

⟨φ, P 0
l ⟩L2(−1,1)P

0
l =

∞∑
l=0

(
2l + 1

2

∫ 1

−1

φ(t)P 0
l (t) dt

)
P 0
l . (21)

Then for any degree l0 and order n0, we have that

LφY
n0
l0

=

∫ 2π

0

∫ π

0

φ(x(θ, ϕ)Tx(θ′, ϕ′))Y n0
l0

(θ′, ϕ′) sin(θ′) dθ′ dϕ′

=

∫ 2π

0

∫ π

0

∞∑
l=0

cl P
0
l (x(θ, ϕ)

Tx(θ′, ϕ′))︸ ︷︷ ︸∑l
n=−l Y

n
l (θ,ϕ)Y n

l (θ′,ϕ′) 4π
2l+1

Y n
l (θ

′, ϕ′) sin(θ′) dθ′ dϕ′

=
∞∑
l=0

4πcl
2l + 1

l∑
n=−l

Y n
l (θ, ϕ)

∫ 2π

0

∫ π

0

Y n
l (θ

′, ϕ′)Y n0
l0

(θ′, ϕ′) sin(θ′) dθ′ dϕ′︸ ︷︷ ︸
δn,n0δl,l0

=
4πcl0
2l0 + 1

Y n0
l0
,

21Note that a continuous function is square integrable on the compact interval [−1, 1]. Then apply [117], which
gives a Carleson-Hunt-like theorem for Legendre expansions: Legendre expansions of functions in Lp(−1, 1) converge
pointwise almost everywhere if p > 4/3.
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by the addition theorem (19). Expanding out the Fourier coe�cient cl0 of the Legendre expansion
of φ (21), we see that

αl0 =
4πcl0
2l0 + 1

=
4π

2l0 + 1

(
2l0 + 1

2

∫ 1

−1

φ(t)P 0
l0
(t) dt

)
= 2π

∫ 1

−1

φ(t)P 0
l0
(t) dt ,

and LφY
n0
l0

= αl0Y
n0
l0
. Furthermore, the Hilbert-Schmidt expansion of the kernel is its Legendre

expansion

k((θ, ϕ), (θ′, ϕ′)) = φ(x(θ, ϕ)Tx(θ′, ϕ′)) =
∞∑
l=0

l∑
n=−l

αlY
n
l (θ, ϕ)Y

n
l (θ

′, ϕ′)

=
∞∑
l=0

αl
2l + 1

4π
P 0
l (x(θ, ϕ)

Tx(θ′, ϕ′)) (22)

=
∞∑
l=0

(
2l + 1

2

∫ 1

−1

φ(t)P 0
l (t) dt

)
P 0
l (x(θ, ϕ)

Tx(θ′, ϕ′)),

which agrees with the Legendre expansion (21). See also [105], Section 4, Lemma 1.

Remark 2.41. Notice that x(θ, ϕ)Tx(θ′, ϕ′) is precisely the cosine of the geodesic angle ∢(p, p′)
between p and p′. Thus, we can write k(p, p′) = φ(cos(∢(p, p′))).

De�nition 2.42 (Isotropic kernel). Let us call any kernel of this form

k(p, p′) = φ(cos(∢(p, p′))),

an isotropic kernel.

Example 2.43. Let k be the isotropic kernel k(p, p′) = cos(∢(p, p′)) = x(θ, ϕ)Tx(θ′, ϕ′) = x(p)Tx(p′),
so that φ(x) = x. Clearly k is continuous and positive-de�nite, since for any p and p′ in S2, k(p, p′)
gives an inner product in the Euclidean space R3; indeed, for any n ∈ N and any choice of α ∈ Rn

and of points on the sphere {p1, . . . , pn},

n∑
i=1

n∑
j=1

αiαjk(pi, pj) =
n∑

i=1

n∑
j=1

αiαj ⟨x(pi), x(pj)⟩R3 =

∥∥∥∥∥
n∑

i=1

αix(pi)

∥∥∥∥∥
2

R3

≥ 0.

We will verify that the Funk-Hecke formula (20) gives the coe�cients of its Hilbert-Schmidt expansion.
Observe that φ(x) = P 0

1 (x) on [−1, 1] is the Legendre polynomial of degree 1. By the orthogonality
of the Legendre polynomials, the Funk-Hecke formula produces the eigenvalue sequence

αl = 2π

∫ 1

−1

φ(x)P 0
l (x) dx︸ ︷︷ ︸

2
2l+1

δl,1

=

{
4π

2l+1
, if l = 1;

0, otherwise.

Indeed, we can con�rm that this eigenvalue sequence synthesizes the Mercer kernel k. By the addition
theorem for spherical harmonics (19), the series

k(p, p′) =
∞∑
l=0

l∑
n=−l

αlY
n
l (θ, ϕ)Y

n
l (θ

′, ϕ′) =
∞∑
l=0

αl
2l + 1

4π
P 0
l (cos(∢(p, p

′)))

= P 0
1 (cos(∢(p, p

′))) = cos(∢(p, p′)).

The synthesized kernel k is isotropic and continuous, and the convergence is (trivially) uniform.
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We wish to �nd isotropic positive-de�nite kernels on the sphere. One approach is to do Mer-
cer synthesis (see Section 2.2.1): start with a complete orthonormal system for S2 (namely, the
spherical harmonics) and a sequence of eigenvalues (in ℓ1 and nonnegative, so that they converge
to a positive-de�nite kernel; with multiplicity equal to the degree to guarantee isotropy, by the
Funk-Hecke formula (20)). Working on �the Fourier side� is a great way to guarantee the positive
de�niteness and continuity of the kernel, but deriving a kernel that can be expressed in closed form
requires care.

We could instead choose a continuous function φ and verify that the eigenvalues {λl,n}∞, l
l=0, n=−l

of Lφ given by the Funk-Hecke formula (Proposition 2.40) λl,n = αl are nonnegative and in ℓ1 (i.e.,
{αl(2l + 1)}∞l=0 ∈ ℓ1). Checking these criteria can be tedious, but if we start with a kernel that is
easy to compute, we will not be stuck evaluating the kernel via in�nite series.

Whichever approach we take, we can be con�dent that we can recover any isotropic positive-
de�nite kernel on the sphere. In other words, the choices we made�using the spherical harmonics, with
nonnegative eigenvalues in ℓ1 with Funk-Hecke multiplicities (Proposition 2.40)�are not limiting. I.J.
Schoenberg showed that all isotropic positive-de�nite functions on the sphere admit series expansions
on the spherical harmonics with nonnegative, summable weights, whose multiplicities are speci�ed
by the Funk-Hecke formula (20).

Proposition 2.44 (Schoenberg, 1942 (Theorem 1)). A continuous function φ : [−1, 1] → R gives
rise to a positive-de�nite isotropic kernel k(p, p′) = φ(cos(∢(p, p′))) on the sphere S2 if and only if
its expansion in the Legendre polynomials P 0

l has nonnegative weights that are in ℓ1. In other words,
in the Fourier expansion of φ on the complete orthogonal system {P 0

l }∞l=0 for L2(−1, 1)

φ(cos(∢(p, p′))) =
∞∑
l=0

⟨φ, P 0
l ⟩L2(−1,1)

||P 0
l ||2L2(−1,1)

P 0
l (cos(∢(p, p

′))) =
∞∑
l=0

clP
0
l (cos(∢(p, p

′))), (23)

the weights all satisfy

cl =

(
2l + 1

2

∫ 1

−1

φ(u)P 0
l (u) du

)
≥ 0 and

∞∑
l=0

cl <∞.

Proof. See [129], Theorem 1. The key to the proof is the recognition that the Legendre polynomials
P 0
l , interpreted as isotropic kernels, are all positive-de�nite functions on the sphere (the case with
l = 1 is explored in Example 2.43); this is an easy consequence of the addition theorem, and an
inductive proof is given in [129]; see also [140], Chapter 4. The remaining details follow.

First, suppose that the weights {cl}∞l=0 ∈ ℓ1 and cl ≥ 0 for all l ∈ N. Since the Legendre
polynomials P 0

l are all continuous and bounded in absolute value by 1 on [−1, 1], the Legendre
expansion (23) converges uniformly (by the Weierstrass M-test, since the sequence {cl}∞l=0 is in ℓ1)
to a continuous limit (by the uniform limit theorem, since the P 0

l are continuous). This continuous
limit φ of positive-de�nite functions must also be positive de�nite. Indeed, for any n ∈ N, choice of
points {pi}ni=1 on the sphere, and α ∈ Rn, we have

n∑
i=1

n∑
j=1

αiαjP
0
l (cos(∢(pi, pj))) ≥ 0.
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Hence,

n∑
i=1

n∑
j=1

αiαjφ(cos(∢(pi, pj))) =
n∑

i=1

n∑
j=1

αiαj

∞∑
l=0

clP
0
l (cos(∢(pi, pj)))

=
∞∑
l=0

cl︸︷︷︸
≥0

(
n∑

i=1

n∑
j=1

αiαjP
0
l (cos(∢(pi, pj)))

)
︸ ︷︷ ︸

≥0

≥ 0,

and the continuous φ is positive de�nite.
Conversely, suppose φ is a positive-de�nite isotropic kernel on the sphere and is continuous on

[−1, 1]. Then for any choice of n ∈ N, points {pi}ni=1 on the sphere S2, and weights α ∈ Rn, φ satis�es

n∑
i=1

n∑
j=1

αiαjφ(cos(∢(pi, pj))) ≥ 0.

This is equivalent to the integral inequality for any continuous function h : S2 7→ R∫
S2
h(p)

∫
S2
h(p′)φ(cos(∢(p, p′))) dS(p′) dS(p) ≥ 0,

where, at p = (θ, ϕ), the unit sphere's surface area di�erential dS(p) = sin(θ) dθ dϕ. Setting h ≡ 1,
we get the requirement that

4π

∫
S2
φ(cos(∢(p, p′))) dS(p′) ≥ 0.

Then ∫ 2π

0

∫ π

0

φ(cos(∢((θ, ϕ), (θ′, ϕ′)))) sin(θ′) dθ′ dϕ′ ≥ 0, (24)

and the lth coe�cient of the expansion of φ in Legendre polynomials can be written, via the substi-
tution u = cos(θ′),

cl =
2l + 1

2

∫ 1

−1

φ(u)P 0
l (u) du =

2l + 1

2

∫ −1

1

φ(u)P 0
l (u) · (− du)

=
2l + 1

2

∫ π

0

φ(cos(θ′))P 0
l (cos(θ

′)) sin(θ′) dθ′

=
2l + 1

4π

∫ 2π

0

∫ π

0

P 0
l (cos(∢(p1, p

′)))φ(cos(∢(p1, p
′))) sin(θ′) dθ′ dϕ′ ,

where p1 = (θ1, ϕ1) is the North Pole, so that for any p′ = (θ′, ϕ′) on S2,

cos(∢(p1, p
′)) = cos(θ1)︸ ︷︷ ︸

1

cos(θ′) + sin(θ1)︸ ︷︷ ︸
0

sin(θ′) cos(ϕ1 − ϕ′) = cos(θ′).

But then cl ≥ 0 by (24), since the product P 0
l φ of two positive-de�nite functions is positive de�nite.

We now show the absolute summability of the {cl}∞l=0 and the uniform convergence of the weighted
sum of Legendre polynomials, with cl ≥ 0, to the kernel φ. We recall the result (see [105]; [114]; [129]; [172],
remarks to Theorem 3.1) that the decomposition

φ ∼
∞∑
l=0

clP
0
l (25)
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is everywhere Abel-summable if φ is everywhere continuous. Then, in particular, φ is Abel-summable
at 1

lim
r→1−

∞∑
l=0

clr
l P 0

l (1)︸ ︷︷ ︸
1

= lim
r→1−

∞∑
l=0

clr
l = A <∞.

But since, for all (p, p′) ∈ S2 × S2 and m ∈ N,

m∑
l=0

|clP 0
l (cos(∢(p, p

′)))| ≤
m∑
l=0

cl P
0
l (1)︸ ︷︷ ︸
1

=
m∑
l=0

cl,

and since cl ≥ 0, we have that

m∑
l=0

clr
l ≤

∞∑
l=0

clr
l, and lim

r→1−

m∑
l=0

clr
l =

m∑
l=0

cl ≤ lim
r→1−

∞∑
l=0

clr
l = A.

As m was arbitrary, we can conclude

∞∑
l=0

|clP 0
l (cos(∢(p, p

′)))| ≤
∞∑
l=0

cl ≤ A.

Conversely, since for any r ∈ (0, 1)

∞∑
l=0

clr
l ≤

∞∑
l=0

cl, we see that A = lim
r→1−

∞∑
l=0

clr
l ≤

∞∑
l=0

cl.

Thus,

φ(1) =
∞∑
l=0

cl = A <∞,

and (25) converges absolutely and uniformly for all ∢(p, p′) ∈ [0, π]. Hence, the Hilbert-Schmidt
kernel sum of the isotropic kernel k : S2 × S2 → R,

k(p, p′) = φ(cos(∢(p, p′))) =
∞∑
l=0

clP
0
l (cos(∢(p, p

′))) =
∞∑
l=0

4πcl
2l + 1︸ ︷︷ ︸

αl

l∑
n=−l

Y n
l (θ, ϕ)Y

n
l (θ

′, ϕ′),

converges uniformly.
Note that we have adapted Schoenberg's more general Gegenbauer (�ultraspherical�) polynomial

expansion of an isotropic kernel in Sm (2.11) to the speci�c case of the Legendre polynomials, which
is appropriate for S2 (set m = 2, λ = 1

2
, and in the integrals u = cos(θ′)).

Remark 2.45. Schoenberg's theorem tells us that an isotropic kernel applies the same weight to
each spherical harmonic of the same wiggliness. Isotropic kernels are good candidates to serve as
wiggliness penalties. Suppose an interpolant is a weighted sum of the representations of evaluation,
using an isotropic kernel k whose RKHS is H, of a �nite data set: I(θ, ϕ) =

∑n
i=1 αik(·, (θi, ϕi)). The

Hilbert norm of this interpolant is αTKα, where α = (α1, . . . , αn)
T and (K)i,j = k((θ,ϕi), (θj, ϕj)).

Since k is isotropic, the wiggliness of the interpolant depends only on the weights α and the pairwise
geodesic distances between points in the data set.
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Remark 2.46. For the Legendre expansion (25) to converge everywhere pointwise, the continuity
of φ is ordinarily insu�cient; continuous di�erentiability is typically the su�cient criterion that
is most convenient to show [125]. Schoenberg's theorem (Proposition 2.44) shows that the Legendre
series converges uniformly if φ is continuous and positive-de�nite (i.e., if we enforce the rather strong
constraint that all Fourier coe�cients cl in its expansion on the Legendre polynomials satisfy cl ≥ 0).

Example 2.47. The positive sequence {λl,n}∞, l
n=0, l=−n given by λl,n = αl =

4π
2l+1

βl, with β ∈ (0, 1),
is in ℓ1 by the convergence of the geometric series. We take the Hilbert-Schmidt expansion of this
sequence of eigenvalues on the spherical harmonics and apply the addition theorem to synthesize the
corresponding kernel

k(p, p′) =
∞∑
l=0

l∑
n=−l

αlY
n
l (θ, ϕ)Y

n
l (θ

′, ϕ′) =
∞∑
l=0

αl
2l + 1

4π
P 0
l (cos(∢(p, p

′))) =
∞∑
l=0

P 0
l (cos(∢(p, p

′)))βl.

The Legendre polynomials P 0
l can be de�ned, inter alia, by the generating function identi�ed by

Legendre while investigating 1/r potentials [22]

1√
1− 2βz + β2

=
∞∑
l=0

P 0
l (z)β

l.

For any z ∈ [−1, 1] and β ∈ (0, 1), the function on the left-hand side is easily seen to be continuous
in both arguments at (z, β). Since for z ∈ [−1, 1], the |P 0

l (z)| ≤ 1, we can apply the Weierstrass
M-test to con�rm that the right-hand side, as a function of z, converges uniformly to the left-hand
side on [−1, 1]. Thus, the Mercer kernel associated with this positive eigenvalue sequence is

k(p, p′) =
1√

1− 2β cos(∢(p, p′)) + β2
.

Let H be the RKHS associated with k. The reproducing property can be veri�ed using (17)

⟨k(·, s), f⟩H =
∞∑
l=0

l∑
n=−l

(k(·, s))n,l(f)n,l
αl

=
∞∑
l=0

l∑
n=−l

αlY
n
l (θs, ϕs)(f)n,l

αl

=
∞∑
l=0

l∑
n=−l

(f)n,lY
n
l (θs, ϕs) = f(s);

the Fourier expansion converges uniformly and thus pointwise since k is continuous and f ∈ H.

Let us summarize our �ndings. Using Proposition 2.38, we synthesized a kernel as a Hilbert-
Schmidt weighted sum of spherical harmonics. We used the eigenvalue conditions of Mercer kernels�
nonnegativity and bounded ℓ1 norm�and added a new one by imposing equality on the eigenvalues of
the 2l+1 spherical harmonics of the same degree. We found the synthesized positive-de�nite kernels
were isotropic. By the addition theorem, the kernel sum can be expressed in terms of the (bounded)
Legendre polynomials {P 0

l }∞l=0. This process can synthesize all isotropic positive-de�nite kernels on
the sphere, by Schoenberg's theorem (Proposition 2.44).

Moreover, the Fourier expansion of any such φ ∈ L2(−1, 1) on the Legendre polynomials

φ ∼
∞∑
l=0

clP
0
l , where cl =

〈
φ,

2l + 1

2
P 0
l

〉
L2(−1,1)

=
2l + 1

2

∫ 1

−1

φ(t)P 0
l (t) dt

converges not only in L2(−1, 1) but uniformly and absolutely.
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The condition that the sequence {λl,n}∞, l
l=0, n=−l of nonnegative weights on the spherical harmonics

be absolutely summable can be rewritten using the multiplicity (λl,n = αl) guaranteed by the Funk-
Hecke formula: (Proposition 2.40) {(2l + 1)αl}∞l=0 ∈ ℓ1. By the addition theorem, this obliges the
weights cl on the Legendre polynomial expansion of φ to be absolutely summable. The αl are
nonnegative precisely when the cl are

αl = 2π

∫ 1

−1

φ(t)P 0
l (t) dt︸ ︷︷ ︸

2
2l+1

cl

≥ 0 ⇐⇒ cl ≥ 0,

by the Funk-Hecke formula (20). The conditions (nonnegativity and summability) Schoenberg's
theorem (Proposition 2.44) places on the weights of the expansion of φ : [−1, 1]→ R on the Legendre
polynomials are the same as the conditions Mercer synthesis (Proposition 2.38) places on the weights
of the Hilbert-Schmidt expansion of a kernel k : S2 × S2 → R on a complete orthonormal system
for L2(S2); the Legendre expansion follows from the Hilbert-Schmidt expansion if we impose the
constraint of isotropy (or, equivalently, Funk-Hecke eigenvalue multiplicities) by the addition theorem
for spherical harmonics (19). We could not use Proposition 2.38 because the spherical harmonics are
not locally bounded. However, isotropy and the addition theorem make it clear that the Hilbert-
Schmidt expansion of the isotropic kernel on the spherical harmonics converges uniformly whenever
the expansion of φ on the Legendre polynomials does

k(p, p′) = φ(cos(∢(p, p′))) =
∞∑
l=0

l∑
n=−l

λl,n︸︷︷︸
αl

Y n
l (θ, ϕ)Y

n
l (θ

′, ϕ′)

=
∞∑
l=0

αl︸︷︷︸
4π

2l+1
cl

l∑
n=−l

Y n
l (θ, ϕ)Y

n
l (θ

′, ϕ′) =
∞∑
l=0

αl
2l + 1

4π
P 0
l (cos(∢(p, p

′))) =
∞∑
l=0

clP
0
l (cos(∢(p, p

′))).

The RKHS H associated with our Mercer kernel (De�nition 2.29) can be de�ned exactly as
suggested in Section 2.2.1, with inner product

⟨f, g⟩H =
∞∑
l=0

l∑
n=−l

λl,n>0

(f)l,n(g)l,n
λl,n

=
∞∑
l=0
αl>0

1

αl

l∑
n=−l

(f)nl (g)
n
l ,

where (f)l,n and (g)l,n are the Fourier coe�cients of the expansion of f and g on the spherical
harmonics, respectively. The inclusion criterion of our Fourier-weighted Hilbert space remains the
same

f ∈ H ⇐⇒ ||f ||2H =
∞∑
l=0
αl>0

1

αl

l∑
n=−l

((f)nl )
2 <∞.

While the weights {λl,n}∞, l
l=0, n=−l of the Hilbert-Schmidt expansion of an isotropic positive-de�nite

kernel on the spherical harmonics assume a constant value αl over each space of spherical polynomials
of degree l, the Fourier coe�cients of functions in the RKHS H need not exhibit this multiplicity;
the addition theorem cannot be applied, so a double sum remains in the inner product. However,
like the Hilbert-Schmidt expansion of the kernel, the expansion of any f ∈ H

f(p) = ⟨f, kp⟩H =
∞∑
l=0
αl>0

l∑
n=−l

(f)n,lαlY
n
l (θ, ϕ)

αl

=
∞∑
l=0
αl>0

l∑
n=−l

(f)n,lY
n
l (θ, ϕ)
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converges uniformly22 by Proposition 2.24, part 3. By the de�nition of ⟨·, ·⟩H, the Fourier expansion
of any f ∈ H on the spherical harmonics converges weakly to f in H

∀g ∈ H,

〈
∞∑
l=0
αl>0

l∑
n=−l

(f)n,lY
n
l , g

〉
H

=
∞∑
l=0
αl>0

l∑
n=−l

(f)n,l(g)n,l
αl

= ⟨f, g⟩H.

Hence, that convergence is uniform.

2.3 Solving Norm-Minimizing Interpolation and Smoothing Problems in
an RKHS

The development of RKHS theory was motivated by interpolation applications in a rather particu-
lar setting (in particular, �nding holomorphic interpolants of scattered data in the unit disk [15]).
Nachman Aronszajn generalized the notion of reproducing kernels to arbitrary index sets [3]. Grace
Wahba revisited interpolation with this more general perspective. The algorithms Wahba derived
for solving interpolating problems in an RKHS [79, 158] require neither uniform convergence of the
Hilbert-Schmidt expansion nor kernel continuity; in fact, the index set X need not be topological.

As we turn our attention to solving interpolation and smoothing problems in an RKHS, we return
to the full generality of the Aronszajn theorem (Proposition 2.11) and Wahba's work. In this section,
X can be an arbitrary set.

De�nition 2.48 (The exact interpolation problem and the smoothing problem). Suppose we have a
sequence of n sample locations {xi}ni=1 in X and corresponding values {yi}ni=1 in R. An interpolating
function f in a reproducing kernel Hilbert space H ⊆ RX (with reproducing kernel k) is any function
f ∈ H for which f(xi) = yi for each i = 1, . . . , n. The exact interpolation problem is solved by
�nding the interpolating function of minimal norm

argmin
f∈H

||f ||H subject to f(xi) = yi for i = 1, . . . , n. (26)

The closely related smoothing problem (often called in the machine learning literature kernel ridge
regression) seeks the function in H that minimizes the empirical risk

argmin
f∈H

Rλ(f) =
1

n

n∑
i=1

(f(xi)− yi)2 + λ||f ||2H. (27)

This latter problem is readily generalized to incorporate other losses besides the square loss and
other bounded linear functionals besides evaluation at the xi. We will later consider the case where
the desired penalty is not a de�nite norm, but a seminorm.

In both cases, the solution lies in a �nite-dimensional subspace of H, namely, in the span of the
representers of evaluation {kx1 , . . . , kxn}.

2.3.1 Solving the Exact Interpolation Problem

Given a vector of sample locations x = (x1, . . . , xn)
T , it is far from guaranteed that H is su�ciently

rich to include a function that interpolates any possible set of corresponding sample values y =

22It is often misstated in the literature that the Fourier series expansion of continuous functions on the spherical
harmonics is uniformly convergent (e.g., in [91]). In fact, this condition is not su�cient, but uniform convergence
always holds for Fourier expansions of continuously di�erentiable functions on S2 (as on S1) [75]. In our case, we have
a new criterion: f ∈ H.
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(y1, . . . , yn)
T . The exact interpolation problem has no solution when there exists no f ∈ H that

interpolates the data�that is, if y is not in the range of the vectorized evaluation map

E : H → Rn

f 7→ (f(x1), . . . , f(xn))
T .

Luckily, we can easily make the diagnosis that there exist vectors y ∈ Rn for which the RKHS
H contains no corresponding interpolator by looking at the Gram matrix. Intuitively, the linear
relationship that exists between the representers of evaluation kx1 , . . . , kxn is reproduced in the Gram
matrix and constrains the values every function in the space attains at the evaluation points.

Proposition 2.49. Consider a reproducing kernel Hilbert space H ⊆ RX with reproducing kernel k.
Let K be the Gram matrix associated with data points x = (x1, . . . , xn)

T : that is, (K)i,j = k(xi, xj).
Then K is singular if there exists some y ∈ Rn for which no solution to (26) exists.

Proof. Suppose there exists some vector of sample values y ∈ Rn that cannot be interpolated at the
points x by any f ∈ H. Thus, the vectorized evaluation map E is not onto: rangeE ⊊ Rn. Choose
any nonzero element α of the orthogonal complement of the range of E, that is, α ∈ nullE∗, where
∗ indicates the adjoint. With this choice, E∗α = 0, and, for all f ∈ H, we have that ⟨E∗α, f⟩H =
⟨α,Ef⟩Rn = 0. We can then write, using the reproducing property,

0 = ⟨α,Ef⟩Rn =
n∑

i=1

αif(xi) =

〈
f,

n∑
i=1

αikxi

〉
H

∀f ∈ H.

Since only the function that is identically zero23 may satisfy this, we conclude

n∑
i=1

αikxi
≡ 0 and yet α ̸= 0.

Moreover, this α ∈ nullK by the fundamental theorem of linear algebra [144] and symmetry of K.
We see this because α is orthogonal to the ith row of the Gram matrix for i = 1, . . . , n

0 = ⟨kxi
, 0⟩H =

〈
kxi
,

n∑
j=1

αjkxj

〉
H

=
n∑

j=1

αjk(xi, xj) = K[i, :]α.

This nonzero vector in α ∈ nullK establishes the result.

The converse of this result follows immediately once we decompose H as the direct sum of S =
span {kx1 , . . . , kxn} and S⊥, its orthogonal complement24.

Proposition 2.50. Consider a reproducing kernel Hilbert space H ⊆ RX with reproducing kernel k.
Write H = S ⊕ S⊥, where S = span {kx1 , . . . , kxn}. Then null E = S⊥, and rangeE = rangeK has
the same dimension as S.

Proof. We can see that f ∈ S⊥ ⇐⇒ f ∈ nullE by recognizing that f is orthogonal to each
representer of evaluation kxi

in S whenever the map E annihilates f : that is, by the reproducing
property, f(xi) = ⟨f, kxi

⟩H = 0 for all i = 1, . . . , n.

23It is orthogonal to itself, after all, and thus has norm zero!
24Note that S is closed (it is �nite-dimensional). S⊥ is closed (since it is an orthogonal complement, by the continuity

of the inner product) and (S⊥)⊥ = S.
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Now consider f ∈ S. We can write f =
∑n

i=1 αikxi
25. By the reproducing property, the vector

(f(x1), . . . , f(xn))
T =

(〈
kx1 ,

n∑
i=1

αikxi

〉
H

, . . . ,

〈
kxn ,

n∑
i=1

αikxi

〉
H

)T

=

(
n∑

i=1

αik(x1, xi), . . . ,
n∑

i=1

αik(xn, xi)

)T

= Kα.

The restriction of E to S is therefore the range of K. The result follows by noting that functions in
S⊥ evaluate to 0.

Since f ∈ S⊥ if and only if f(xi) = 0 for each i = 1, . . . , n, the orthogonal projection operator
PS from H onto S does not change the evaluation of a function on the data points x. Writing the
unique decomposition of f = fS + fS⊥ onto the orthogonal subspaces S and S⊥, respectively, we
have

∀f ∈ H, f(xi) = ⟨f, kxi
⟩H = ⟨fS , kxi

⟩H + ⟨fS⊥ , kxi
⟩H︸ ︷︷ ︸

0

= ⟨PSf, kxi
⟩H = (PSf)(xi) for i = 1, . . . , n.

Though this projection operator does not change a function's evaluations at the points {x1, . . . , xn},
it can change its norm.

Proposition 2.51. Consider a reproducing kernel Hilbert space H ⊆ RX with reproducing kernel k.
Write H = S ⊕S⊥, where S = span {kx1 , . . . , kxn}. Given a vector of sample locations x and sample
values y in Rn, if there exists a function f ∈ H such that f interpolates these data, then the solution
to the minimum-norm exact interpolation problem (26) is PSf .

Proof. Suppose the minimum-norm interpolant f , when projected on the orthogonal subspaces S and
S⊥ as fS + fS⊥ , has nonzero component fS⊥ . Since for all ϵ, the function fS + ϵfS⊥ also interpolates
the data, we see that if ϵ ∈ [0, 1), fS + ϵfS⊥ is an interpolant with smaller norm

||fS + ϵfS⊥||2H = ||fS ||2H + ϵ2||fS⊥ ||2H < ||fS ||2H + ||fS⊥ ||2H = ||f ||2H.

We conclude that the minimum-norm interpolant f has no component in S⊥.
Observe that the di�erence between any two functions f1 ∈ H and f2 ∈ H that interpolate the

data lies entirely in S⊥, since for i = 1, . . . , n, we have that f1 − f2 ⊥ kxi

(f1 − f2)(xi) = ⟨f1 − f2, kxi
⟩H = f1(xi)− f2(xi) = 0.

It follows that PSf1 = PSf2, and that this function is the unique minimum-norm interpolant.

Remark 2.52. This result is a special case of Wahba's representer theorem, as stated in Section 2.5
(Proposition 2.60). The interpolant basis functions {kxi

}ni=1 vary with the sample locations {xi}ni=1.
It is possible on the real line to �nd interpolation basis functions that depend on the number of sample
points but not their locations (there is a unique interpolant of n data points in span {1, x, . . . , xn−1}).
Such a construction is not possible on domains in Rd for d ≥ 2 due to the Haar-Mairhuber-Curtis
theorem [94]. Basis functions therefore need vary with the sample locations themselves and much
of the interpolation literature makes the association explicit. This orthogonality argument yields a
solution with a �knot placement� pattern that resembles those of most methods in the literature.

25If K is singular, the choice of α is not unique because the representers of evaluation are linearly dependent;
nevertheless all such representations evaluate to the same function.
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Corollary 2.53. Consider a reproducing kernel Hilbert space H ⊆ RX with reproducing kernel k. If
the Gram matrix K is nonsingular given sample locations x, any map x→ y ∈ Rn can be interpolated
by

f =
n∑

i=1

αikxi
, where α = K−1y.

The norm of our minimum-norm solution to the exact interpolation problem (26) is therefore
given by

||f ||2H =

〈
n∑

i=1

αikxi
,

n∑
j=1

αjkxj

〉
H

=
n∑

i=1

n∑
j=1

αiαjk(xi, xj) = αT Kα︸︷︷︸
y

= αTy = yTK−1y.

Corollary 2.54. Under the assumptions of Corollary 2.53, if the Gram matrix K is singular given
sample locations x and if y ∈ rangeK there exist in�nitely many vectors α ∈ Rn for which Kα = y.
All of these coordinate vectors characterize the same function

f =
n∑

i=1

αikxi
.

Proof. If Kα = Kα′ = y, then α−α′ ∈ nullK. We know that the coordinate vector (α−α′) identi�es
the function that is identically zero, since the function

g =
n∑

i=1

(α− α′)ikxi

has norm
||g||2H = ⟨g, g⟩H = (α− α′)K(α− α′)︸ ︷︷ ︸

0

= 0.

Hence,

f =
n∑

i=1

αikxi
=

n∑
i=1

α′
ikxi

is the unique minimum-norm solution to (26) even if it can be written in multiple ways as a linear
combination of the (linearly dependent) kxi

.

Remark 2.55. If K is nonsingular, the columns of K−1 give a partition of unity, that is, a set of
functions {f1, . . . , fn} such that fi(xj) = δi,j for i, j = 1, . . . , n, where δ is the Kronecker delta. In
constructing the functions fi, we choose as the coordinate of fi on the kxj

the ith column of K−1

fi =
n∑

j=1

K−1[j, i]kxj
.

Let ei be the ith standard basis function of Rn. Each fi is then the unique function in S that
interpolates ei, and therefore the minimum-norm function in H that interpolates ei. Let us observe
how our minimum-norm interpolant of y can be expressed in terms of the functions in the partition
of unity: if α = K−1y, then

f =
n∑

j=1

(K−1y)jkxj
=

n∑
j=1

(
K−1

(
n∑

i=1

yiei

))
j

kxj
=

n∑
i=1

yi

(
n∑

j=1

K−1[j, i]kxj

)
=

n∑
i=1

yifi.

If K is singular, there exist vectors of values y ∈ Rn that cannot be interpolated by any f ∈ H and
there can be no partition of unity.
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Remark 2.56. When K is singular, we can solve the closely related best-approximation problem,
wherein we seek

f ∗ = argmin
f∈H

n∑
i=1

(f(xi)− yi)2 . (28)

By the reasoning we used to prove Proposition 2.51, projecting any solution of (28) into S leaves its
evaluations at x = (x1, . . . , xn)

T�and hence the sum-of-squared-errors loss in (28)�unchanged. We
can therefore take f ∗ as lying in S. Thus, we can write

f ∗ =
n∑

i=1

αikxi
.

Our problem (28) reduces to a least-squares approximation problem in Rn

argmin
α∈Rn

1

n
∥Kα− y∥2Rn .

Taking the gradient of the (convex) objective and setting it to zero, we get the normal equations

KTKα = KTy,

and observe the problem is solved using the Moore-Penrose pseudo-inverse to �nd the α ∈ (nullK)⊥

that K maps to the projection of y onto rangeK

α = (KTK)−1KTy. (29)

2.3.2 Solving the Smoothing Problem

Consider again a reproducing kernel Hilbert space H ⊆ RX with reproducing kernel k. Write
H = S ⊕ S⊥, where S = span {kx1 , . . . , kxn}. We now solve the smoothing problem (27)

argmin
f∈H

Rλ(f) =
1

n

n∑
i=1

(f(xi)− yi)2 + λ||f ||2H.

When λ = 0, this reduces to the best-approximation problem considered in the previous remark.
Accordingly, we assume λ > 0.

Because projecting any f ∈ H onto S does not change the values at the sample points and thus
the error in (27) but reduces the norm if f has a nonzero component in S⊥, any solution will be of
the form

f =
n∑

i=1

αikxi
,

for otherwise the norm penalty could be reduced without reducing the data-adherence loss. In this
case, the vectorized evaluation operator E is e�ected by the matrix K if we represent a function f by
its (not necessarily unique) coordinates α, and ||f ||2H2 = αTKα. Our problem (27) can be rewritten
as the quadratic form

argmin
α∈Rn

1

n
(Kα− y)T (Kα− y) + λαTKα. (30)

Noting that the term we are optimizing is di�erentiable and convex in α, we set the derivative to 0
and �nd

0 =
2

λ
KT (Kα− y) + 2λKα

= K ((K+ λnI)α− y) ,
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as K = KT . Because λ > 0, the matrix K + λnI is invertible, we can always force (K + λnI)α − y
to reside in nullK by setting

α = (K+ λnI)−1y. (31)

If K is singular, this is not the only choice of α that gives a solution to (27), but it does indeed solve
the problem. Algorithm 2 summarizes this solution to the spline smoothing problem.

Algorithm 2: The solution to the spline smoothing problem in an RKHS H ⊂ RX , with
wiggliness penalty given by the squared norm || · ||2H

u∗ = argmin
u∈H

1

n

n∑
i=1

(u(xi)− yi)2 + λ||u||2H

lies in the span of the representers of evaluation kxi
= k(·, xi) at the data points {xi}ni=1.

Consequently, writing any such function as u =
∑n

i=1 αikxi
, we can �nd u∗ by optimizing

over the vector of weights α ∈ Rn

α∗ = argmin
α∈Rn

1

n
(y −Kα)T (y −Kα) + λαTKα,

where K is the Gram matrix of k on the data points, using (31) (or, if K is singular and
λ = 0, (29)). Having found α∗, we may evaluate u∗ at any x ∈ X with n calls to the kernel

u∗(x) =
n∑

i=1

α∗
i k(x, xi).

Data: A set of n sample locations {xi}ni=1 in X and n corresponding sample values yi ∈ R.
Parameters: A regularization penalty λ ≥ 0 and (implicitly) a choice of model space H and

kernel k, plus squared data adherence loss and wiggliness penalty || · ||2H.
Result: A set of weights α ∈ Rn specifying the empirical risk minimizing function u∗.
Compute the n× n Gram matrix K

(K)i,j ← k(xi, xj);

Solve (K+ λnI)α = y

α← (K+ λnI)−1y (or, if K is singular and λ = 0, α← K†y);

Return α;

2.4 The Decomposition Principle: Seminorm-Minimizing Interpolation
and Smoothing Where the Penalty Null Space Has Finite Dimension

We know how to solve interpolation and smoothing problems in an RKHS where regularity is enforced
by penalizing the norm. However, many classic wiggliness penalties involve a seminorm penalty. For
instance, the natural polynomial spline penalty of the form

Jm,X (f) =

∫
X
(f (m)(x))2 dx ,
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is inde�nite over the model spaces that interest us, and hence not a norm. There is a rich mathe-
matical literature26 describing how to solve optimization problems in such inde�nite inner product
spaces, which we can place beyond the scope of this article by assuming that the null space of our
penalty is of �nite dimension.

Assumption 2.57. Suppose that over the model space H, assumed to be an RKHS, the penalty Jm,X
used to enforce regularity is the square of a seminorm penalty whose null space is of �nite dimension
m ≥ 1.

With this assumption, we can use what Berlinet and Thomas-Agnan call �the decomposition
principle� ([17], Section 6.1.3) to write H = H0 ⊕H1, where H0 is the �nite-dimensional null space
of the penalty Jm,X , and in H1, Jm,X is the square of a de�nite norm. We will modify the inde�nite
penalty Jm,X to turn it into the square of a de�nite norm || · ||H over all of H.

To this end, we begin by turning H0 into an RKHS by endowing it with an inner product ⟨·, ·⟩H0

and induced norm. The choice of norm on H0 is irrelevant to the optimization problems we consider.
It is absent from empirical risk minimization problems that penalize wiggliness; for constrained
optimization problems, we note that, since H0 is a �nite-dimensional, any choice of norm de�nes the
same topology. Thus, we may arbitrarily choose a norm || · ||H0 on H0. A common choice is the norm
induced by

⟨f, g⟩H0
=

m∑
j=1

f(xj)g(xj), (32)

where {x1, . . . , xm} is a unisolvent set forH0�that is, a set ofm = dimH0 distinct points for which the
only function in H0 that evaluates to 0 at each point in the set is the zero function. More generally,
we can use any collection of m linearly independent functionals, and need not limit ourselves to
pointwise evaluation.

Lemma 2.58. Let H0 be any �nite-dimensional vector space of functions de�ned on a set X , and
let m = dimH0 be the dimension of H0. Letting U = {u1, . . . , um} be any linearly independent set
of m bounded linear functionals on (and thus a basis for) the dual space of H0, endow H0 with the
inner product

⟨f, g⟩H0

def
=

m∑
i=1

ui(f)ui(g).

Then H0 is an RKHS.

Proof. Since H0 is a �nite-dimensional inner product space, it is a Hilbert space. It remains to
be seen that it has a reproducing kernel. Since the functionals in U are linearly independent, the
vectorized application map of these functionals (between two spaces of dimension m <∞)

E : H0 → Rm

f 7→ (u1(f), . . . , um(f))
T ,

is invertible, and on H0, only the zero function evaluates to 0 by all of the ui ∈ U . We construct
a partition of unity with respect to these functionals. For i = 1, . . . ,m, let fi be the inverse image

26The bijection between RKHSs and positive-de�nite functions can be extended [132] to a surjection between di�er-

ences of positive-de�nite functions and what are now called reproducing kernel Krein spaces (RKKSs). An example
of this multiplicité, that is, of a pair of positive kernels whose di�erence engenders multiple RKKSs is given in [132],
p. 247. Despite the fact that we can no longer talk about the reproducing kernel space associated with the pair of
positive-de�nite kernels, and other technical challenges involved, this perspective has been useful to applied mathe-
maticians [24, 29, 55, 104, 124]; indeed, as Schwartz writes, �Néanmoins c'est peut-être là, non pas une monstruosité,

mais une nouveauté pleine d'intérêt.� Interested readers are invited to turn to [20].
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under this map of the ith standard basis function ei ∈ Rm (i.e., the functions {fi}mi=1 are chosen so
as to make the set U their standard dual set, so uj(fi) = δi,j, where δ is the Kronecker delta). With
this choice of inner product (and induced norm), the {fj}mj=1 form an orthonormal basis for H0, for

||fj||2H0
=

m∑
i=1

ui(fj)ui(fj) =
m∑
i=1

δ2i,j = 1, and ⟨fi, fj⟩H0 = δi,j.

For all x ∈ X , let

k0x
def
=

m∑
i=1

fi(x)fi;

we claim the kernel for H0 is given by

k0(x, y) = ⟨k0x, k0y⟩H0 =
m∑
i=1

ui

(
m∑
j=1

fj(x)fj

)
ui

(
m∑
j=1

fj(y)fj

)

=
m∑
i=1

 m∑
j=1

fj(x)ui(fj)︸ ︷︷ ︸
δi,j


 m∑

j=1

fj(y)ui(fj)︸ ︷︷ ︸
δi,j

 =
m∑
i=1

fi(x)fi(y).

Clearly, for all x ∈ X ,

k0x = k0(·, x) =
m∑
i=1

fi(x)fi

is in H0, for it is a linear combination of the basis functions fi, and

k0(x, x) = ||k0x||2H0
=

m∑
i=1

fi(x)
2 <∞.

We can verify that k0x is indeed a representer of evaluation at x, since for any f ∈ H0, we can write
f =

∑m
j=1 αjfj; hence,

⟨f, k0x⟩H0 =
m∑
i=1

ui

(
m∑
j=1

αjfj

)
ui

(
m∑
j=1

fj(x)fj

)

=
m∑
i=1

(
m∑
j=1

αjui(fj)

)(
m∑
j=1

fj(x)ui(fj)

)
=

m∑
i=1

αifi(x) = f(x).

Consequently, H0 is an RKHS.

We are now ready to complement the semi-inner product ⟨·, ·⟩H1 that induces the penalty Jm,X
with this inner product ⟨·, ·⟩H0 to form a de�nite inner product over H with respect to which H
remains an RKHS. In doing so, we write H = H0 ⊕ H1. The space H1 may contain equivalence
classes of functions, but we might also choose a representative element of each equivalence class, for
instance, by imposing boundary conditions as in Example 2.6 or in Section 2.6.1.

Proposition 2.59. Let H be a Hilbert space on which the penalty Jm,X = || · ||2H1
is the square of a

seminorm || · ||H1 in the space H. We maintain our assumption that the (nontrivial) null space H0 of
the seminorm penalty has �nite dimension m. Moreover, we retain the inner product ⟨·, ·⟩H0 de�ned
in Lemma 2.58. Then we can �complete� the seminorm penalty by de�ning the de�nite inner product
on H

⟨f, g⟩H = ⟨P0f,P0g⟩H0 + ⟨P1f,P1g⟩H1 ,
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where P0 is the orthogonal projection operator onto H0, and P1 onto H1 = H/H0. In H, ||P1 · ||2H1
=

Jm,X (·).

Proof. Since H is complete and H0 is closed and therefore a Hilbert space, H1 = H/H0 is closed and
complete [85]. We need only observe that the two RKHSs H0 and H1 are orthogonal with respect to
the inner product ⟨·, ·⟩H. It is easy to see that the map

P0 : H → H0

f 7→
m∑
i=1

⟨f, fi⟩H0fi =
m∑
i=1

(
m∑
j=1

uj(f)uj(fi)

)
fi =

m∑
i=1

ui(f)fi,

de�nes the orthogonal projection operator from H to H0, and P1 = I − P0 from H to H1. By our
construction, which setH0 to be the null space of the bounded linear penalty functional u 7→ Jm,X (u),
we have that u ∈ H0 ⇐⇒ Jm,X (u) = 0 ⇐⇒ ||u||H1 = 0.

We observe that H1 is the space of functions that every functional in U maps to zero

f ∈ H1 =⇒ (I− P0)f = f, or P0f = 0, i.e.,
m∑
i=1

ui(f)fi = 0,

which implies that ui(f) = 0 for each ui ∈ U (since the fi are linearly independent). Consequently,
any function f ∈ H1 satis�es

||f ||2H0
=

m∑
i=1

ui(f)ui(f) = 0,

and indeed H = H0 ⊕H1, with H0 ⊥ H1. Thus, for all f ∈ H, the norm

||f ||2H = ||P0f ||2H0
+ ||P1f ||2H1

= ||f ||2H0
+ ||f ||2H1

is de�nite since ||f ||H = 0 implies that both the null space component P0f and the wiggly component
P1f have zero norm in their respective Hilbert spaces.

In summary, working with an inde�nite penalty in an RKHS H with �nite null space involves
constructing two orthogonal spaces: the space of functions that are �beyond reproach� H0 and the
space H1, all of whose nonzero functions' comportment earns them a nonzero wiggliness penalty. H0

is an RKHS; if one of H1 or H0 is an RKHS, so is the other. In this case, the kernel k of H is the
sum of the kernels k0 of H0 and k1 of H1 ([4], Section 6).

2.5 Wahba's Representer Theorem: Using Finite-Dimensional Matrix Al-
gebra to Solve an Empirical Risk Minimization Problem with Semi-
norm Penalty over H

As in the previous section, we can write our model space H as the direct sum of a penalty null space
H0, with dimension m = dimH0 and basis {ϕ1, . . . , ϕm}, and a space H1 of wiggly functions. We
are given an empirical risk minimization problem over H = H0 ⊕H1

�nd u∗ = argmin
u∈H

1

n

n∑
i=1

(Liu− yi)2 + λ||P1u||2H1
, (33)

where the Li are a set of bounded linear operators (such as pointwise evaluation in an RKHS) with
Riesz representers [121] ηi ∈ H so that Lif = ⟨f, ηi⟩H for any f ∈ H and P1 is the orthogonal pro-
jection operator onto H1. For those interested in inverse problems apart from signal approximation
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and reconstruction, we stress that each Li may be any bounded linear operator applied to the signal,
such as pointwise derivative evaluations, integrals over a domain, or observations through a linear
instrument with known system response27. They need only have Riesz representers ηi.

The representers can be evaluated pointwise by applying the operators they represent to the
kernel. By the reproducing property,

ηi(t) = ⟨ηi, kt⟩H = Likt = Lik(·, t).

Moreover, since the operator P1 is self-adjoint, the projection of the representer onto the penalized
subspace ξi = P1ηi can be evaluated pointwise using the kernel k1 of H1

ξi(t) = ⟨ξi, kt⟩H = ⟨P1ηi, kt⟩H = ⟨ηi,P1kt⟩H = ⟨ηi, k1t ⟩H = Lik
1(·, t).

Consequently, the inner product between any two functionals ξi = P1ηi and ξj = P1ηj, which are
projections of the representers of evaluation ηi and ηj onto the penalized space H1, can be computed
as follows:

⟨ξi, ξj⟩H = ⟨P1ηi,P1ηj⟩H = ⟨ηi,P1ηj⟩H = Liξj = Li(Lj(k
1
s)) = Li(s 7→ (Lj(t 7→ k1(s, t)))),

since P1 is an orthogonal projection operator, meaning it is self-adjoint and P2
1 = P1. In this way,

the inner product between ξi and ξj is the number that results from applying Li to the function
s 7→ Ljk

1
s . The inner product ⟨ξi, ξj⟩H can therefore be computed without explicit knowledge of the

ηi and ηj, just the functionals Li and Lj they represent, as well as the kernel. (For this, it certainly
helps to have a kernel in closed form that can be evaluated quickly!)

We can write H1 as the direct sum of S = span {ξ1, . . . , ξn} and its orthogonal complement S⊥

since S is closed (it's a �nite-dimensional space) and the orthogonal complement of S⊥ is (S⊥)⊥ = S.
Any element of H, and thus the solution to (33), can be written (uniquely) as

u∗ =
m∑
j=1

djϕj︸ ︷︷ ︸
u0∈H0

+
n∑

i=1

ciξi︸ ︷︷ ︸
uS∈S⊂H1

+ ρ︸︷︷︸
uS⊥∈S⊥⊂H1

.

Let us de�ne Σ to be the n× n matrix whose ith row and jth column contains (Σ)i,j = ⟨ξi, ξj⟩H,
and let the matrix T be the n × m matrix de�ned by (T )i,j = ϕj(xi). We can, by orthogonality,
write (33) (nearly!) as a �nite-dimensional linear algebra problem by writing the solution as u∗ =
u0 + s+ ρ, with u0 ∈ H0, s ∈ S, and ρ ∈ S⊥

c∗, d∗, ρ∗ = argmin
c∈Rn, d∈Rm ρ∗∈S⊥

1

n
||y − (Σc+Td)||2Rn + λ

(
cTΣc+ ||ρ||2H1

)
. (34)

Wahba and Kimeldorf employed an elementary orthogonality argument to remove ρ from the above
problem, making it a (convex) matrix algebra problem.

Proposition 2.60 (The representer theorem (Wahba and Kimeldorf [79])). In the solution u∗ to the
empirical risk minimization problem (33), the component ρ ∈ S⊥ ⊂ H1 must be 0.

27It is a well-known fact from linear systems theory [25, 109] that (as a consequence of Young's inequality) the
convolution operator u 7→ g ∗ u, where g is the absolutely summable or integrable impulse response of a linear, time-
invariant system, maps bounded signals to bounded signals and is in fact a bounded linear operator whose operator
norm equals the ℓ1 or L1 norm of g.
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Proof. We observe that u ∈ S⊥ ⊂ H1 if and only if, for each i = 1, . . . , n,

0 = ⟨u, ξi⟩H = ⟨u,P1ηi⟩H = ⟨P1u, ηi⟩H = ⟨u, ηi⟩H = Liu,

and thus, u is mapped to 0 by each functional in {L1, . . . , Ln}. Consequently, the orthogonal pro-
jection operator PS from H1 onto S does not change the measurement-�delity penalty

1

n

n∑
i=1

(Liu− yi)2.

Now suppose the solution to the empirical risk minimization problem u∗, when projected on the
orthogonal subspaces S and S⊥ of the penalized space H1 as uS + ρ, has nonzero component ρ, so
that ||ρ||2H1

> 0. Since the functions uS and uS + ρ share the same measurement �delity penalty, we
see that uS has smaller risk in (33), since, by the Pythagorean theorem,

||uS ||2H1
< ||uS ||2H1

+ ||ρ||2H1
= ||uS + ρ||2H1

.

Then uS + ρ is in fact not the minimum-risk solution to (33), and we conclude u∗ has no component
in ρ ∈ S⊥.

Since ρ must be 0, the problem (34) really is a �nite-dimensional linear algebra problem, and
since Σ is a matrix of inner products, we can see that Σ is a symmetric, positive-de�nite matrix

zTΣz =
n∑

i=1

n∑
j=1

zizj⟨ξi, ξj⟩H1 =

〈
n∑

i=1

ziξi,
n∑

j=1

zjξj

〉
H1

=

∥∥∥∥∥
n∑

i=1

ziξi

∥∥∥∥∥
2

H1

> 0 whenever z ̸= 0.

Hence, the problem (34) can be simpli�ed

c∗, d∗ = argmin
c∈Rn, d∈Rm

1

n
(y −Σc−Td)T (y −Σc−Td) + λcTΣc. (35)

The problem is convex in both c and d (note the positive-semide�niteness of the matrices Σ, Σ2,
and TTT). Multiplying the objective by n, we see that

c∗, d∗ = argmin
c∈Rn, d∈Rm

cTΣ2c+ dTTTTd+ 2dTTTΣc− 2(dTTT + cTΣ)y + nλcTΣc. (36)

First setting to 0 the objective's gradient with respect to c and letting M = Σ+ nλI, we obtain

Σ(Σc+ nλc︸ ︷︷ ︸
Mc

+Td− y) = 0,

ensuring that at the solution to (36),

y = Mc+Td+ ϵ = M(c+M−1ϵ) +Td, with ϵ ∈ nullΣ. (37)

It is not hard to see that ϵ can be assumed to be 028. Now setting to 0 the objective's gradient with
respect to d, we get that

TT (Td− y +Σc) = 0.

28Orthogonally diagonalize the symmetric positive semide�nite (and hence normal) matrix Σ in its eigenvectors:
Σ = USUT . Then since M−1 = U(S + nλI)−1UT , we see that nullΣ is invariant under M−1 and M−1ϵ ∈ nullΣ.
This means that updating the weights on the {ξi}ni=1 from c∗ to c∗+M−1ϵ, with ϵ ∈ nullΣ, cannot a�ect the wiggliness
penalty, since (c∗ +M−1ϵ)TΣ(c∗ +M−1ϵ) = (c∗)TΣc∗. Substituting (37) into n times the data-adherence penalty of
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Substituting in our expression for y (37) (and recalling that M = Σ+ nλI), we arrive at

TT (−nλI) c = 0.

The solution to (36) can therefore be computed by solving the following linear system [153]

Mc+Td = y

TT c = 0.
(38)

Note that if we penalize all functions in the space H = H0 ⊕H1 with the de�nite penalty || · ||2H =
|| · ||2H0

+ || · ||2H1
, every nonzero function in H receives nonzero regularity penalty and the two terms

involving T disappear. Then (36) becomes the spline smoothing problem (30) in H, and (38) may
be rewritten

Mc = y,

with solution (31).

Remark 2.61. The representer theorem may be pro�tably applied to weakly nonlinear bounded func-
tionals by approximating them through linearization [157]. It can be applied without error in more
general settings, for instance, to allow our empirical risk minimization problem (33) to incorporate
arbitrary loss functions (not just mean squared error) and any norm penalty term g(|| · ||H1) where
g : [0,∞) → R is strictly monotonically increasing (not just g(x) = λx2) [131]. Recent work has
sought to extend the theorem beyond the setting of RKHSs associated with a regularization penalty
functional to other Banach spaces of �nite penalty. For instance, Unser et al. solve spline smoothing
problems and inverse problems whose formulation applies the regularization penalty in the Banach
space M of regular Borel measures with total variation norm [151]. The Riesz-Markov theorem
(sometimes called, where context permits it, the Riesz representation theorem) guarantees the exis-
tence of a unique regular Borel measure ν to represent any bounded linear functional Φ on C0 (the
Banach space of continuous functions that vanish at in�nity, with sup norm) in the sense that inte-
grating any continuous function f ∈ C0 with respect to ν gives Φf ; the operator norm of Φ equals
the total variation of ν [120]. A shift-invariant regularization operator maps a native space of slowly
growing functions to measures whose total variation (called gTV) provides a seminorm on the na-
tive space. A generalized decomposition principle can make it a norm. As with Wahba's representer
theorem, this framework allows certain inverse problems posed in in�nite-dimensional spaces to be

(35) and minimizing the penalty with respect to ϵ subject to the constraint Σϵ = 0, we obtain

ϵ∗ = argmin
ϵ∈Rn

(Σc+ nλc+Td+ ϵ−Σc−Td)T (Σc+ nλc+Td+ ϵ−Σc−Td) subject to Σϵ = 0,

from which we compute the Lagrangian

n2λ2cT c+ 2nλcT ϵ+ ϵT ϵ+ µTΣϵ,

where we have introduced the Lagrangian dual variable µ. The �rst-order conditions with respect to ϵ and µ yield the
system (

Σ 0
2I Σ

)(
ϵ
µ

)
=

(
0

−2nλc

)
.

Since Σ is invertible, so too is the matrix on the left-hand side; we can therefore solve this system by left-multiplying
both sides by this inverse:(

ϵ
µ

)
=

(
Σ−1 0
−2Σ−2 Σ−1

)(
0

−2nλc

)
=

(
0

−2nλΣ−1c

)
; in particular, ϵ = 0.
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transformed into �nite-dimensional linear algebra problems; as with the thin-plate splines on an in-
terval and in Euclidean space, the solution can be written in terms of a �nite number of evaluations of
a slowly growing Green's function of the regularization operator and a basis of the �nite-dimensional
regularization penalty null space. This work di�ers from the Wahba-Kimeldorf representer theorem
in the knot placement and in its use of Green's function that need not be a reproducing kernel, whose
native space need not be an RKHS.

2.5.1 A Corollary of the Representer Theorem: Spline Smoothing Using a Seminorm

Wiggliness Penalty with a Finite-Dimensional Null Space

When the {Li}ni=1 are evaluation functionals, the matrix Σ of inner products in H1 of the projection
of the representers of evaluation onto H1 becomes the Gram matrix K of the RKHS H1 of penalized
functions associated with the n sample locations of the data one wishes to smooth. Algorithm 3
describes how to set up and solve the linear system (38) for the spline smoothing problem in a space
H = H0 ⊕H1, where the penalty applies only to the function component in H1.

2.6 Examples of Laplacian-Based Wiggliness Penalties

A natural choice of wiggliness penalty involves the Laplacian, Laplace matrix, or Laplace-Beltrami
operator. These penalties are popular because the Laplacian-based penalties give natural notions
of wiggliness, and the Laplacian commutes with isometries: in Euclidean space, the penalties are
una�ected by rotations and translations; on graphs, by vertex relabelings that preserve the edge
structure. The penalty can also be motivated using optimal transport; see [27], Section 2.2.

The penalties Jm,X we consider take the form∫
X

(
∆m/2f(x)

)2
dx (if m is even), or

∫
X

∥∥∇ (∆(m−1)/2f(x)
)∥∥2 dx (if m is odd),

which can also be written, where boundary conditions permit it, as

(−1)m
∫
X
f(x)∆mf(x) dx .

For example, with m = 0, the penalty
∫
X (f(x))

2 dx measures regularity (or signal energy); setting
m = 1, the penalty

∫
X ||∇f(x)||

2 dx measures the Dirichlet energy, closely related to total variation29.
Such penalty functionals Jm,X , on the corresponding model space H, have �nite-dimensional null

spaces that induce the structure H = H0 ⊕H1 described in the previous section. In particular, on a
compact manifold, the null space of the Laplace-Beltrami operator contains only the functions that
assume constant values.

They are also convenient choices for constructing splines via Mercer synthesis. For any bounded
domain X in Rd, the eigenfunctions of the Laplacian form a complete orthonormal system for L2(X )
and are naturally sorted in increasing Dirichlet energy. The eigenfunctions of the Laplacian can be
seen as local extrema of the Dirichlet energy functional subject to a normality constraint30, and the
corresponding eigenvalue is the Dirichlet energy of the eigenfunction (see Lemma 2.2 of [107]).

We consider several examples of splines using this Laplacian-based penalty functional in this
section, before seeing how they make congenial company with the thin-plate splines on the sphere.

29See [44], p. 42. In Sobolev spaces, this penalty is related to that of the m = 0 case by Poincaré's inequalities [116].
The version on the circle (i.e., on [0,1] with periodic boundary conditions) is called the Poincaré-Wirtinger inequality
and can be proved using the zero-mean Fourier expansion (46); the version on the sphere, by spherical harmonic
expansion [16].

30Posed in the Hilbert space W 1,2 = H1, i.e., the Sobolev space of order 1. See Appendices A.1 and A.2 of [107].
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Algorithm 3: Given an RKHS H ⊂ RX and a seminorm wiggliness penalty Jm,X (·) =
||P1 · ||2H1

, Wahba's representer theorem (Proposition 2.60) permits us to write the solution
to the spline smoothing empirical risk minimization problem in H

u∗ = argmin
u∈H

1

n

n∑
i=1

(u(xi)− yi)2 + λ||P1u||2H1

as follows:

u∗ =
m∑
j=1

djϕj +
n∑

i=1

cik
1(·, xi),

where k1 is the reproducing kernel of H1. Consequently, u∗ may be found directly from the
vectors of weights c ∈ Rn and d ∈ Rm

c∗, d∗ = argmin
c∈Rn, d∈Rm

1

n
(y −K1c−Td)T (y −K1c−Td) + λcTK1c,

where K1 is the Gram matrix of k1 on the data points, by solving the linear system (38).
This algorithm sets up and solves that system. Given c and d, u∗ may be evaluated at any
x ∈ X with n evaluations of the kernel and m evaluations of ϕj

u∗(x) =
m∑
j=1

djϕj(x) +
n∑

i=1

cik
1(x, xi).

Be warned: for notational simplicity, in this pseudocode, we use 1-indexing.
Data: A set of n sample locations {xi}ni=1 in X and n corresponding sample values yi ∈ R.
Parameters: A regularization penalty λ ≥ 0 and (implicitly) a choice of model space

H = H0 ⊕H1 with reproducing kernel k = k0 + k1 and seminorm wiggliness
penalty ||P1 · ||2H1

, whose �nite-dimensional null space H0 has basis
{ϕ1, . . . , ϕm}.

Result: A set of basis function weights c ∈ Rn and d ∈ Rm specifying the empirical risk
minimizing function u∗.

Compute the n× n Gram matrix K1 in whose ith row and jth column reposes the value

(K1)i,j ← k1(xi, xj);

Compute the n×m matrix T, which satis�es

(T)i,j ← ϕj(xi);

Augment the Gram matrix of k1 on our data set with null-space basis function matrix T to
form an (n+m)× (n+m) matrix K and set y accordingly

K←
(
K1 + λnIn×n T

TT 0m×m

)
and y ←

(
y
0m

)
;

Solve Kα = y,

α← K−1y (or, if K1 is not strictly positive-de�nite and λ = 0, α← K†y);

Return the spline weights c← α[1 : n] and d← α[n+ 1 : n+m];
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The rest of the section is organized as follows. We begin by considering the polynomial splines
on [0, 1] with natural boundary conditions. We �nd a closed-form expression for the kernel using the
Green's function of the associated di�erential operator (see Equation (43)). The penalty null space
consists of the polynomials of degree at most m − 1. Next, we consider the polynomial splines on
[0, 1] with periodic boundary conditions. We use Mercer synthesis (see Section 2.2.3) to construct
the kernel using the Fourier basis as our complete orthonormal system for L2([0, 1]). No matter
the order of the spline, the null space H0 always consists only of constant functions. As our third
example, we de�ne the thin-plate splines on graphs and obtain the kernel by taking the Moore-
Penrose pseudoinverse of the Laplacian matrix; a Mercer-like expansion is given in Equation (51).
Here too the null space consists only of constant functions no matter the spline order. We follow
up with the thin-plate splines in Euclidean space Rd. Mercer's theorem (Proposition 2.28) does not
apply here (Rd is not compact); we �nd the kernel using the Green's function of the di�erential
operator. The penalty null space here consists of polynomials of degree at most m − 1. Finally,
we use Mercer synthesis (Proposition 2.38) to de�ne the thin-plate splines on the sphere using the
spherical harmonics. The penalty null space contains the constant functions31. We summarize this
roadmap in Table 1.

spline X null space H0 derivation of kernel

natural polynomial (natural bdy) [0, 1] polynomials Pm−1 Green's function

circular polynomial (periodic bdy) [0, 1] span {1} �Fourier side� synthesis

thin-plate on graph {1, . . . , n} span {1} Moore-Penrose pinv

Euclidean thin-plate Rd polynomials Pm−1 Green's function

thin-plate on the sphere S2 span {1} �Fourier side� synthesis

Table 1: The splines we consider, each of order m, as well as their index set, their null space (either the constant functions
or the polynomials of degree at most m − 1), and the approach we take to derive their kernel (�Fourier side� synthesis or
via use of the Green's function of the di�erential operator; in the case of the thin-plate splines on a graph, we use the
Moore-Penrose pseudoinverse of the Laplacian matrix). The order m can be as low as 1 (or even 0; see Example 2.63) for
the thin-plate splines on graphs, and 1 for the splines on [0,1] and S2; for thin-plate splines in Euclidean d-space, we have
the technical restriction that m > d/2.

2.6.1 Natural Polynomial Splines

We derive32 the natural polynomial splines [130] (also called Dm splines [17]) on X = [0, 1] using
RKHS theory [3, 6, 34, 132], reproducing the presentation in [79, 80, 158] so that we can use Wahba's
representer theorem [79, 80, 131, 159] (Proposition 2.60). The same results can be found using only
integration by parts and an elementary proof of optimality [1, 58].

Model space: Let H = Wm,2 be the Sobolev space of functions u such that u, u′, . . . , u(m−1)

are absolutely continuous, u(m) is de�ned almost everywhere, and u(m) ∈ L2(0, 1). (Here, u(m) is the
ordinary derivative. See De�nition 2.5 for motivation for this de�nition.) This Sobolev space is an
RKHS with respect to its canonical inner product (see De�nition 2.5); however, we wish to endow it
with an inner product related to the seminorm penalty∫ 1

0

(f (m)(x))2 dx , induced by the semide�nite bilinear form
∫ 1

0

f (m)(x)g(m)(x) dx . (39)

31As we will see in the IPOL demo, this null space of constant functions can be pro�tably employed to estimate
spherical averages of scattered data on the sphere.

32Note that this derivation yields polynomial splines of odd degree only: natural cubic splines, natural quintic
splines, and so forth.
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Observe that our de�nition of H allows us to invoke Taylor's theorem with the Lagrange remainder
term and write, for all t ∈ [0, 1],

u(t) =
m−1∑
n=0

tn

n!
u(n)(0)︸ ︷︷ ︸

u0(t)∈H0

+

∫ 1

0

(t− x)m−1
+

(m− 1)!
u(m)(x) dx︸ ︷︷ ︸

u1(t)∈H1

, (40)

where (·)+ = max (·, 0) is the recti�er. We make the recognition that the �rst term u0 is in the null
space of the penalty seminorm (39). We will show that these two terms are the two components of
a unique decomposition of u ∈ H into u0 ∈ H0 and u1 ∈ H1, respectively, where H0 is the space
of polynomials of degree ≤ m − 1 and H1 the space of functions u for which u(0) = u′(0) = . . . =
u(m−1)(0) [158].

Null space: The null spaceH0 of (39) inH is a �nite-dimensional RKHS spanned by polynomials
of degree at most m− 1. The decomposition principle works with any choice of separating set U of
m functionals in the de�nition of the inner product on H0. To better match Taylor's theorem, we
de�ne33

⟨f, g⟩H0 =
m−1∑
n=0

f (n)(0)g(n)(0).

Letting ϕn(t) =
tn

n!
, we can de�ne a kernel for H0 via the expansion

k0(s, t) =
m−1∑
n=0

ϕn(s)ϕn(t).

Clearly, for all t ∈ [0, 1], the representer of evaluation k0t = k0(·, t) ∈ H0. Since ∂m

∂xmϕn(x)
∣∣
x=0

= δm,n,
where δ is the Kronecker δ, we can easily verify that, for any f ∈ H0, the reproducing property holds.
Let f =

∑m−1
n′=0 αn′ϕn′ . Then

⟨k0t , f⟩H0 =

〈
m−1∑
n=0

ϕn(t)ϕn(·),
m−1∑
n′=0

αn′ϕn′(·)

〉
H0

=
m−1∑
i=0

∂i

∂xi

(
m−1∑
n=0

ϕn(t)ϕn(x)

)∣∣∣∣∣
x=0

∂i

∂xi

(
m−1∑
n′=0

αn′ϕn′(x)

)∣∣∣∣∣
x=0

=
m−1∑
i=0

αiϕi(t) = f(t).

Wiggly space: For a penalty (39) of order m, let

H1 =
{
u ∈ H | u(0) = u′(0) = . . . = u(m−1)(0) = 0

}
. (41)

These boundary conditions34 enforce the requirement that ||u||H0 =
∑m

i=0(u
(i)(0))2 = 0; hence the

33For other choices, see [7].
34Note that these boundary conditions are not the natural or Neumann boundary conditions, that is

u(m)(0) = . . . = u(2m−1)(0) = u(m)(1) = . . . = u(2m−1)(1) = 0.

Even though many functions in our model space H do not satisfy these constraints, functions that solve smoothing
problems (27) over this space�that is, splines�do [80, 81, 158]. Thus, these empirical risk minimizing splines satisfy∫ 1

0

(f (m)(x))2 dx = (−1)m
∫ 1

0

f(x)(∆mf)(x) dx ,

where ∆ = ∂2

∂x2 is the one-dimensional Laplacian.
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Taylor expansion (40) can be rewritten, for any u ∈ H1,

u(t) =

∫ 1

0

(t− x)m−1
+

(m− 1)!
u(m)(x) dx .

We can simplify this integrand by recalling that the Green's function for the problem Dmf = g
with boundary conditions f(0) = f ′(0) = . . . = f (m−1)(0) = 0 is

Gm(t, x) =
(t− x)m−1

+

(m− 1)!
,

so that
DmGm(t, x) = δ(t− x); (42)

thus, for u ∈ H1, we get a sort of generalization of the Dirac δ's sifting property

u(t) =

∫ 1

0

Gm(t, x)u
(m)(x) dx .

We de�ne the inner product on H1 so that its induced norm, squared, is the order-m spline wiggliness
penalty

⟨f, g⟩H1

def
=

∫ 1

0

f (m)(x)g(m)(x) dx , and ||f ||2H1
= ⟨f, f⟩H1 = Jm,X (f).

The reproducing property for this inner product on H1 follows from our recognizing that, if u ∈ H1�
that is, if the H0 component u0 ≡ 0�then function evaluations of u at a point t look like an inner
product of u with the Green's function with one argument �xed at t

u(t) =

∫ 1

0

(t− x)m−1
+

(m− 1)!
u(m)(x) dx =

∫ 1

0

Gm(t, x)u
(m)(x) dx = ⟨Gm(t, ·), u⟩H1 .

To show that the Green's functions represent evaluation at points via the inner product ⟨·, ·⟩H1 , we
need to de�ne a kernel. The reproducing kernel k1 associated with the RKHS H1 is

k1(s, t) =

∫ 1

0

Gm(s, x)Gm(t, x) dx . (43)

The representers of evaluation at t, k1t
def
= k1(·, t), for t ∈ [0, 1], are all in H1 for m ≥ 1, since, by (42),

∂m

∂tm
k1(s, t) =

∫ 1

0

Gm(s, x)

(
∂m

∂tm
Gm(t, x)

)
dx =

∫ 1

0

Gm(s, x)δ(t− x) dx = Gm(s, t); (44)

hence Gm(·, t) ∈ L2([0, 1]) and its antiderivatives are absolutely continuous35 on [0, 1]. Furthermore,
for all t ∈ [0, 1],

k1t (s) =

∫ 1

0

Gm(s, x)Gm(t, x) dx =

∫ 1

0

Gm(s, x)

(
∂m

∂xm
k1t (x)

)
dx ; (45)

comparison with (40) con�rms that the component of k1t in H0 is 0.

35For m ≥ 1. If m = 1, ∂1

∂s1 k
1
t (s) = 1−H(s− t), where H is the Heavyside step function, and its antiderivative, the

inverted ramp k1t = min(·, t), is absolutely continuous on [0, 1], since min(s, t) = min(0, t)+
∫ s

0
(1−H(u− t)) du for all

s ∈ [0, 1]. For m > 1, ∂m

∂sm k1t (s) = Gm(s, t) is already absolutely continuous.
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The space H1 is an RKHS since the evaluation functionals u 7→ u(t) are all bounded; indeed, by
the Cauchy-Schwarz inequality,

|u(t)| =
∫ 1

0

Gm(t, x)u
(m)(x) dx ≤

√∫ 1

0

(Gm(t, x))
2 dx

√∫ 1

0

u(m)(x)u(m)(x) =
√
k1(t, t)||u||H1 .

The reproducing property can be veri�ed for u ∈ H1. Using Equation (44), we see that

⟨u, k1t ⟩H1 =

∫ 1

0

(
∂m

∂xm
u(x)

)(
∂m

∂xm
k1(x, t)

)
dx =

∫ 1

0

Gm(x, t)u
(m)(x) dx = u(t).

Thus, evaluation of a function u ∈ H1 at t ∈ [0, 1] can be performed by inner product of u and the
representer of evaluation at t, k1t , which is the Green's function with one argument �xed Gm(·, t),
integrated m times. H1, a closed subset of H, is therefore a reproducing kernel Hilbert space with
reproducing kernel k1. Further technical details can be found in [80, 158], along with a Bayesian
interpretation of the natural splines of order m.

The reproducing kernel for H: We can verify the orthogonality of H0 and H1. Clearly, if
u ∈ H0, then u(m)(t) ≡ 0, and

||u||H1 =
√
⟨u, u⟩H1 =

∫ 1

0

(u(m)(x))2 dx = 0.

If u ∈ H1, u(0) = . . . = u(m−1)(0), and

||u||H0 =
√
⟨u, u⟩H0 =

m−1∑
n=0

(
u(n)(0)

)2
= 0.

By the decomposition principle, H = H0 ⊕H1, with inner product and induced norm

⟨f, g⟩H = ⟨P0f,P0g⟩H0 + ⟨P1f,P1g⟩H1 and ||u||2H = ||u0||2H0
+ ||u1||2H1

,

where the orthogonal projection operators

P0 : H → H0 P1 : H → H1

u 7→
m−1∑
n=0

u(n)(0)

n!
ϕn , u 7→ u−

m−1∑
n=0

u(n)(0)

n!
ϕn ,

are as in Section 2.4, and with reproducing kernel equal to the the sum of k0 and k1 (since the kernel
of the direct sum space is the sum of the kernels [3])

k(s, t) = k0(s, t) + k1(s, t) =
m−1∑
n=0

sn

n!

tn

n!
+

∫ 1

0

Gm(s, x)Gm(t, x) dx .

Thus, kt = k0t + k1t and P0kt = k0t and P1kt = k1t . That the reproducing property holds follows
immediately from Taylor's theorem with the Lagrange remainder term

u(t) =
m−1∑
n=0

tn

n!
u(n)(0) +

∫ 1

0

(t− x)m−1
+

(m− 1)!
u(m)(x) dx

=
m−1∑
n=0

∂n

∂xn

(
m−1∑
i=0

ϕi(t)ϕi(x)

)∣∣∣∣∣
x=0

∂n

∂xn

(m−1∑
i=0

u(i)(0)ϕi(x)︸ ︷︷ ︸
(P0u)(x)=u0(x)

)∣∣∣∣∣
x=0

+

∫ 1

0

(
∂m

∂xm
k1t (x)

)
u(m)(x) dx

= ⟨k0t ,P0u⟩H0 + ⟨P1u, k
1
t ⟩H1 = ⟨u, kt⟩H,

60



Thin-plate Splines on the Sphere for Interpolation, Computing Spherical Averages, and Solving Inverse Problems

since
∂m

∂xm
u1(x) =

∂m

∂xm
u(x)− ∂m

∂xm

(
m−1∑
n=0

u(n)(0)

n!

xn

n!

)
=

∂m

∂xm
u(x).

In fact, following the same process, a generalized Taylor's expansion may be derived using other
di�erential operators, using the corresponding Green's function to de�ne the kernel of H1 and re-
mainder term and extended Chebyshev system to de�ne the polynomial term [79].

Solving the Spline Smoothing Problem with Polynomial Splines. We can use Algorithm 4
to solve system (38) for the natural polynomial splines. Here T contains samples of the polynomials
ϕj, which span H0, at our scattered data, and K1 the kernel de�ned in (45).

Remark 2.62 (Adapting the algorithm to other intervals). This algorithm in fact works for any
interval [a, b] whose left endpoint a = 0. To adapt this algorithm to data in some interval [a, b], with
a ̸= 0, one need only reparameterize the data with the map t 7→ t− a that sets the left endpoint to 0.
However, the transformation t 7→ t−a

b−a
of [a, b] to the unit interval [0, 1] is more commonly used (see,

e.g., [148], Proposition 2).
Consider the natural cubic spline in this case. Let X = [a, b] and H ⊆ RX be the set of absolutely

continuous functions on [a, b] whose �rst derivatives are absolutely continuous and second derivatives
square integrable on [a, b]. Write H = H0⊕H1, with H0 = span {1, x− a} and ⟨f, g⟩H0 = f(a)g(a)+
f ′(a)g′(a). The reproducing kernel k0 for H0 is k0(x, u) = 1 + (u− a)(x− a): indeed, for f ∈ H0,

f(x) = f(a) · 1 + f ′(a)(x− a) = ⟨f, k0x⟩H0 .

Let H1 be the functions f ∈ H such that f(a) = f ′(a) = 0. De�ne ⟨f, g⟩H1 = ⟨f ′′, g′′⟩L2([a,b]), so
that f ∈ H0 =⇒ ||f ||2H1

= 0. The reproducing kernel k1 for H1 is

k1(x, y) =

∫ b

a

(k1x)
′′(u)(k1y)

′′(u) du =

∫ b

a

(x− u)+(y − u)+ du

=
1

3
(min(x, y)3 − a3)− x+ y

2
(min(x, y)2 − a2) + xy(min(x, y)− a),

as

k1x(y) =

{
−y3

6
+ xy2

2
− axy + a2 x+y

2
− a3

3
, if y ≤ x

−x3

6
+ x2y

2
− axy + a2 x+y

2
− a3

3
, if y > x,

with

(k1x)
′(y) =

{
−y2

2
+ xy − ax+ a2

2
, if y ≤ x

x2

2
− ax+ a2

2
, if y > x,

and

(k1x)
′′(y) =

{
x− y, if y ≤ x

0, if y > x,

satis�es k1x(a) = (k1x)
′(a) = 0; and k1x and (k1x)

′ absolutely continuous; and (k1x)
′′ ∈ L2([a, b]). Thus,

f ∈ H1 =⇒ ||f ||2H0
= 0. The reproducing property in H1 for all f ∈ H1 and all x ∈ [a, b] can be

veri�ed using integration by parts (by the absolute continuity of f ∈ H1 and f ′) as follows:

⟨f, k1x⟩H1 =

∫ b

a

f ′′(u)(k1x)
′′(u) du =

∫ b

a

f ′′(u)(x− u)+ du

= x

∫ x

a

f ′′(u) du−
∫ x

a

f ′′(u)u du = x(f ′(x)− f ′(a))− (uf ′(u)|xa) +
∫ x

a

f ′(u) du

= x(f ′(x)− f ′(a)︸ ︷︷ ︸
0

)− (xf ′(x)− a f ′(a)︸ ︷︷ ︸
0

) + f(x)− f(a)︸︷︷︸
0

= f(x).
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Algorithm 4: Here X = [0, 1] and our RKHS H = Wm,2(X ) (see De�nition 2.5).
H = H0 ⊕ H1, where H0 is the m-dimensional space of polynomials of degree ≤ m − 1
and H1 the space of functions u ∈ H for which u(0) = u′(0) = . . . = u(m−1)(0) = 0. The
wiggliness penalty seminorm on H is Jm,X (u) = ||P1u||2H1

=
∫ 1

0
(u(m)(x))2 dx, since P1 re-

moves from u a polynomial of degree at most m − 1, whose mth derivative is 0. Given a
set of sample points {xi}ni=1 in [0, 1] and corresponding values {yi}ni=1 in R, the representer
theorem (Proposition 2.60) locates the solution to the spline smoothing empirical risk min-
imization problem in H

u∗ = argmin
u∈H

1

n

n∑
i=1

(u(xi)− yi)2 + λ

∫ 1

0

(u(m)(x))2 dx ,

in H0 and a �nite-dimensional subspace of H1

u∗(x) =
m∑
j=1

dj
xj

j!
+

n∑
i=1

ci

∫ 1

0

Gm(x, x
′)Gm(xi, x

′) dx′ .

This algorithm recovers c and d by solving the linear system (38). Note: we use 1-indexing.
Data: A set of n sample locations {xi}ni=1 in X = [0, 1] and n corresponding sample values

yi ∈ R.
Parameters: A regularization penalty λ ≥ 0 and (implicitly) a choice of model space

H = H0 ⊕H1 and seminorm wiggliness penalty Jm,X .
Result: A set of basis function weights c ∈ Rn and d ∈ Rm specifying the empirical risk

minimizing function u∗.
Compute the n× n Gram matrix K1, which satis�es

(K)i,j ← k1(xi, xj) =

∫ 1

0

Gm(xi, u)Gm(xj, u) du ;

For reference, the natural linear, cubic, and quintic spline kernels on [0, 1] are given below:
m k1(x, y)
1 min(x, y)
2 xymin(x, y)− x+y

2
min(x, y)2 + 1

3
min(x, y)3

3 x2y2 min(x,y)
4

− xy(x+y)min(x,y)2

4
+ (x2+4xy+y2)

12
min(x, y)3− x+y

8
min(x, y)4+ 1

20
min(x, y)5

Fill the n×m matrix T with the basis functions of H0 evaluated at the sample locations

(T)i,j ←
(xi)

j

j!
;

Augment the Gram matrix of k1 on our data set with null-space basis function matrix T to
form an (n+m)× (n+m) matrix K and set y accordingly

K←
(
K1 + λnIn×n T

TT 0m×m

)
and y ←

(
y
0m

)
;

Solve Kα = y,

α← K−1y (or, if K1 has redundant samples and λ = 0, α← K†y);

Return the spline weights c← α[1 : n] and d← α[n+ 1 : n+m];
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The reproducing property on H follows from the fact that H = H0 ⊕H1. It can be veri�ed using

⟨f, kx⟩H = ⟨f, k0x⟩H0 + ⟨f, k1x⟩H1 = f(a) k0x(a)︸ ︷︷ ︸
1

+f ′(a) (k0x)
′(a)︸ ︷︷ ︸

x−a

+

∫ b

a

f ′′(u) (k1x)
′′(u)︸ ︷︷ ︸

(x−u)+

du

= f(a) + f ′(a)(x− a) + xf ′(u)|xa −
[
uf ′(u)|xa −

∫ x

a

f ′(u) du

]
= f(x).

Similarly, the reproducing kernel k1 for the order 1 natural polynomial spline is k1(x, y) =
min(x, y)− a (the null space remains H0 = span {1}); and for the order 3 natural polynomial spline,
the kernel

k1(x, y) =
x2y2

4
(min(x, y)− a)− xy(x+ y)

4
(min(x, y)2 − a2) + (x2 + 4xy + y2)

12
(min(x, y)3 − a3)−

x+ y

8
(min(x, y)4 − a4) + 1

20
(min(x, y)5 − a5),

with null space H0 = span {1, x− a, (x−a)2

2
}, so that k0(x, u) = 1 + (u− a)(x− a) + (u−a)2

2
(x−a)2

2
is a

reproducing kernel with inner product ⟨f, g⟩H0 = f(a)g(a) + f ′(a)g′(a) + f ′′(a)g′′(a).

2.6.2 Polynomial Splines on the Circle

To form splines on the circle, we proceed in much the same way as before, setting the index set
X = [0, 1] and de�ning an identical wiggliness penalty seminorm [158]. However, we change the
model space to enforce periodicity through boundary conditions. By changing the RKHS boundary
conditions, we change the corresponding reproducing kernel. We de�ne this kernel on the �Fourier
side�, using Mercer synthesis (Proposition 2.38) rather than the Green's function of the penalty
di�erential operator (i.e., the iterated Laplacian) with periodic boundary conditions.

Model space: LetH be the space of functions u on [0, 1] for which u, u′, . . . , u(m−1) are absolutely
continuous, u(m) ∈ L2(0, 1), and u satis�es the periodic boundary conditions: namely, u and its �rst
m− 1 derivatives agree at the boundary.

u(k−1)(1) = u(k−1)(0) for k = 1, . . . ,m.

Since u(k−1) is absolutely continuous, the boundary conditions are equivalent to∫ 1

0

u(k)(x) dx = 0 for k = 1, . . . ,m.

Null space: Let H0 be the space of constant functions: H0 = span {1}. Note that constant
functions satisfy the boundary conditions and reside inH. To this space, we can give an inner product
⟨f, g⟩H0 =

∫ 1

0
f(x) dx

∫ 1

0
g(x) dx and turn into an RKHS with reproducing kernel k0(s, t) = 1; clearly

k0t = k0(·, t) = 1 ∈ H0. Indeed, for any f ∈ H0, we have that

∀t ∈ [0, 1], f(t) = ⟨f, k0t ⟩H0 =

∫ 1

0

f(x) dx ·
∫ 1

0

1 dx .

Wiggly space: Let H1 = {u ∈ H |
∫ 1

0
u(x) dx = 0}, when endowed with the norm

||u||2H1
=
∥∥u(m)

∥∥2
L2([0,1])

=

∫ 1

0

(
u(m)(t)

)2
dt ,
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be the space of zero-mean periodic functions. An elementary fact of Fourier series is that the 1-
periodic sinusoids form a complete orthonormal system for H1 [84, 149]; that is, any function u ∈ H1

can be represented as the zero-mean Fourier series

∀t ∈ [0, 1], u(t) =
√
2

∞∑
ν=1

αν cos(2πνt) +
√
2

∞∑
ν=1

βν sin(2πνt), (46)

which converges not just in L2([0, 1]) but also, as indicated by the notation, pointwise�in fact,
absolutely and uniformly�for any u ∈ H1

36, and has �nite H1 norm. Thus, by the square integrability
of the mth derivative of u and orthonormality of our Fourier series basis,

||u||2H1
=

∫ 1

0

(
dm

dtm

(
√
2

∞∑
ν=1

αν cos(2πνt) +
√
2

∞∑
ν=1

βν sin(2πνt)

))2

dt

=

∫ 1

0

(
√
2

∞∑
ν=1

(2πν)2m

{
(−1)m

2 αν cos(2πνt) + (−1)m
2 βν sin(2πνt), if m even;

(−1)m+1
2 αν sin(2πνt) + (−1)m−1

2 βν cos(2πνt), if m odd.

})2

dt

=
∞∑
ν=1

(2πν)2m
∫ 1

0

2

{
α2
ν cos

2(2πνt) + β2
ν sin

2(2πνt), if m even;

α2
ν sin

2(2πνt) + β2
ν cos

2(2πνt), if m odd.

}
dt+ 0 + 0︸ ︷︷ ︸

orthogonal
cross-terms

=
∞∑
ν=1

(2πν)2m(α2
ν + β2

ν) <∞.

This wiggliness penalty is a de�nite norm on H1. Writing u as the uniformly convergent zero-mean
Fourier series (46), we see that

||u||2H1
=

∞∑
ν=1

(2πν)2m(α2
ν + β2

ν) = 0 =⇒ (∀ν, αν = βν = 0) =⇒ u ≡ 0.

The bilinear form on H1 that induces the root wiggliness penalty as its norm is

⟨f, g⟩H1 =

∫ 1

0

f (m)(x)g(m)(x) dx .

The reproducing kernel for H1 can be written [158]

k1(s, t) =
∞∑
ν=1

2

(2πν)2m
cos(2πν(s− t)), (47)

from which the reproducing property

⟨u, k1t ⟩H1 =

∫ 1

0

(
√
2

∞∑
ν=1

(2πν)2m

{
(−1)m

2 αν cos(2πνt) + (−1)m
2 βν sin(2πνt), if m even;

(−1)m+1
2 αν sin(2πνt) + (−1)m−1

2 βν cos(2πνt), if m odd.

})
·(

∞∑
η=1

2

(2πη)2m

{
(−1)m

2 cos(2πη(s− t)), if m even;

(−1)m+1
2 sin(2πη(s− t)), if m odd.

})
ds

=
∞∑
ν=1

√
2

{
(−1)mαν cos(2πνt) + (−1)mβν sin(2πνt), if m even;

(−1)m+1αν cos(2πνt)− (−1)mβν sin(2πνt), if m odd.

}

=
√
2

∞∑
ν=1

αν cos(2πνt) + βν sin(2πνt),

36Since u and u′ are absolutely continuous on the interval; see [149], Section 11, and [84], Theorem 33.7.
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can be veri�ed by the pointwise-convergent zero-mean Fourier series (46). The simpli�cation on the
second line follows from a simple application of the product formula; indeed, for (η, ν) ∈ N2

≥1,∫ 1

0

2 cos(2πη(s− t)) cos(2πνs) ds =

{
cos(2πνt), if η = ν

0, otherwise.∫ 1

0

2 cos(2πη(s− t)) sin(2πνs) ds =

{
sin(2πνt), if η = ν

0, otherwise.∫ 1

0

2 sin(2πη(s− t)) cos(2πνs) ds =

{
− sin(2πνt), if η = ν

0, otherwise.∫ 1

0

2 sin(2πη(s− t)) sin(2πνs) ds =

{
cos(2πνt), if η = ν

0, otherwise.

A closed-form expression for this kernel (47) was given in terms of the Bernoulli polynomials in [17, 32]

k1(s, t) =
(−1)m−1

(2m)!
B2m (s− t− ⌊s− t⌋) ,

where ⌊·⌋ indicates the �oor function and the Bernoulli polynomials Br(t) can be de�ned on [0, 1]
recursively [158]

Br(t)

{
= 1, r = 0;

solves 1
r

d
dt
Br(t) = Br−1(t) with periodic boundary conditions, otherwise

and de�ned explicitly [89] as

Br(t) =
r∑

n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(t+ k)r.

The reproducing kernel for H: De�ne the orthogonal projection operators

P0 : H → H0 P1 : H → H1

u 7→
∫ 1

0

u(t) dt , u 7→ u−
∫ 1

0

u(t) dt .

With respect to the inner product

⟨f, g⟩H = ⟨P0f,P0g⟩H0 + ⟨P1f,P1g⟩H1 ,

the subspacesH0 andH1 are evidently orthogonal form ≥ 1, since themth derivative of any function
in H0 is 0, and since the area

∫ 1

0
u1(x) dx of any function u1 ∈ H1 is 0.

Our model space H is the direct sum of the two perpendicular spaces H0 of constant (and
therefore periodic) functions and H1 of zero-mean periodic functions. Since the reproducing kernel
of the direct sum of two perpendicular subspaces H0 and H1 is the sum of the kernels [3], we have
that our reproducing kernel for H

k(s, t) = k0(s, t) + k1(s, t) = 1 +
∞∑
ν=1

2

(2πν)2m
cos(2πν(s− t))

= 1 +
(−1)m−1

(2m)!
B2m(s− t− ⌊s− t⌋).
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Algorithm 5: An algorithm that �ts periodic splines on X = [0, 1] based on the seminorm
penalty Jm,X (u) =

∫ 1

0
(u(m)(x))2 dx. By the representer theorem (Proposition 2.60), the

solution to

u∗ = argmin
u∈H

1

n

n∑
i=1

(u(xi)− yi)2 + λ

∫ 1

0

(u(m)(x))2 dx ,

takes the form

u∗ = d+
n∑

i=1

ci
(−1)m−1

(2m)!
B2m (· − xj − ⌊s− t⌋) .

This algorithm recovers c ∈ Rn and d from samples {yi}ni=1, yi ∈ R, taken at scattered values
{xi}ni=1, xi ∈ [0, 1].
Data: A set of n sample locations {xi}ni=1 in [0, 1] and n corresponding sample values yi ∈ R.
Parameters: A regularization penalty parameter λ ≥ 0 and (implicitly) a choice of model

space H = H0 ⊕H1 and seminorm wiggliness penalty Jm,X , whose
one-dimensional null space H0 = span {1}.

Result: A set of basis function weights c ∈ Rn and d ∈ R specifying the empirical risk
minimizing function u∗.

Compute the n× n Gram matrix K1 in whose ith row and jth column reposes the value

(K)i,j ← k1(xi, xj) =
(−1)m−1

(2m)!
B2m (xi − xj − ⌊s− t⌋) ,

where

Br(t) =
r∑

n=0

1

n+ 1

n∑
k=0

(−1)k
(
n

k

)
(t+ k)r.

Augment the Gram matrix of k1 on our data set with null-space basis function matrix
T = 1n to form an (n+m)× (n+m) matrix K and set y accordingly

K←
(
K1 + λnIn×n 1n

1T
n 0

)
and y ←

(
y
0

)
;

Solve Kα = y,

α← K−1y (or, if K1 is not strictly positive-de�nite and λ = 0, α← K†y);

Return the spline weights c← α[1 : n] and d← α[n+ 1];
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Solving the Spline Smoothing Problem for Splines on the Circle. We adapt Algorithm 3
to �t periodic splines on [0, 1] using the seminorm wiggliness penalty Jm,X (u) =

∫ 1

0
(u(m)(x))2 dx in

Algorithm 5.

Figure 1 compares two kernels associated with the penalty (2), which di�er only in their boundary
conditions (the natural cubic spline conditions, or the periodic cubic spline conditions), along with
their corresponding smoothing spline solutions to two related data sets. This result can be applied to

(a) (b)

(c) (d)

Figure 1: (1a) plots the representers of evaluation kt = k0t + k1t = k(·, t) of the spline on the circle (cubic spline with
periodic boundary conditions) at t = 0, 0.25, 0.5, and 1. In this case k(·, 0) and k(·, 1) coincide. (1b) does the same, but
with the kernel for the natural cubic splines. While the kernels are quite di�erent (the former is periodic, treating points
with small along-the-circle distance similarly; the latter is cubic up till t, then linear), their Gram matrices' spectra are
alike with few, regularly spaced data points. (1c)-(1d) compare the corresponding spline curves with λ = 0.001 on the
twelve monthly average CO2 measurements taken in 2021 at the Mauna Loa station of the Global Monitoring Laboratory
network [30], both the untreated data (left), with a naturally occurring periodic component, and the de-seasonalized data
(right), re�ecting increasing atmospheric CO2 concentrations. To avoid delving into the complexities of the signal processing
chain that produces these monthly averages from discrete measurements, we take these monthly averages to be samples at
times ti = (i − 1) 1

12 for i ∈ {1, . . . , 12}. Of course, monthly averages are bounded linear functionals, so the representer
theorem (Section 2.5) can be applied to more complicated monthly averaging operators Li than taking a single sample at
each ti.

the construction of piecewise polynomial splines at knots [32]; on equally spaced data, the minimizer
of the spline empirical risk over H resembles the Butterworth �lter [32, 158].
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2.6.3 Thin-plate Splines on Graphs

Kernel methods are most often used to compare graphs, using computed features from each graph.
For example, the subgraph matching kernel expresses similarity between any pair of graphs (each
representing, say, a molecule) in a space of graphs by counting the subgraphs they have in common.
(Computing these features is not always easy!)

In our case, however, we de�ne kernels using the geometric structure of a single graph. Such
kernels can be used to interpolate scattered observations within a graph, or any �nite index set
with correlated data due, for instance, to geometric proximity. The �nite set can also be a graph
approximation of, say, a compact manifold.

In this section, the index set X is �nite and can be taken to be {1, . . . , n} via a labeling isomor-
phism. Without imposing additional structure on X , spline smoothing and interpolation are rather
dull.

Example 2.63 (R{1,...,n}). The space Rn with the standard Euclidean inner product ⟨x, y⟩Rn = xTy
is an RKHS with the standard basis functions ei as representers of evaluation. A function f :
{1, . . . , n} → R can be represented as a vector and evaluated pointwise: f(i) = eTi f . The correspond-
ing kernel k(i, j) = δi,j, where δ is the Kronecker delta. The similarity metric from Remark 2.17 is
the discrete metric

dX (i, j) =

{√
2, if i ̸= j

0, otherwise.

In e�ect, vertex i tells us nothing about vertex j unless i = j. Given observations {yxi
}mi=1 at {xi}mi=1

with xi ∈ X = {1, . . . , n}, the minimum weight solution f ∗ to the associated exact-interpolation
problem is easily seen to be

f ∗(x) =

{
yj, if x = j for some j already observed: j ∈ {xi}mi=1;

0, otherwise.

The solution to the spline smoothing problem

f ∗ = argmin
f∈Rn

1

m

m∑
i=1

(f(xi)− y(xi))2 + λ||f ||2Rn ,

can be found using the representer theorem (Proposition 2.60): f ∗ =
∑m

i=1 αikxi
. The function f ∗ is

speci�ed by its weights α ∈ Rm on the representers of evaluation. The linear algebra problem

α∗ = argmin
α∈Rm

(Kα− y)2 + λαTKα,

is solved by setting the gradient with respect to α to 0: α∗ = 1
1+mλ

y. Thus,

f ∗ =
m∑
i=1

αikxi
=

m∑
i=1

yi
1 +mλ

kxi
.

We can evaluate the interpolant using the reproducing property

f ∗(j) =

〈
m∑
i=1

αikxi
,1j

〉
H

=
m∑
i=1

yi
1 + λ

δj,xi
=

{
yj

1+mλ
, if j already observed;

0, otherwise.
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Graphs are a convenient mechanism of expressing the structure on X that is needed for more
interesting notions of similarity between sample points in X and of �smoothness� in interpolation and
smoothing problems. We de�ne a Sobolev-like seminorm using the Laplace matrix of the graph. Not
all RKHSs on {1, . . . , n} can be represented in this way. As will become apparent soon, there is no
�nite simple graph associated with the above example; nevertheless, it can be be seen as a thin-plate
spline of order m = 0 associated with any graph on {1, . . . , n} with the usual convention that L0 = I
for any matrix L.

Let us �rst recall some facts about graphs. Let G = (V,E) be an undirected graph with vertices
V = {1, . . . , n} and edges E ⊂ {(i, j) | i ∈ V, j ∈ V, i < j}. The adjacency matrix A of G is the
n× n matrix that reposes in its ith row and jth column the value

(A)i,j =

{
1, if (i, j) ∈ E or (j, i) ∈ E
0, otherwise.

The Laplacian L of G is the n × n matrix de�ned as L = D −A, where D is the diagonal matrix
whose ith diagonal element contains the degree of node i. Thus its rows sum to zero L1n = 0, and L
always has 0 as an eigenvalue. Since D and A are symmetric, so too is L. L encodes the topology of
the graph via local information (the edges in the adjacency matrix) and can be used to de�ne what
�smoothness� means on a graph: not too much variation across the edges. Note that A,D, and L
can be de�ned for graphs with nonnegative weighted edges in the obvious way: A stores the edge
weights (or 0) between every pair of nodes and the degree of a node is the sum of the weights of the
edges it participates in.

An analogy with resistor networks is instructive: if f(x) encodes the potential at node x, and each
edge represents wire with unit resistance (or, in a weighted graph, if the weight of edge e is w(e), the
resistance along the edge is 1/w(e)), ∆f simply gives a current balance at each node; the harmonic
equation (∆f)(x) = 0 is satis�ed at nodes x with no source or sink of current. By the discrete version
of Liouville's theorem, the only harmonic functions on an entire �nite graph are constant over the
connected components. Our interpolation task with m = 1 consists in �xing the potential at certain
nodes and determining potentials at the remaining nodes so that their current is balanced.

Lemma 2.64. For m = 1, the discrete analogue of the Sobolev seminorm integration by parts∫
X
(f ′(x))2 dx = −

∫
X
f(x)(∆f)(x) dx (with appropriate boundary conditions),

holds on graphs G (de�ned so as to prohibit self-loops).

Proof.

−
n∑

i=1

f(i)(∆f)(i) = fT (Lf) = fTDf − fTAf

=
n∑

i=1

Diif(i)
2 −

n∑
i=1

n∑
j=1

Aijf(i)f(j)

=
∑

(i,j)∈E

f(i)2 + f(j)2 − 2
∑

(i,j)∈E

f(i)f(j) =
∑

(i,j)∈E

(f(i)− f(j))2.

We made the identi�cation ∆ = −L.

In terms of our physics analogy, this simply states that fTLf gives the energy dissipated in
the circuit, that is, the sum of the square potential drops over the resistors. For m > 1, signi�cant
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additional boundary conditions must be placed on a general graph for the equivalent relation to hold,
though for certain graphs, such as chains, the result

∫
X f(x)(∆

mf)(x) dx =
∫
X f(x)(∆

2mf)(x) dx can
be enforced with constraints analogous to the splines on the circle.

Corollary 2.65. L is a positive-semide�nite matrix.

Proof. By the spectral theorem, any eigenvalue λ of the real, symmetric matrix L must be real;
moreover, it must be nonnegative, since Lu = λu implies that

λ||u||22 = λuTu = uTLu =
∑

(i,j)∈E

(ui − uj)2 ≥ 0.

Since ||u||22 must be nonnegative, λ ≥ 0; the matrix L is therefore positive-semide�nite. Indeed,
L = EET , where the n× |E| edge-incidence matrix E is de�ned as follows:

Eij =


1, if ej = (i, ·)
−1, if ej = (·, i)
0, if edge ej does not involve node i.

(48)

Remark 2.66. In discrete di�erential geometry [31], Lemma 2.64 follows from applying Green's �rst
identity (integration by parts with the gradient product rule) on the entire graph,∫

V

⟨∇u,∇v⟩R2 dV +

∫
V

u∆v dV =

∫
∂V

u∇v · d
−→
S = 0,

after setting u = v,∆ = −L, and ∇ = ET maps graph functions (functions de�ned on vertices) to
1-forms (functions de�ned on edges).

L is never strictly positive-de�nite, as 1n is always an eigenvector with eigenvalue 0 (since a
vertex's degree equals the number of edges it participates in), and any function that is constant over
each of the graph's connected components is similarly an eigenvector with eigenvalue 0. Conversely,
if e is an eigenvector of L with eigenvalue 0, we see that

||e||2 = et Le︸︷︷︸
0e

= 0 =
∑

(i,j)∈E

(ei − ej)2,

so that no edge can join nodes for which their values di�er; ei must equal ej for every edge (i, j) ∈ E.
Thus, the null space of L is precisely the space of functions that are constant on each connected
component of G. If the 0 eigenvalue of L has multiplicity r, then G has r connected components [173].
The eigenvectors of L can be used as a Fourier basis useful in smooth approximation of arbitrary
functions. On unweighted chains, these eigenvectors are precisely the discrete cosine transform basis
functions, the speci�c type depending on the boundary conditions [143].

We are now ready to introduce the model space H in which we will �nd our splines.
Model space H: The space of functions on G. By the obvious isomorphism, we represent them

as vectors in Rn and consider H = Rn. The seminorm corresponding to our wiggliness penalty is

Jm,H(f) = fTLmf.

Note that, since L is normal, the eigenvectors of Lm are the same as those of L; the eigenvalues are
simply modi�ed by their being taken to the mth power.
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If G has r connected components, we can endow H with the inner product

⟨f, g⟩H =
r∑

c=1

meanc (f) ·meanc (g) + fTLmg, (49)

where meanc (f) is the mean value of f on the connected component c.
Null space H0: The null space of our penalty seminorm is the space of functions that are

constant on each connected component. H0 can be made into an RKHS with inner product

⟨f, g⟩H0 =
r∑

c=1

meanc (f) ·meanc (g).

The representer of evaluation kv at a particular vertex v is the function 1c(v)H0 that is 1 on all nodes
on v's connected component c(v) and 0 otherwise, and so inhabits the null space of Jm,H. Then if
f ∈ H0,

⟨f, kv⟩H0 = meanc(v) (f) · 1 = f(v),

since f(v) = meanc(v) (f). The r distinct representers of evaluation {11, . . . , 1r} form an orthonormal
basis of H0, and the orthogonal projection operator P0 : H → H0 assigns to each vertex v the mean
of f on c(v), since the functions 1c ∈ Lm, and so

P0f =
r∑

c=1

⟨f, 1c⟩H1c =
r∑

c=1

meanc (f)1c.

In terms of the graph Laplacian, H0 = nullLm = nullL (with the latter equality holding because
L is normal�diagonalize it in unitary eigenvectors). Since H0 is �nite-dimensional, its kernel is
fully speci�ed by its rank r, n × n Gram matrix K0, in whose ith row and jth column rests the
value 1c(i)=c(j). If G has one connected component, K0 is the ones matrix; more generally, K0 is
permutation-similar to the block-diagonal matrix whose cth diagonal block is the ones matrix of size
|c| × |c|, where |c| is the number of nodes in the cth connected component.

Space of wiggly functions H1: We de�ne H1 to be the space of signals that have zero mean on
each connected component. By construction, for all f ∈ H1, we have ||f ||2H0

=
∑r

c=1meanc (f)2 = 0
and for all f and g in H1, ⟨f, g⟩H0 = 0. Moreover, the bilinear form

⟨f, g⟩H1 = fTLmg,

is de�nite on H1 (since the DC functions over each connected component {11, . . . , 1r} form a basis
of nullLm, and functions in H1 are zero-mean), and coincides with ⟨f, g⟩H on its restriction to H1.

For any matrix A, the operator AA† is the orthogonal projector onto rangeA (and A†A the
projector onto rangeA∗). Moreover, if A is normal, AA† = A†A = Am(A†)m = (A†)mAm (diago-
nalize it in unitary eigenvectors). For any graph signal g ∈ H1, we have that g ⊥ {11, . . . , 1r}, with
respect to both ⟨·, ·⟩H0 and ⟨·, ·⟩Rn , and so g ∈ (nullL)⊥ = rangeL. The orthogonal projection of g
onto rangeL then recovers g: LL†g = g. Thus, since L is a normal matrix (it is real and symmetric),
(L†)mLm = LL† and

⟨(L†)mev, g⟩H1 = eTv (L
†)mLmg = eTv LL†g︸ ︷︷ ︸

g

= eTv g = g(v), (50)

where ev is the vth standard basis vector of Rn. Equation (50) shows that the vth column of (L†)m

(and row, since L�and therefore (L†)m�is symmetric) is the representer of evaluation kv = eTv (L
†)m

at vertex v. Since L is real and symmetric, with eigenvalues λ1 = . . . = λr = 0, we have that

L =
n∑

i=1

λiuiu
T
i =

n∑
i=r+1

λiuiu
T
i , and so (L†)m =

n∑
i=r+1

λ−m
i uiu

T
i . (51)
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Then the vth column of (L†)m

kv = (L†)m[:, v] =
n∑

i=r+1

ui[v]

λmi
ui

is a weighted sum of n − r linearly independent eigenvectors ui of L with eigenvalue λi > 0. Since
the {ui}ni=1 form an orthonormal system for Rn and ui = 1i for i = 1, . . . , r, we have that, for
i = r+1, . . . , n, ui ⊥ {11, . . . , 1r} with respect to ⟨·, ·, ⟩Rn and hence are zero-mean on each connected
component. For v = 1, . . . , n, then, kv ∈ H1. Taking the inner products ⟨·, ·⟩H1 between the
representers of evaluation, we see that the kernel over the �nite-dimensional H1 is fully speci�ed by
its Gram matrix K1 = (L†)m.

Remark 2.67. The above analysis holds with Laplacians of weighted graphs or normalized graph
Laplacians. Moreover, the eigenvectors of the Laplacian (and hence the eigenvectors of the Laplacian
pseudoinverse kernel) are used to de�ne many other kernels, with di�erent eigenvalues. For instance,
the di�usion kernel, which, like the Gaussian kernel, is a solution to the di�usion equation, has the
same eigenvectors [83].

Solving the Spline Smoothing Problem on Graphs. We can now adapt Algorithm 3 to
solve the spline smoothing problem on a graph with n vertices, of which nobs are observed. In
the pseudocode, we set the nobs × r matrix (T)obs,c = 1c[obs], where obs is a list of indices of
the nobs observed nodes, and K1 selects the nobs observed rows and columns of our n × n matrix
(L†)m. We can also replace the evaluation functionals xi 7→ u(xi) with arbitrary bounded linear
functionals, replacing K1 with the corresponding matrix Σ of the inner products of the representers
of the functionals, as in (35).

In Figures 2-5, we demonstrate the use of graphs to perform spline smoothing (Equation (27))
in R12, with graphs specifying similarity of vector elements. We assign the 12 months in which we
considered Mauna Loa CO2 readings from Figures 1c-1d to nodes in the graph G or Gc (Figures 2
and 3, respectively), display their representers of evaluation with m = 3 (Figure 4), and show
solutions of the spline smoothing problem on these 12 data points (Figure 5).

1 2 3 . . . 11 12
w(t1, t2) w(t2, t3) w(t11, t12)

Figure 2: Weighted chain graph G associated with the sample points t1 < t2 < . . . < t12. Given our (approximately�some
months are abridged!) regularly spaced months in time X = {1, . . . , 12}, we may want a similarity metric on X induced by
the graph in which we give each edge equal weight: for instance, we can set ti = i− 1 and give edges weight 1. If human
activity matters more than seasonality, we may not wish to link January (1) with December (12).

Thin-plate splines on graphs are summarized in Algorithm 6.

Remark 2.68 (Graph approximations of compact Riemannian manifolds). We can use graphs to
derive splines over a compact manifold. We approximate the manifold as a �nite point cloud�an ϵ-net,
for instance, or randomly scattered points on the manifold�and add edges between nearby points using
one of many techniques from computational geometry: k-nearest neighbors, Delaunay triangulations,
Gabriel graphs, etc. With the compact manifold embedded in a Euclidean space Rd, we can set edge
weights according to the Euclidean metric of the space dRd(x, y) = ||x − y||, so that the vertices
associated with two nearby points x, y in our point cloud are bridged by an edge whose weight is
inversely related to ||x − y||2, which is a good approximation (an underestimate good to order 4) of
the squared geodesic distance on our compact manifold. In a so-called Gaussian-weighted graph, the
edge weight is as follows: w(x, y;σ) = e−

1
4σ

||x−y||2. This choice guarantees that the graph Laplacian
of a random point cloud converges to the Laplace-Beltrami operator pointwise and in spectrum [13].
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Algorithm 6: Our index set X consists of the n vertices (in r connected components) of a
graph G, whose n×n (weighted or unweighted) Laplacian matrix is L. De�ne the seminorm
wiggliness penalty of a graph signal g ∈ Rn as Jm,X (g) = ||P1g||2H1

= gTLmg, where (P1g)(x)
is g(x) − meanc(x)(g)�that is, it subtracts from each vertex x the mean over x's connected
component of g. Spline smoothing inH = Rn, given observations {yi}nobs

i=1 at vertices {xi}nobs
i=1 ,

is the following empirical risk minimization problem

u∗ = argmin
u∈Rn

1

nobs

nobs∑
i=1

(u(xi)− yi)2 + λuTLmu.

The representer theorem (Proposition 2.60) allows us to write its solution as

u∗ =
r∑

j=1

dj1j +

nobs∑
i=1

ci(L
†)m[:, xi].

where ϕj(i) = 1j = 1i in the jth connected component and k1(:, xi) is the xith column of (L†)m. This
algorithm �nds the vectors of weights c and d. Be warned: for notational simplicity, in this
pseudocode, we use 1-indexing.
Data: A set of nobs sample locations {xi}nobs

i=1 in X = {1, . . . , n} and nobs corresponding
sample values yi ∈ R. The graph G whose Laplacian L de�nes our seminorm penalty
has r connected components.

Parameters: A regularization penalty λ ≥ 0 and (implicitly) a choice of model space
H = H0 ⊕H1 with reproducing kernel k = k0 + k1 and seminorm wiggliness
penalty ||P1 · ||2H1

, whose �nite-dimensional null space H0 has basis
{ϕ1, . . . , ϕm}. Here H0 = span {11, . . . , 1r} and
H1 = span {(L†)m[:, 1], . . . , (L†)m[:, n]}.

Result: A set of basis function weights c ∈ Rnobs and d ∈ Rr specifying the empirical risk
minimizing function u∗.

Get the indices of the observed vertices obs← [x1, . . . , xnobs
];

Compute the nobs × nobs Gram matrix K1

K1 ← (L†)m[obs, obs];

Compute the nobs × r matrix T, whose i and column is

T[:, i]← 1i[obs];

Augment the Gram matrix of k1 on our data set with null-space basis function matrix T to
form an (nobs + r)× (nobs + r) matrix K and set y accordingly

K←
(
K1 + λnobsInobs×nobs

T
TT 0r×r

)
and y ←

(
y
0r

)
;

Solve Kα = y,
α← K−1y (or, if λ = 0, α← K†y);

Return the spline weights c← α[1 : n] and d← α[n+ 1 : n+m];
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1 2 3 . . . 11 12
w(t1, t2) w(t2, t3) w(t11, t12)

w(t1, t12)

Figure 3: Weighted cycle graph Gc associated with the sample points t1 < t2 < . . . < t12. We add the edge with weight w
between nodes 1 and 12, modeling similarity between the �rst and last months. We may choose w to be less than the other
weights as a compromise between seasonality e�ects (such as CO2 exchange in deciduous forests at the latitude) and the
gigatons of CO2 emitted in the interim by combusting fossil fuels. If we wish the resulting smoother to be �more periodic�,
we can even set w to be greater than the other weights.

(a) (b)

Figure 4: (4a) plots the representers of evaluation in H1 (with order m = 3), i.e. k1t = k1(·, t), of the kernel k1 associated
with the chain graph G (shown in Figure 2) on X = {1, . . . 12} at t = 1, 6, 7, and 12. (4b) gives the same, but for the
kernel associated with the cycle graph Gc (shown in Figure 3). In both cases, all edges assume the same weight (12).
Dashed lines interpolating between the nodes are included as a visual aid but carry no meaning.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: For four distinct choices of wiggliness penalty parameter λ, (5a), (5c), and (5e) give the smoothing splines
after observing nodes {2, 4, 8, 9, 10}; (5b), (5d), and (5f), after observing all nodes 1-12. The top row corresponds to the
chain graph G (Figure 2, all edge weights 12); the middle, Gc (Figure 3, edge weights 12); and the bottom, G′

c, which is
Gc but with w(t1, t12) set to 144 to further penalize the non-periodicity of the smoothing splines (though a constrained
optimization or smooth-periodic decomposition can be applied).
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2.6.4 Thin-plate Splines in Euclidean Space

Two-dimensional splines can be constructed via the product of two one-dimensional splines; the
corresponding RKHS is the tensor product of the kernels' RKHSs. IfH1 is an RKHS with reproducing
kernel k1 and H2 an RKHS with reproducing kernel k2, then H1⊗H2 is an RKHS with reproducing
kernel k((x1, y1), (x2, y2)) = k1(x1, x2)k2(y1, y2) (see, e.g., [4], Part I, Section 8, Theorems I-II).
Thus, two-dimensional splines in the plane, for instance, can be constructed via natural polynomial
splines on each axis and two-dimensional splines on a cylinder or sphere can be constructed via a
natural polynomial spline on the non-periodic axis and a periodic polynomial spline on the periodic
(longitudinal) axis. More generally, one can create splines by aggregating one-dimensional splines �t
on many data-aligned or random projections of the index set37

However, this method is unsatisfactory in certain applications. Kernels express a notion of simi-
larity on the index set and related notions of smoothness of functions in the RKHS. One particularly
sensible and well-motivated wiggliness energy on Euclidean space, which generalizes the natural cubic
splines' wiggliness penalty, gives rise to the thin-plate splines.

The thin-plate splines were introduced by Harder and Desmarais [61] and by Duchon [39, 40],
with early theory developed by Duchon, Meinguet [99, 100, 101], depending on results from At-
téia [5, 6], Deny and Lions [37], and Matheron [97]. While the original theory was based on the
integration by parts of the energy functional and not the reproducing property, the splines were
found to �t nicely into the reproducing kernel Hilbert space (RKHS) framework [158], with the thin-
plate spline interpolant of scattered data being a nice application of Wahba's representer theorem
(Proposition 2.60).

The thin-plate splines in Euclidean 2-space minimize the energy38

J2,R2(u) =

∫ ∞

−∞

∫ ∞

−∞

((
∂2u

∂x21

)2

+ 2

(
∂2u

∂x1∂x2

)2

+

(
∂2u

∂x22

)2
)
dx1 dx2 , (52)

which, via Hooke's law, represents the bending energy of a thin39 interpolating sheet of an isotropic
material like steel in the linear elastic regime, with in-plane deformation unpenalized40.

37Given k directions v1, . . . , vk in X = Rd, placed in a k×d matrix V, with k > d when sparse representations of the
data distribution in X are unavailable, one can �t a spline or Gaussian process regression to each of the k projections
of the data set {(⟨xi, v1⟩Rd , . . . , ⟨xi, vk⟩Rd)

T
, yi}ni=1. This vector of splines predicts, at any x ∈ X , k values. They can

be aggregated, for instance, by inverting our geometric model V† and applying it to the predictions. We can also take
into account the local informativeness of each projection � an inverse proxy for which is the error bar on the spline or
Gaussian process of direction j at ⟨x, vj⟩Rd .

38Other sorts of bending energies based on local geometry can be imagined. Given a cross �eld on a surface, for
instance, we could interpolate scattered data to minimize the local bending energy of the interpolant along the two
orthogonal axes associated with each point, de�ned using a frame �eld operator [111]. We would thereby �t to scattered
data orthotropic thin-plate splines.

39For su�ciently thin plates, the Kircho�-Love hypothesis holds that points on a normal of the middle plane of the
plate remain on the (surface) normal after deformation and that axial deformation, which maps vectors normal to the
midplane before deformation to vectors normal to the deformed midsurface, is an isometry.

40If u represents the vertical displacement of a thin sheet whose mid-plane, before deformation, is placed in the
xy-plane, then, with the Hessian matrix as

H =

(
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂y∂x

∂2u
∂y2

)
,

the total deformation energy [8, 147] (ignoring the relative dilation of the plate in the lateral direction orthogonal to
the bending, or, equivalently, if the material's Poisson ratio is 0) is proportional to

trace
(
H2
)
=

(
∂2u

∂x2
1

)2

+ 2

(
∂2u

∂x1∂x2

)2

+

(
∂2u

∂x2
2

)2

.
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By extension, they are solutions to the more general scattered data �tting problem of functions
on Rd involving the penalty functional of order m

Jm,Rd(u) =
∑

α1+···+αd=m

m!

α1! . . . αd!

∫ ∞

−∞
. . .

∫ ∞

−∞

(
∂mu

∂xα1
1 . . . ∂xαd

d

)2

dx1 . . . dxd . (53)

Formally integrating (53) by parts (e.g., assume u is su�ciently smooth and rapidly decreasing), we
can write the penalty functional in terms of the mth-iterated Laplacian ∆m, where the Laplacian in
Rd is

∆u
def
=
∂2u

∂x21
+ · · ·+ ∂2u

∂x2d
;

namely, we can write

Jm,Rd(u) = (−1)m
∫
. . .

∫
Rd

u(x1, . . . , xd) · (∆mu) (x1, . . . , xd) dx1 . . . dxd . (54)

Notice that we penalize wiggliness throughout Rd. Recall that, when constructing the natural
polynomial splines on X = R1, we penalized interpolant wiggliness only in the interval between
the smallest and largest sample location�without loss of generality, on (0, 1). The optimal solution
happens to exhibit no wiggliness beyond the sample data (i.e., natural cubic splines, with m = 2,
extrapolate beyond the data samples as a degree-m − 1 polynomial: an a�ne function). As Attéia
demonstrates in Section 2 of [6], when X = Rd for d ≥ 2, the situation is rather di�erent. The
choice of domain in which to enforce the wiggliness penalty a�ects the structure of the solution. We
decide, therefore, to apply the penalty everywhere. For this approach to work, we need the technical
constraint m > d/2.

This functional Jm,Rd is induced by a bilinear form with which the fundamental solution Φd,m of
the mth iterated Laplacian formally satis�es the reproducing property. Since

∆mΦd,m (||x− x′||Rd) = δ(x− x′)

as distributions, we can see the reproducing property via integration by parts: for u in the Schwartz
space S of rapidly decreasing functions,

(−1)m
∫
Rd

Φd,m (||ω||Rd) (∆mu)(x− ω) dω =

∫
Rd

(∆mΦd,m(||ω − x||Rd))u(ω) dω = u(x),

by the sifting property of the Dirac delta. Note that the inverse Fourier transform of ∆mu(x − ·)
is ω 7→ (−1)mei⟨x,ω⟩Rd ||ω||2Rdû(ω), which we can see using integration by parts and the fact that
the complex exponentials x 7→ ei⟨x,ω⟩Rd are (generalized) eigenfunctions of the m-iterated Laplacian
with corresponding eigenvalues (−1)m||ω||2mRd . Accordingly, we can show41 that if Φ̂d,m (||ω||Rd) =

41The manipulations here are permissible as the function Φ we have identi�ed by enforcing the reproducing property
has �generalized Fourier transform� ·̂ of order l = m−

⌈
d
2

⌉
+1 on Rd\{0} (see [162], Theorems 8.16-8.17) and û(ω)||ω||2mRd

is in S and is O(||ω||2mRd ) as ||ω||Rd approaches 0. The function Φ is then conditionally positive de�nite of this order,
and in particular of order m ≥ l (see [162], Theorems 8.2 and 10.36). The generalized Fourier transform of order
m coincides with the classical Fourier transform for functions in L1(Rd) and the distributional Fourier transform on
the subset of the Schwartz space that converges toward 0 su�ciently rapidly: O(||ω||2mRd ). However, it enables us to
give a characterization of conditionally positive-de�nite radial basis functions that extends the characterization of
Bochner, which is stated in terms of the Fourier-Stieltjes integral of nonnegative Borel measures, when we do not have
integrability before we �project out� polynomials. The generalized Fourier transform of a polynomial of degree at most
2m− 1 is the zero function, of order m.
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(2π)−d/2 ∥ω∥−2m
Rd , the reproducing property appears to hold42

(−1)m
∫
Rd

Φd,m (||ω||Rd)∆mu(x− ω) dω = (−1)m
∫
Rd

Φ̂d,m(||ω||Rd) · F−1 (∆mu(x− ·)) dω

= (−1)m
∫
Rd

(2π)−d/2||ω||−2m
Rd ·

(
(−1)mei⟨x,ω⟩Rd ||ω||2mRd û(ω)

)
dω

= (2π)−d/2

∫
Rd

û(ω)ei⟨x,ω⟩Rd dω = u(x).

In the spatial domain,

Φd,m(||s− t||Rd) = ηd

{
||s− t||2m−d

Rd , if d is odd;

||s− t||2m−d
Rd log ||s− t||Rd , if d is even,

(55)

where ηd > 0 is a proportionality constant. Dividing out ηd from Φd,m, we will write

Em(s, t) =
1

ηd
Φ(||s− t||Rd).

Importantly (and not surprisingly!), this function Em (like Φd,m) depends only on the Euclidean
distance between its arguments, and is therefore called a radial basis function in the literature. But
it is not a reproducing kernel. While the function Em(|| · −t||Rd) reproduces evaluation at t with
respect to our bilinear form, it is not positive de�nite43. Moreover, it is not of �nite wiggliness.

It is, however, conditionally positive-de�nite. This means that, for all n ∈ N, all pairwise distinct
sets {xi}ni=1 ⊆ Rd, and all α ∈ Rn satisfying

∑n
i=1 αip(xi) = 0 for all polynomials p of degree at

most m− 1, the quadratic form
∑n

i=1

∑n
j=1 αiαjΦ(||xi− xj||Rd) ≥ 0. In other words, Φd,m is positive

de�nite on the space of functions �orthogonal to� the polynomials of degree at most m− 1.
We can derive a positive-de�nite kernel through the decomposition of Section 2.4. In e�ect, we

can do so by limiting Em to have partial derivatives of order m of �nite energy by projecting out
polynomial functions of each argument. This kernel is not, however, radial (see Figure 6), as it
depends on the choice of basis for the penalty null space � a space of polynomials. Fortunately, only
the reproducing kernel, not the wiggliness seminorm, is a�ected by this choice of basis.

In past examples, our wiggliness penalty � once appropriate conditions were placed to ensure def-
initeness � was expressed using a positive-de�nite kernel and the model space was the corresponding
RKHS. In this case, however, the wiggliness penalty is determined by a conditionally positive-de�nite
function. We must take greater care in identifying the model space, which is not simply the closure
of the span of the representations of evaluation on the index set, as it is with positive-de�nite kernels.

Model space: Suppose m > d/2. Let H = BLm(L
2(Rd)) be the Beppo Levi space44 of order m,

that is, the space of distributions whose weak partial derivatives of total order m are in L2(Rd)45.
Thus,

BLm(L
2(Rd)) = {u ∈ S ′(Rd) |Dαu ∈ L2(Rd), for all |α| = m},

42This reproducing property only works if we place certain restrictions on u. For instance, if we add a harmonic
function h to u, h will be annihilated, and u+ h cannot exhibit the reproducing property. One way out of this pickle
is to not reproduce a single pointwise evaluation but rather a weighted sum of evaluations such that the weighted sum
always annihilates harmonic functions, as in [162], Theorem 10.41.

43See Remark 2.27 and Proposition 2.26. A radial function that yields a positive-de�nite kernel in Euclidean space
of any dimension cannot have zeros. More generally, those that are positive de�nite in a �xed Euclidean space Rd

have a Hankel transform characterization.
44These are often called homogeneous Sobolev spaces. Beppo Levi was not fond of the appellation [106].
45The Beppo Levi spaces, more generally, can take any separable complete space in the place of L2(Rd) [37].
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where α ≥ 0 is a multi-index in Nd with |α| =
∑d

i=1 αi, Dα the corresponding weak partial derivative,
and S ′(Rd) the tempered distributions. The space H is endowed with the semi-inner product

⟨f, g⟩H =
∑
|α|=m

m!

α!
⟨Dαf,Dαg⟩L2(Rd)

=
∑

α1+···+αd=m

m!

α1! . . . αd!

∫ ∞

−∞
. . .

∫ ∞

−∞

∂mf

∂xα1
1 . . . ∂xαd

d

∂mg

∂xα1
1 . . . ∂xαd

d

dx1 . . . dxd ,

with weights chosen so that the seminorm matches our Laplacian-based wiggliness penalty (∆m =∑
|α|=m

m!
α!
Dα). In particular, any member of BLm(L

2(Rd) has �nite seminorm || · ||H. The space
can also be de�ned on the Fourier side, using the multinomial theorem. This penalty is the �nal
term of the usual Sobolev norm, so that we do not penalize as wiggly the polynomials of degree at
most m− 1. Since we apply the penalty throughout Euclidean space, the Beppo Levi space does not
coincide algebraically with the classical Sobolev space, as was the case for the natural polynomial
splines. For example, the a�ne functions are included in the Beppo Levi space of order 2 but not
the corresponding classical (inhomogeneous) Sobolev space.

By a classic result46, the null space H0 of the seminorm penalty Jm,Rd in H = BLm(L
2(Rd)) is

the M =
(
m+d−1

d

)
-dimensional [42] space of polynomials in the variables x1, . . . , xd of total degree at

most m− 1, for m > d/2.
Deny and Lions [37] showed that the quotient space H/H0 is a Hilbert space in which the semi-

norm (54) is a de�nite inner product. This is due to the fact that the compactly supported test
functions C∞

0 (Rd) are not just elements of BLm(L
2(Rd)) � all derivatives of order m are continu-

ous and compactly supported � but dense in BLm(L
2(Rd)) (see, e.g., [162], Theorem 10.40, or [37],

Theorem 2.3). This density allows us to write the semi-inner product on BLm(L
2(Rd)) as follows47:

⟨f, g⟩H = (−1)m
∫
Rd

f(x)(∆mg)(x) dx .

Using the decomposition principle, we can view the Beppo Levi space as an RKHS of slowly growing,
continuous functions.

Null space H0: The null space H0 of the seminorm Jm,Rd is the M =
(
m+d−1

d

)
-dimensional [42]

space of polynomials in the variables x1, . . . , xd of total degree at most m− 1. A �nite-dimensional
space of continuous functions, it is an RKHS. With the most common penalty (52), d = 2 and m = 2,
so we get M = 3; the null space is spanned by {ϕ1, ϕ2, ϕ3}, where ϕ1(x1, x2) = 1, ϕ2(x1, x2) = x1,
and ϕ3(x1, x2) = x2 form the basis of H0. We endow H0 with the following inner product

⟨f, g⟩H0 =
M∑
i=1

f(xi)g(xi), given a unisolvent set U = {x1, . . . , xM} of M =

(
m+ d− 1

d

)
points.

Recall, a unisolvent set in Rd is a set of M =
(
m+d−1

d

)
points such that the only polynomial in

x1, . . . , xd of total degree at most m − 1 that evaluates to zero at each of the points is the zero
polynomial48. In particular, the evaluation functionals at the points in U are linearly independent.
Thus, the unique partition of unity in H0 of U�that is, a set of polynomials p1, . . . , pM such that

46In e�ect, the only slowly growing harmonic functions are polynomials. See [133], on p. 60, the corollary to
Theorem VI. Alternatively, see [162], Lemma 10.38, or [37], pages 366-368.

47See the technical conditions on the density result of [162], Theorem 10.40, and their use in Theorem 10.41.
48Put another way, the least-squares regression of observations at each of the M points in the set U on the M

polynomial basis functions of total degree at most m−1 is unique: the matrix whose ith row and jth column contains
the ith such polynomial evaluated at the jth point in the set is of full rank.
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pj(xi) = δi,j�forms an orthonormal basis of the M -dimensional RKHS H0 (as in Lemma 2.58). With
respect to this basis, we can �nd the representer of evaluation kt ∈ H0 by expanding it on the
basis functions kt =

∑M
i=1 αipi and setting αi = pi(t), so that, for any polynomial f ∈ H0 written

f =
∑M

i=1 βipi, we establish the reproducing property

⟨f, kt⟩H0 =
M∑
i=1

(
M∑
j=1

βjpj

)
(xi)

(
M∑
j=1

pj(t)pj

)
(xi) =

M∑
i=1

βipi(t) = f(t).

Using our orthonormal basis, de�ne the operator P0 : H → H0 by f 7→
∑M

i=1 f(xi)pi. Then for any
f, g in our Beppo Levi model space, some unisolvent set U of M points x1, . . . , xM in Rd, and the
corresponding partition of unity p1, . . . , pM satisfying pi(xj) = δij, we have that

⟨P0f,P0g⟩H0 =
M∑
i=1

(P0f)(xi)(P0g)(xi)

=
M∑
i=1

(
M∑
j=1

f(xj)pj

)
(xi) ·

(
M∑
j=1

g(xj)pj

)
(xi) =

M∑
i=1

f(xi)g(xi).

Wiggly space H1: De�ne H1 to be the space of codimension M whose representative elements
are functions that evaluate to 0 on each point in U . Thus, their projection onto H0 is 0; they are
orthogonal to H0: for each j ∈ {1, . . . ,M}, we have that

0 = ⟨f, pj⟩H0 =
M∑
i=1

f(xi) pj(xi)︸ ︷︷ ︸
δij

= f(xj).

The projection operator P1 = I − P0 from H to H1 that satis�es P1f = f −
∑M

i=1 f(xi)pi thereby
projects out the �polynomial component� of f .

We endow H1 with the inner product

⟨f, g⟩H1 = (−1)m
∫
Rd

f(x) · (∆mg)(x) dx .

By construction, for each f1 ∈ H1, ⟨·, f1⟩H0 = 0; for each f0 ∈ H0, we have, moreover, that ⟨·, f0⟩H1 =
0, since f0 is a polynomial of total degree at most m − 1. Since the smooth, compactly supported
test functions C∞

0 (Rd) are dense in BLm(Rd), we know a reproducing kernel for H1 must satisfy the
following: for all f ∈ C∞

0 (Rd),

(P1f)(x) = ⟨f − P0f, k
1
x⟩H1 = ⟨f, k1x⟩H1 = (−1)m

∫
Rd

f(y)(∆mk1x)(y) dy = (f, (−1)m∆mk1x),

where (·, ·) is the canonical dual pairing. But since obviously, for any f ∈ C∞
0 (Rd),

(P1f)(x) = f(x)−
M∑
j=1

pi(x)f(xi) =

(
f, δ(· − x)−

M∑
i=1

pi(x)δ(· − xi)

)
,

our reproducing kernel k1 must satisfy the following distributional di�erential equation:

(−1)m∆k1x = δ(· − x)−
M∑
i=1

pi(x)δ(· − xi).

80



Thin-plate Splines on the Sphere for Interpolation, Computing Spherical Averages, and Solving Inverse Problems

By superposition, we can give a solution to the above equation in terms of the fundamental solution
Em of (−1)m∆mf = δ

candidate k1x(y): Cx(y) = Em(x, y)−
M∑
i=1

pi(x)Em(xi, y).

The above candidate function does not reside in H1 but it does reside in H if m > d/2. (This does
not hold for Em, with one argument �xed. It is an easy matter to verify that its order-m partials do
not have �nite energy.) Thus, for each �xed x, subtracting out a weighted sum of partial evaluations
of Em (with the weights being a polynomial in x) from y 7→ Em(x, y), which is not in the Beppo Levi
space H = BLm(L

2(Rd)), forms y 7→ Cx(y), which is. This function y 7→ Cx(y) is thus �a polynomial
away� from being in H1. This polynomial di�erence, moreover, can (using a density argument) be
added to either side of the H1 innner product ⟨·, ·⟩H1 (but not both!) without changing its values.
We orthogonally project the function y 7→ Cx(y) onto H1 to form the reproducing kernel for H1

k1x(y) = (P1Cx)(y) =

(
Em(x, y)−

M∑
i=1

pi(x)Em(xi, y)

)
−

M∑
j=1

pj(y)

(
Em(x, xj)−

M∑
i=1

pi(x)Em(xi, xj)

)

= Em(x, y)−
M∑
i=1

pi(x)Em(xi, y)−
M∑
j=1

pj(y)Em(x, xj) +
M∑
i=1

M∑
j=1

pi(x)pj(y)Em(xi, xj).

This reproducing kernel preserves the reproducing property but a�ects the wiggliness penalty in gen-
eral. However, for certain linear combinations of the conditionally positive-de�nite kernel evaluated
on a data set {Em(·, x′i)}ni=1, projecting out polynomials does not a�ect the wiggliness penalty. In-
deed, given n data points {x′i}ni=1 (the

′ distinguishes the data sample locations from our unisolvent
set {xl}Ml=1), for any vector c ∈ Rn such that

∑n
i=1 cipj(x

′
i) = 0 for j = 1, . . . ,M , we have that

Jm,d

(
n∑

i=1

cik
1
x′
i

)
= cTKc =

n∑
i=1

n∑
j=1

cicjk
1(x′i, x

′
j)

=
n∑

i=1

n∑
j=1

cicj

(
Em(x

′
i, x

′
j)−

M∑
l=1

Em(x
′
i, xl)pl(x

′
j)−

M∑
l=1

Em(xl, x
′
j)pl(x

′
i)+

M∑
l=1

M∑
q=1

pl(x
′
i)pq(x

′
j)Em(xl, xq)

)

=

(
n∑

i=1

n∑
j=1

cicjEm(x
′
i, x

′
j)

)
−

n∑
i=1

ci

M∑
l=1

Em(x
′
i, xl)

n∑
j=1

cjpl(x
′
j)︸ ︷︷ ︸

0

−

n∑
j=1

cj

M∑
l=1

Em(xl, x
′
j)

n∑
i=1

cipl(x
′
i)︸ ︷︷ ︸

0

+
M∑
l=1

M∑
q=1

Em(xl, xq)

(
n∑

i=1

cipl(x
′
i)

)
︸ ︷︷ ︸

0

(
n∑

j=1

cjpq(x
′
j)

)
︸ ︷︷ ︸

0

=
n∑

i=1

n∑
j=1

cicjEm(x
′
i, x

′
j) = cTEc = Jm,d

(
n∑

i=1

ciEm(·, x′i)

)
,

where K is the Gram matrix of k1 and E the Gram matrix of Em on our sample locations {x′i}ni=1.
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With a unisolvent set of (n > M) sample points {x′i}ni=1, we assumed that

for all j ∈ {1, . . . ,M},
n∑

i=1

cipj(x
′
i) = 0,

or, equivalently,

c ∈ nullTT , where (T)i,j = pj(x
′
i) and the n×M matrix T has rank M .

We found that this constraint forced the wiggliness penalty of the
∑n

i=1 cik
1(·, x′i) to equal the wig-

gliness penalty of
∑n

i=1 ciEm(·, x′i). This is explained by the fact that any c ∈ nullTT is called a
generalized divided di�erence [69, 118, 158] of order m since it annihilates all polynomials of total
degree less than m, much as �rst di�erences annihilate constant functions, second di�erences linear
functions, and so forth. In particular, the di�erence between cTKc and cTEc is annihilated.

Thus, from our conditionally positive-de�nite kernel Em � whose partial evaluations do not even
reside in H � we have twice �projected out the null space� to compute a positive-de�nite kernel for
H1

k1(s, t) = Em(s, t)−
M∑
i=1

pi(t)Em(xi, s)−
M∑
j=1

pj(s)Em(t, xj) +
M∑
i=1

M∑
j=1

pi(t)pj(s)Em(xj, xi).

With �xed t, then, we have that, modulo a polynomial in s of degree at most m − 1 (i.e., the last
two terms above),

k1t (s) = k1(s, t) ≡ Ct(s) = Em(s, t)−
M∑
i=1

pi(t)Em(xi, s) ([100], equation 19), (56)

so that P1k
1
t is given by the M + 1 terms on the right-hand side of (56) (and P0k

1
t does not a�ect

the wiggliness penalty). If m > d/2, the k1t so de�ned resides in H1 and serves as its representation
of evaluation at t. Indeed, we can con�rm that P0k

1
t = ϕ0(t) is identically zero as Equation (56)

annihilates polynomials of degree at most m− 1. As the n = M + 1 points wi = (t, x1, . . . , xM) are
a unisolvent set, with c = (1,−p1(t), . . . ,−pM(t)), we have a generalized divided di�erence

M+1∑
k=1

cipj(wi) = pj(t)−
M∑
i=1

pi(t)pj(xi) = pj(t)− pj(t) = 0 ([158], equation 2.4.28).

In summary, Em is not a reproducing kernel for H1 because its partial evaluations Em(·, x) for
any x ∈ Rd do not reside in H1; however, it does reproduce function evaluation in H1. With one
argument �xed, it is �a polynomial away� from being in H1. Removing this polynomial forms k1,
which is not radial (see Figure 6) but is a reproducing kernel for H1. For any nondegenerate data
set {x′i}ni=1 of size n ≥M , if we choose c ∈ Rn so that

for j = 1, . . . ,M , the basis function of H0pj satis�es
n∑

i=1

cipj(x
′
i) = 0,

then the wiggliness of
∑n

i=1 αikx′
i
is the same as the wiggliness of

∑n
i=1 αiEm(·, x′i). Moreover, we

have, by the generalized divided di�erence of the right-hand side of Equation (56), that

k1(s, t) = ⟨Cs, Ct⟩H1 .
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Example 2.69. Let d = 2 and m = 2 so that Em(s, t) = ||s − t||2R2 log ||s − t||R2 (we have divided
out a positive constant ηd from Φm,d). Consider the set of points S = {(0, 0)T , (0, 1)T , (0, 2)T}. The
Gram matrix KS

Em
of Em on S is not positive de�nite

KS
Em

=

 0 0 4 log 2
0 0 0

4 log 2 0 0

 ,

a nonzero matrix with zero trace, has both positive and negative eigenvalues.
We de�ne H0 so that we can �project out� the polynomial contributions to Em. The set U =

{x1, x2, x3}, with x1 = (0, 0)T , x2 = (1, 0)T , and x3 = (0, 1)T , is obviously unisolvent (not collinear).
A simple calculation49 shows U has the following partition of unity

p1(x) = ⟨(−1,−1)T , x⟩R2 + 1; p2(x) = ⟨(1, 0)T , x⟩R2 ; p3(x) = ⟨(0, 1)T , x⟩R2 .

In particular, pi(xj) = δij (Kronecker delta) and for all x ∈ R2,

p1(x) + p2(x) + p3(x) = ⟨(−1,−1)T + (1, 0)T + (0, 1)T , x⟩R2 + (1 + 0 + 0) = 1

and
x1p1(x) + x2p2(x) + x3p3(x) = (xT (1, 0)T ) · (1, 0)T + (xT (0, 1)T ) · (0, 1)T = x.

Then we can de�ne an inner product on H0, the space of a�ne functions, for which {p1, p2, p3}
serves as an orthonormal basis

for all a�ne functions f and g on R2, ⟨f, g⟩H0 =
3∑

i=1

f(xi)g(xi),

where {x1, x2, x3} = U . Let f = x 7→ αTx + β be an arbitrary a�ne function; for any x ∈ R2,
kx = t 7→

∑3
i=1 pi(x)pi(t) reproduces evaluation at x

⟨f, kx⟩H0 =
3∑

i=1

f(xi)kx(xi) =
3∑

i=1

(αTxi + β)

 3∑
j=1

pj(xi)︸ ︷︷ ︸
δij

pj(x)

 =
3∑

i=1

(αTxi + β)pi(x)

= αT

(
3∑

i=1

xipi(x)

)
+ β

(
3∑

i=1

pi(x)

)
= αTx+ β = f(x).

For all t ∈ R2, we can de�ne

k1t = k1(·, t) = Em(·, t)− P0Em(·, t) = Em(·, t)−
3∑

i=1

pi(·)Em(xi, t)

= φ(|| · −t||R2)− φ(||(0, 0)T − t||R2)
(
1− (1, 1)T ·

)
− φ(||(1, 0)T − t||R2)

(
(1, 0)T ·

)
−

φ(||(0, 1)T − t||R2)
(
(0, 1)T ·

)
.

49For i and j in {1, 2}, let xj
i (α

j
i ) be the jth element of xi (αi), using 1-indexing. Set p1 = x 7→ αT

1 x+β1; p2 = x 7→
αT
2 x+ β2; and p3 = x 7→ αT

3 x+ β3. Solve the following system for the α and β parameters to recover the partition of
unity α1

1 α2
1 β1

α1
2 α2

2 β2

α1
3 α2

3 β3

x1
1 x1

2 x1
3

x2
1 x2

2 x2
3

1 1 1

 = I3×3.
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where φ(r) = r2 log(r). Moreover, the reproducing kernel for H1 can be evaluated as follows: for all
(s, t) ∈ R2 × R2, with s = (s1, s2) and t = (t1, t2), we compute

k1(s, t) = ⟨(I− P0)ks, (I− P0)kt⟩H1 =

∫
R2

k1t (x)∆k
1
s(x) dx

=

∫
R2

(
Em(x, t)−

3∑
i=1

pi(x)Em(xi, t)

)
∆

(
Em(x, s)−

3∑
j=1

pj(x)Em(xj, s)

)
dx

= Em(s, t)−
3∑

i=1

pi(s)Em(xi, t)−
3∑

j=1

pj(t)Em(xj, s) +
3∑

i=1

3∑
j=1

pi(t)pj(s)Em(xi, xj)

= φ(||s− t||R2) + log 2(t1s2 + s1t2)− (1− s1 − s2)φ(||t||R2)− s1φ(||t− (1, 0)T ||R2)−
s2φ(||t− (0, 1)T ||R2)− (1− t1 − t2)φ(||s||R2)− t1φ(||s− (1, 0)T ||R2)− t2φ(||s− (0, 1)T ||R2).

For each s ∈ R2, the Beppo Levi wiggliness of k1s is the following:

⟨k1s , k1s⟩H1 = k1(s, s) = (2 log 2)s1s2 − 2(1− s1 − s2)φ(||s||R2)− 2s1φ(||s− (1, 0)T ||R2))

− 2s2φ(||s− (0, 1)T ||R2)

If x = xi for some xi ∈ U , the wiggliness is 0. Otherwise it is positive, and it grows quadratically
with the distance to the unisolvent set.

The Gram matrix of k1 (the reproducing kernel for H1) on S is symmetric, positive semide�nite

KS
k1 =

0 0 0
0 0 0
0 0 8 log 2

 .

The conditionally positive-de�nite kernel Em has partial evaluations that do not reside in BLm(L
2(R2));

the associated measure of similarity grows with the Euclidean distance between its arguments. On
the other hand, the positive-de�nite kernel k1, which is derived from Em by �projecting out� the semi-
norm null space, better expresses similarity on the index set. And it serves as a reproducing kernel
for BLm(L

2(R2))/Pm−1. See Figure 6.

We summarize the argument as follows. The only solutions of ∆mE = δ in the Beppo Levi space
H = BLm(L

2(Rd)) with Beppo Levi seminorm ||u||BLm(L2(Rd)) = (−1)m
∫
Rd u(x)(∆u)(x) dx are the

polynomials of degree at most m− 1, which span the null space of the norm. This Beppo Levi space
is a semi-Hilbert space of continuous, slowly growing functions when m > d/2. We can make de�nite
the semi-inner product of the Beppo Levi space by applying an inner product on its null space. We
do this by creating a partition of unity for the space H0 of polynomials of degree at most m− 1. A
reproducing kernel for the Beppo Levi space after projecting out the polynomials of degree m − 1
must satisfy the distributional partial di�erential equation

(−1)m∆mk1x = δ(· − x)−
M∑
j=1

pj(x)δ(· − xi);

i.e. these two sides integrate against test functions identically. The fundamental solution to

(−1)m∆mf = δ

is known to be Em, whose order-m partials do not satisfy the square-integrability criteria for inclusion
in the Beppo Levi space. Projecting out the polynomial component of Em gives a particular solution
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(a) Em, k0, and k1 evaluated pairwise on points placed uniformly
in [−1, 1]2, using the unisolvent set of Example 2.69.

(b) Em and k1 evaluated on y = x, compared to a �xed reference
(0.5, 0.5)T . Clearly k0 and k1 are not radial.

(c) k1 involves a relatively sensible notion of distance on the index
set, though it is in�uenced by proximity to the unisolvent set.

(d) The Beppo Levi wiggliness of the representations of evaluation
at a point vary substantially with the distance of the point to the
unisolvent set. This is troubling as the unisolvent set is chosen
independently of the data we wish to interpolate.

Figure 6: The (normalized) fundamental solution Em of (−1)m∆mf = δ in Euclidean space is a radial function, but not a
positive-de�nite kernel for all d: as a function of the Euclidean distance between its two inputs, it has one zero when d is
odd and two zeros when d is even and thus fails Schoenberg's criterion (the second item of Proposition 2.26). Having �xed
our unisolvent set as in Example 2.69, the function k1 is positive de�nite and exhibits a more sensible notion of distance
on the index set (though highly dependent on the choice of unisolvent set used to de�ne H1!) than does Em, according
to which the similarity between points grows more than quadratically in the Euclidean distance separating them (for larger
distances, with d = m = 2). But it is not radial, as the clouds in (6a) and plots with color gradient in (6b) attest. Values
of the pseudometric (it is indeed pseudo- as there are distinct points�on the unisolvent set�that have distance zero) between
points chosen uniformly at random on [−5, 5]2 are plotted against the Euclidean distance in (6c). The wiggliness of the
representers of evaluation are plotted against their position in (6d), along with the three points of the unisolvent set.
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of the above di�erential equation

k1x = Em(·, x)−
M∑
j=1

pj(x)Em(·, xj).

An argument based on the distributional Fourier transform and approximation by convolution can
show that, when m > d/2, the space H1 is an RKHS of continuous functions that contains k1x and
for which k1x serves as a representation of evaluation at x. Then H = H0 ⊕ H1 is an RKHS with
de�ned inner product

⟨f, g⟩H = ⟨P0f,P0g⟩H0 + ⟨(I−P0)f, (I−P0)g⟩H1 =
M∑
i=1

f(xi)g(xi) + ⟨(I−P0)f, (I−P0)g⟩BLm(L2(Rd)).

Solving the Spline Smoothing Problem. Provided that 2m− d > 0 and that c is a general-
ized divided di�erence for the n scattered data locations {xi}ni=1, we can write the minimum-norm
interpolant u∗

u∗(t) = argmin
u∈BLm(L2(Rd))

n∑
i=1

(u(xi)− yi)2 + λJm,R2(u),

in the form

u∗(t) =
M∑
j=1

djpj(t) +
n∑

i=1

ciEm(xi, t), (57)

where pj is the jth polynomial in the basis of H0, the space of all polynomials in x1, . . . , xd of
maximum degree at most m− 1.

We give pseudocode for the thin-plate splines in Algorithm 7.
Wahba's representer theorem (Proposition 2.60) reduces this empirical risk minimization problem

over an in�nite-dimensional space to �nite-dimensional linear algebra. The complete solution is given
in [100] and summaries may be found in [41, 158, 167].

Remark 2.70 (Them > d/2 constraint). The technical constraint of a well-known Sobolev embedding
theorem, that 2m > d, ensures that the Sobolev space Wm,2(X ) embeds continuously in C0(Rd), the
space of continuous functions on Rd endowed with the L∞ norm. This constraint does the same for
the Beppo Levi space BLm(L

2(Rd)). This means that as functions approach each other in the Sobolev
norm, they approach each other pointwise, and the pointwise evaluation operator is continuous. For
the kernel of the thin-plate splines, this constraint assures the integrability of the reproducing property.
Thus, in high dimensions, to get an RKHS, we need to de�ne wiggliness in terms of high-order partial
derivatives in order to implement thin-plate splines in Euclidean space. This restriction can lead to
poor modeling choices in high dimensions. Strategies for working in high dimensions with a wiggliness
penalty depending on partial derivatives of low total order include dimensionality-reduction techniques
(random projections, t-SNE, UMAP, PCA, etc.), constructing a kernel via tensor product of lower-
dimensional kernels, and approximating the space by a point cloud with a proximity graph structure.

2.7 Thin-plate Splines on the Sphere

Motivated by meteorological applications, Wahba and Wendelberger [154, 156, 158, 161] in the late
1970s and early 1980s considered extending the thin-plate splines (and the periodic splines on the
circle) to the (d−1)-sphere in Rd. (In the present article, we restrict our attention to the 2-sphere S2
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Algorithm 7: An algorithm that �ts thin-plate splines on X = Rd based on the Beppo Levi
space seminorm penalty Jm,Rd . By the representer theorem (Proposition 2.60), the solution
to

u∗ = argmin
u∈H

1

n

n∑
i=1

(u(xi)− yi)2 + λJm,Rd(u)

takes the form

u∗ =
M∑
j=1

djpj +
n∑

i=1

ciEm(xi, ·),

subject to the constraint (56), which guarantees a �nite seminorm energy. This algorithm
recovers c ∈ Rn and d ∈ RM from samples {yi}ni=1, yi ∈ R, taken at scattered values {xi}ni=1,
xi ∈ Rd.
Data: A set of n sample locations {xi}ni=1 in Rd and n corresponding sample values yi ∈ R.
Parameters: A regularization penalty parameter λ ≥ 0 and order m for the seminorm

wiggliness penalty Jm,X . We require that the penalty order m > d/2.
Result: A set of basis function weights c ∈ Rn and d ∈ R specifying the empirical risk

minimizing function u∗.
Compute the n× n Gram matrix E in whose ith row and jth column reposes the value

(E)i,j ← Em(xi, xj),

where

Em(xi, xj) =

{
||xi − xj||2m−d

Rd , if d is odd

||xi − xj||2m−d
Rd log ||xi − xj||Rd , otherwise.

(58)

Form the null-space basis function matrix T = hstack([1n, x[:, 1], x[:, 2] . . .]), where each
column is one of the M basis functions on the data set (xi 7→ 1, xi 7→ xi[1], . . .). This matrix
will be used to ensure c is a generalized divided di�erence of order m (i.e., c ∈ nullTT ).

(T)i,j = pj(xi).

Augment the Gram matrix of Em to form an (n+M)× (n+M) matrix K and set y
accordingly

K←
(
E+ λnIn×n T

TT 0M×M

)
and y ←

(
y
0M

)
;

Solve Kα = y:
α← K−1y;

Return the spline weights c← α[1 : n] and d← α[n+ 1 :];
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in R3; readers interested in thin-plate splines on the sphere Sd−1 for d > 3 are referred to [11].) Using
the analogue of ∆ on the 2-sphere, the Laplace-Beltrami operator (see [105], Section 14, and [14])

∆Su =
1

sin2(θ)

∂2u

∂ϕ2
+

1

sin(θ)

∂

∂θ

(
sin(θ)

∂u

∂θ

)
= csc2(θ)

∂2u

∂ϕ2
+ cot(θ)

∂u

∂θ
+
∂2u

∂θ2
, (59)

where θ ∈ [0, π] is the colatitude50 and ϕ ∈ [0, 2π] the longitude51, they de�ne a penalty functional
analogue of (54) of order m on the 2-sphere as

Jm, S2(u) =


1
4π

∫ 2π

0

∫ π

0

(
∆

m/2
S u

)2
sin(θ) dθ dϕ , m even

1
4π

∫ 2π

0

∫ π

0

((
∂
∂ϕ

(
∆

(m−1)/2
S u

))2

sin2(θ)
+
(

∂
∂θ

(
∆

(m−1)/2
S u

))2)
sin(θ) dθ dϕ , m odd.

(60)

If u is su�ciently smooth, then this matches, via Green's �rst identity and the product rule for
gradients,

Jm,S2(u) = (−1)m
∫ 2π

0

∫ π

0

u(θ, ϕ)(∆u)(θ, ϕ) sin(θ) dθ dϕ . (61)

Rather than searching for a closed form of the Green's function of the mth iterated Laplace-Beltrami
operator on the sphere (as we did for the natural cubic splines or thin-plate splines in Euclidean
space), we use Mercer synthesis (Section 2.2.1). Because the spherical harmonics form a complete
orthonormal system for L2(S2) and are eigenfunctions of the Laplace-Beltrami operator, de�ning
the splines on the �Fourier side��as we did with the periodic splines�simpli�es the derivation. The
resulting kernel exhibits the Funk-Hecke multiplicities (the eigenvalue of ∆S on the eigenfunction Y n

l

depends on the degree l but not the order n; see Proposition 2.40) and is therefore isotropic; we can
accordingly use the results from Section 2.2.3.

2.7.1 A Series Form of the Thin-plate Spline Penalty on the Sphere

By the completeness of the spherical harmonics [78], any function u ∈ L2(S2) can be written

u(θ, ϕ) ∼
∞∑
l=0

l∑
n=−l

(u)l, nY
n
l (θ, ϕ),

where the right-hand side converges to the left-hand side in L2(S2) and the Fourier expansion of u is
given by

(u)l, n = ⟨u, Y n
l ⟩L2(S2) =

1

4π

∫ 2π

0

∫ π

0

u(θ, ϕ)Y n
l (θ, ϕ) sin(θ) dθ dϕ .

It is easy to see that the penalty (as (60) or (61)) can be formally written as an in�nite series
in terms of these Fourier coe�cients, using (18) and the orthonormality of the spherical harmonics.

50According to the �physics convention� of spherical coordinates, the colatitude is π
2 minus the �math convention�

latitude; that is, the colatitude is 0 at the �North Pole��along the positive rectangular z-axis�and π at the �South
Pole�.

51The longitude is the azimuthal angle measured counterclockwise from the positive rectangular x-axis, through
which our reference meridian passes.
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Indeed, for the case (60) with m even,

Jm, S2(u) =
1

4π

∫ 2π

0

∫ π

0

(
∆

m/2
S u

)2
sin(θ) dθ dϕ

=
1

4π

∫ 2π

0

∫ π

0

∆
m/2
S

(
∞∑
l=0

l∑
n=−l

(u)l, nY
n
l (θ, ϕ)

)
∆

m/2
S

(
∞∑
l=0

l∑
n=−l

(u)l, nY
n
l (θ, ϕ)

)
sin(θ) dθ dϕ

=

〈
∞∑
l=0

l∑
n=−l

(u)l,n(l(l + 1))m/2Y n
l (θ, ϕ),

∞∑
l=0

l∑
n=−l

(u)l,n(l(l + 1))m/2Y n
l (θ, ϕ)

〉
L2(S2)

=
∞∑
l=0

l∑
n=−l

(u)2l, n (l(l + 1))m ⟨Y n
l , Y

n
l ⟩L2(S2)︸ ︷︷ ︸
1

=
∞∑
l=0

(l(l + 1))m
l∑

n=−l

(u)2l, n =
∞∑
l=1

(l(l + 1))m
l∑

n=−l

(u)2l, n ,

where the second equality on the last line follows from the fact that ∆S annihilates the DC compo-
nent of a signal. Thus, the DC component of a signal (u)0,0 contributes nothing to the wiggliness.
Intuitively, subtracting a mean from a function should not a�ect the penalty.

We want to be careful to ensure that the penalty Jm, S2(u) is �nite. Proceeding as in Section 2.2.1,
we let H be the space of functions52 u ∈ L2(S2) for which Jm, S2(u) is �nite. De�ne

⟨f, g⟩H = mean(f)mean(g) +
∞∑
l=1

(f)n,l(g)n,l
l−m(l + 1)−m

.

Observe that if u ∈ H has zero mean, then

Jm, S2(u) =
∞∑
l=0

(l(l + 1))m
l∑

n=−l

(u)2l, n = ⟨u, u⟩H = ||u||2H.

2.7.2 The Decomposition H = H0 ⊕H1 for the Thin-plate Splines of Order m

Null space H0: To de�ne a penalty seminorm on the Fourier side, we must de�ne which Fourier
components do not contribute to wiggliness. The natural choice, �rst introduced by Wahba and
Wendelberger in the early 1980s [154, 158, 161], is simply to exclude the DC component, since this
is the only spherical harmonic annihilated by ∆S. Other authors have proposed a richer wiggliness
penalty seminorm null space and therefore di�erent kernel by allowing for certain spherical polynomial
trends to escape penalization [11].

Thus, H0 = span {1}. The space H0 endowed with the inner product

⟨f, g⟩H0 = mean(f)mean(g) =
1

4π

∫ 2π

0

∫ π

0

f(θ, ϕ) sin(θ) dθ dϕ · 1

4π

∫ 2π

0

∫ π

0

g(θ, ϕ) sin(θ) dθ dϕ

is trivially an RKHS. The reproducing kernel for H0 is the constant function 1, since 1 ∈ span{1}
and

∀f ∈ H0 and all x ∈ S2, f(x) = mean(f) = mean(f) · 1 = ⟨f, 1⟩H0 .

52The elements of H are the continuous class representers of equivalence classes of functions that coincide almost
everywhere (with respect to the Lebesgue measure) with continuous functions.
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The orthogonal projection P0 onto H0 consists of extracting the mean, i.e., taking the coe�cient u0,0
of u ∈ H on the DC spherical harmonic Y 0

0 .
Wiggly space H1: In direct analogy with the circular splines, H1 is the space of zero-mean

functions with well-de�ned wiggliness penalty. That is, their Fourier coe�cients decay su�ciently
quickly so that the wiggliness penalty is �nite. Letting

⟨f, g⟩H1 =
∞∑
l=1

l∑
n=−l

(f)n,l(g)n,l
l−m(l + 1)−m

(no DC component),

this means that, writing the Fourier coe�cient of the expansion of u onto the spherical harmonic of
degree l and order n as (u)n,l,

u ∈ H1 ⇐⇒ mean(u) = 0 and ||u||2H1
=

∞∑
l=1

l∑
n=−l

lm(l + 1)m((u)l,n)
2 <∞.

The orthogonal projection P1 onto H1 consists of subtracting out the mean. Thus, functions u ∈ H1

can be written with an expansion of the form

u =
∞∑
l=1

l∑
n=−l

(u)l,nY
n
l (no DC component),

which converges uniformly inH1 by Proposition 2.24 and the results of Section 2.2.353. Consequently,
the penalty Jm,S2 on H1 exhibits de�niteness

u ∈ H1 =⇒ (u)0,0; then if Jm,S2(u) = 0, (u)n,l = 0∀(n, l) ∈ N2 and u ≡ 0,

since all eigenvalues of the Laplace-Beltrami operator ∆S on spherical harmonics of nonzero degree
are strictly positive.

The orthogonality of H0 and H1 is easily shown. For any f ∈ H1, ||f ||2H0
= mean(f)2 = 0. On

the other hand, observe that the constant functions in H0 have no wiggliness; they satisfy

f ∈ H0 =⇒ ||f ||2H1
= 0.

H0 and H1 are therefore orthogonal, and H0 is indeed the null space of the norm || · ||H1 : if f ∈ H
and ||f ||H1 = 0, then f ∈ H0. The norm || · ||H1 is in fact positive-de�nite on H1: in H1, only the
zero function has norm zero.

Noting that lm(l + 1)m are the eigenvalues associated with the spherical harmonics of order l of
∆m

S , using Mercer synthesis (Proposition 2.38), we can obtain the reproducing kernel for H1 by giving
it a Fourier expansion on the spherical harmonics with weights αl = l−m(l+1)−m (see Section 2.2.3).
Using Equation (22), we can identify the reproducing kernel for H1

k3,m(p, p
′) =

∞∑
l=1

(2l + 1)αl

4π
P 0
l (cos(∢(p, p

′))) =
1

4π

∞∑
l=0

2l + 1

lm(l + 1)m
P 0
l (cos(∢(p, p

′))). (62)

By the addition theorem for spherical harmonics (19), with p = (θ, ϕ) and p′ = (θ′, ϕ′),

k3,m(p, p
′) =

∞∑
l=1

l∑
n=−l

(
1

lm(l + 1)m
Y n
l (θ, ϕ)

)
︸ ︷︷ ︸

(k3,m(·,p))l,n

Y n
l (θ

′, ϕ′),

53If m > 1, the sequence {λl,n}∞l=0 given by λn,l = αl = l−m(l+ 1)−m satisfy { 2l+1
lm(l+1)m } ∈ ℓ1, and all the results in

that section hold. If m = 1, the sequence {αl(2l+1)}∞l=0 = { (l+1)2−l2

l(l+1) }
∞
l=0 is in ℓ2 \ ℓ1; as a result, the resulting kernel

k3,1 has a singularity (at p = p′, i.e., cos(∢(p, p′)) = 1).
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and the reproducing property holds

∀f ∈ H1 ⟨f, k3,m(·, p)⟩H1 =
∞∑
l=1

l∑
n=−l

(f)l,n

(
1

lm(l+1)m
Y n
l (θ, ϕ)

)
l−m(l + 1)−m

=
∞∑
l=1

l∑
n=−l

(f)n,lY
n
l (θ, ϕ),

which we know converges uniformly to f(p) for m > 1 by Proposition 2.38, since f has zero mean.
Here the 3 in the index of k3,m indicates that we are working in S2 ⊂ R3 (so that our notation

agrees with that of [11]).
Since H = H0 ⊕ H1, we can sum the two orthogonal subspace kernels to �nd the reproducing

kernel for the space H [3]

km(p, p′) = km0 (p, p′) + k3,m (p, p′) = 1 +
1

4π

∞∑
l=0

2l + 1

lm(l + 1)m
P 0
l (cos(∢(p, p

′))).

Pseudocode for solving smoothing problems on the sphere using this kernel is given in the next
section.

The notorious uselessness of series expression for (62) derives from its slowness to converge.
Fortunately, there are closed-form formulas (in terms of a special function) for k3,m for m = 2, 3, and
in some cases the series de�nition (62) can be used in practice. More details on how to compute this
kernel are given in the following section.

3 Implementing Thin-plate Splines on the Sphere

The chief implementation challenge of the thin-plate splines on the sphere consists in computing the
kernel sum (62) for m = 2 and m = 3. Wahba suggested that we modify their numerators to yield
a topologically equivalent seminorm, more willing to being manipulated into closed form and more
amenable to practical use [154] (later corrected in the erratum [155]).

Keller and Borkowski found that, despite its slow convergence, just 40 terms of the sum (62)
are needed in practice [77]. Indeed, this seems to be the case with the data set presented in the
Example 4.1, as Figure 7g indicates. Nevertheless, closed-form expressions for the kernel simplify
many calculations in practice: from the reproducing kernel of an RKHS H, one can obtain the
representer of any bounded linear functional on H�not just the representers of evaluation at points
on the index set of H�if one can easily apply the bounded linear functional to the kernel's arguments
(see Section 2.5). Additionally, even if 40 terms of a slowly converging series that de�nes the kernel
may be su�cient to represent evaluation functionals for interpolation, many more terms may be
required to recover a bounded linear function, such as a regional mean or derivative, applied to the
interpolant.

While not widely known, there exist closed-form expressions (in terms of the polylogarithm) for
some kernels of thin-plate splines.

3.1 Closed-form Formulas for the Reproducing Kernel of Thin-plate Splines

Closed-form expressions (in terms of special functions) for the thin-plate spline on the sphere have
been found by Wendelberger, Martinez-Morales, and Beatson and zu Castell.
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For the (uninteresting) case of the order-1 splines, it is easy to derive

k3,1(p, p
′) =

1

4π

∞∑
l=1

2l + 1

l(l + 1)
P 0
l (cos(∢(p, p

′))) =
− ln

(
1−x
2

)
− 1

4π
,

where we set x = cos(∢(p, p′)). In his thesis [161], Wendelberger derived formulas for k3,2 and k3,3
(giving them the argument x = cos(∢(p, p′)) rather than two points on the sphere)

k3,2(x) =
1

4π

∞∑
l=1

2l + 1

l2(l + 1)2
Pl(x) =

1− Li2(1) + Li2
(
1+x
2

)
4π

, for |x| ≤ 1 ([161], Corollary 4.4.1);

k3,3(x) =
1

4π

∞∑
l=1

2l + 1

l3(l + 1)3
Pl(x) =

1

4π

(
− 2 + Li2(1) + 2Li3(1)− Li2

(
1 + x

2

)
+

ln

(
1− x
2

)
Li2

(
1− x
2

)
− 2Li3

(
1− x
2

))
, for |x| < 1 ([161], Corollary 4.5.1).

On the boundary, we take the limiting values: as x → +1, k3,3(x) → 2(ζ(3)−1)
4π

and as x → −1,
k3,3(x) → ζ(2)−2

4π
. While we proved that k3,3, like k3,2, is continuous on [−1, 1] in Section 2.2.3, this

closed-form representation of k3,3 is not well-de�ned on the boundary (the product term evaluates
to ∞ · 0 when x = 1).

Here, Lis is the polylogarithm [88, 89] of order s

Lis(z) =
∞∑
n=1

zn

ns
,

which is valid for arbitrary s ∈ C and all z ∈ C for which the sum converges, though we consider
only s ∈ {2, 3} and z ∈ [−1, 1]. Its name comes from a recursive relation, which shows that the
polylogarithm is a repeated integral of lower orders of itself

Lis+1(z) =

∫ z

0

Lis(t)
t

dt , with Li1(z) = − ln(1− z).

This recursive formula comes in handy when using Theorem 4.2 to estimate derivatives or gradients
of a function, with access only to its scattered observations. In our Python-based IPOL demo, we use
the mpmath package [73] to calculate the polylogarithms; the calculation may be sped up by altering
the parameter mp.dps to reduce the number of decimal places of precision.

The Wendelberger formulas for k3,2 and k3,3 agree54 with those independently derived by Beatson
and zu Castell in [11], which are presented in section 6 of that work. De�ning u(x) = 1−x

2
, these

formulas are as follows:

(4π) · k3,2(x) = Li2 (1− u(x)) + 1− π2

6
= 1− π2

6
+ Li2

(
1 + x

2

)
,

(4π) · k3,3(x) = −2Li3 (u(x))− Li2 (1− u(x)) + ln (u(x))Li2 (u(x)) + 2ζ(3) +
π2

6
− 2

= −2 + π2

6
+ 2ζ(3) + ln

(
1− x
2

)
Li2

(
1− x
2

)
− Li2

(
1 + x

2

)
− 2Li3

(
1− x
2

)
.

Using an operator de�ned by Martinez-Morales [96], Beatson and zu Castell found recurrence
relations that facilitate the derivation of some thin-plate splines for higher-dimension spheres (and
for penalties with di�erent null spaces), although advances in special function theory are likely
needed to derive an expression for the sum that produces the order-4 thin-plate spline on S2, that is,
k3,4 [11, 161].

54Up to the factor of 4π, which comes from the addition theorem and which is omitted in Beatson and zu Castell [11].

Simply note that Lis(1) = ζ(s) and ζ(2) = π2

6 .
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3.2 Pseudocode for Thin-plate Splines on the Sphere

Smoothing and interpolation thin-plate splines are found by solving the linear system (38). We
provide pseudocode for thin-plate splines on the sphere in Algorithm 8.

Algorithm 8: Find the {αi}ni=1 weights on the spline basis functions (representers of eval-
uation at the n data points) and mean α0.
Data: A training set consisting of n latitude and longitude values

xi = (θi, ϕi) ∈ [0, π]× [0, 2π) and n samples yi ∈ R, for i = 1, . . . , n. The parameters
consist of a regularization penalty λ ≥ 0 and an order m ∈ {2, 3}. (Those seeking an
interpolator with order m > 3 have recourse to the in�nite series that de�nes k3,m(·).)

Result: A global mean value α0 and basis function weights {αi}ni=1.
Compute the cosine of the spherical angle ∢ between each pair of data points

cos (∢(xi, xj)) = cos(θi) cos(θj) + sin(θi) sin(θj) cos(ϕi − ϕj).

Compute the n× n matrix K1 in whose ith row and jth column reposes the value

(K1)i j ← k3,m (xi, xj) .

(Expressions, in terms of the polylogarithm, for k3,1, k3,2, and k3,3 are given in Section 3.1.)

K←
(
K1 + nλIn×n 1n

1T
n 0

)
.

Solve Kα = y,
α← K−1y.

Recover the {αi}ni=1 and mean value α0:
α0 ← α[−1]
for i in [[1, n]] do

αi ← α[i− 1];
end

4 Using Splines to Compute Integrals and Derivatives and to

Solve Inverse Problems

Many approaches to the problem of computing an average of a quantity over a sphere from scattered
data are in use [66, 67, 150]. Some require latitude-longitude gridding [51, 103] and others more
sophisticated forms of gridding55. Irregular meshes and multiscale approaches are put to use for
global interpolations and averaging of data that are highly nonstationary over the sphere (such as
topography) [54, 67, 72].

While some of these methods possess computational advantages and o�er theoretical performance
guarantees, they can be di�cult to use with scattered data. After all, they reduce what is e�ectively
an interpolation problem (computing a global average requires some understanding of the behavior of
the unknown function between the scattered samples) to regridding�another interpolation problem,

55For instance, grids derived to be equidistributed and to minimize the discrepancy of the grid to the Laplace-
Beltrami operator (an error term based on the Hlawka-Koksma theorem); see [67], Chapter 14.
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often no easier. In practice, many real-world global averaging systems incorporate domain-speci�c
knowledge of how the quantity under consideration varies spatially to map scattered data from the
spherical surface to an interval, where the averaging problem becomes easier. In Example 4.1, we
consider how global measurements of greenhouse gases are produced in practice and compare these
estimates with those produced using thin-plate splines on the sphere.

Example 4.1 (Computing averages of scattered data on the sphere). In this example, we seek to
estimate the global average of CO2 from scattered measurements. On Earth, atmospheric transport
via horizontal winds curtails the variance of greenhouse gases across each parallel. As a result, we
can perform zonal averaging (average scattered measurements over binned latitudes) or �t a curve to
the scattered data values plotted against their latitudes.

The surface integral is thereby reduced to a single integral, which, thanks to a clever choice of
latitude parameterization, can take a particularly simple form. The NOAA GML Carbon Cycle Group
computes global averages of surface greenhouse gas concentrations using calibrated, weekly latitude-
averaged measurements taken from marine boundary layer air [30, 146]. A curve of greenhouse
gas concentration versus sine latitude is �t to weekly measurements and used to compute the global
average. If the concentration T depends only on the latitude θ, or this approximation is justi�ed by
the atmospheric transport model and distribution of measurement sites relative to sources and sinks
of the gas, then we can write

mean(T ) =
1

4π

∫ π/2

−π/2

∫ π

−π

T (θ) cos(θ) dϕ dθ =
1

2

∫ π/2

−π/2

T (θ) cos(θ) dθ =
1

2

∫ 1

−1

T (x(θ)) dx , (63)

after making the substitution x = sin(θ). Accordingly, the global mean can be computed by �tting an
interpolant to the scattered data plotted in sin(latitude) and estimating its 1-D integral56. In the last
�ve rows of Table 2, we apply variations of this technique to all measurements of site monthly averages
of �ask-air CO2 available from the Global Monitoring Laboratory network for the most recent month
available at time of analysis. The scattered data of CO2 concentration vs. sin(latitude) are used to �t
natural cubic splines, Gaussian process regression curves, �rst-order hold curves, and second-order
hold curves to the data, from which the integral (63) is computed. We also use Euclidean thin-plate
splines based on the penalty (52) and thin-plate splines on the sphere to compute global averages
directly over the sphere simply by calculating the global average of the interpolating surface, over
[0, π] × [0, 2π) and over S2, respectively. (In the latter case, the global average is given �for free� in
the form of α0.)

Additional results are given in Figures 7-8.

Because the null space H0 of the thin-plate spline on the sphere is spanned by {1}, the parameter
α0 gives the spherical mean. However, for the planar thin-plate spline in the example above, we
�t the spline surface and then calculate the mean value of that surface over [0, π] × [0, 2π], not
R2. Similarly, the Berkeley Earth Surface Temperature project uses Kriging to �t an interpolating
surface from scattered data on Earth's surface and integrates the interpolant over the land surface
to compute a global average land surface temperature [122]. In many Earth science applications,
spatial correlations of an observed parameter between two points tend to follow known transport
phenomena, such as lateral winds. Consequently, Kriging methods, using this outside knowledge,

56In practice, a low-pass Butterworth �lter of order six is used on resampled data, rather than a spline �t to scattered
data. Individual measurements are, depending on their quality, replaced with 1-10 measurements, equally spaced in
sin(θ), so that a digital Butterworth �lter may be applied without having to numerically solve a di�erence equation
(taken from the transfer function of the order-6 �lter) on scattered data. This process is repeated twice with di�erent
cuto� frequencies. For further details, see [146]. In Table 2, we instead use more standard curve-�tting techniques for
scattered data.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 7: (7a) Scattered data of December 2021 monthly averages of �ask-air CO2 readings at 44 sites in the Global
Monitoring Laboratory network57. (7b)-(7c) Spherical and planar thin-plate spline �ts of these data, respectively, both
of order 2. The spherical thin-plate spline interpolant is more coherent with the geometry of the sphere. The planar
interpolation surface lacks longitudinal periodicity and embarks on a mean-altering but wiggliness-minimizing excursion
beyond the sample points in the top-right corner of (7c). (7d)-(7e) display samples of the same surfaces as in (7b)-(7c),
respectively, but these sample points, uniformly spaced in the plane under an equirectangular projection, are mapped back
onto a sphere, which throws into relief the meridional discontinuity of planar thin-plate interpolating surface. In the top-right
corner of (7c), the interpolating surface, outside the convex hull of the planar control points, loses its curvature. (7f)-(7g)
show the di�erences between the spherical and planar thin-plate splines, trained on all 44 points, in their reconstruction of
a mesh of points between 0◦ E and 60◦ E longitude, and 20◦ N and 60◦ N longitude.

can lead to better global average estimates than thin-plate splines, which encode spatial correlation
via geodesic distance.
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Method Global Average, CO2 (ppm)

Thin-plate (spherical, λ = 0) 416.73

Thin-plate (planar, λ = 0) 414.63

Natural cubic (λ = 0.001) 417.16

Natural cubic (λ = 0.1) 417.26

Kriging (σ = 1) 417.23

Trapezoidal approximation of (63) 415.36

Simpson's approximation of (63) 415.56

Table 2: Computation of the integral in (63) using di�erent scattered data interpolation techniques.

(a) (b)

Figure 8: (8a) A plot of the global mean CO2 of the interpolating surface as a function of the regularization parameter λ
used in constructing it. With low values of λ, the order 2 and order 3 spherical splines interpolate the data and, due to
their di�erent wiggliness penalties, form di�erent interpolating surfaces with di�erent mean concentrations of CO2 to do
so. With high values of λ, the order 2 and order 3 spherical splines agree, as they each yield what is e�ectively an element
of H0 = span {1} due to the excessive penalty imposed on wiggliness. With high, but not excessive values λ, erroneous
averages may be found. (8b) The mean absolute error in interpolation at the data points increases with the regularization
penalty λ, until the interpolation surface is essentially constant.

A theorem from Wahba and Kimeldorf [80, 153, 158] situates this seemingly ad-hoc approach��t
a curve to data using a wiggliness penalty, then apply a functional to the curve�in Wiener-Hopf-
Kolmogorov linear estimation [109] and Gaussian process [76] theory.

Theorem 4.2 (Wahba [158], Theorem 1.5.2). We can estimate the posterior mean value of a bounded
linear functional L0 applied to a signal given scattered data by applying the functional to the spline
�t of the data if we put a Gaussian process prior on the signal.

Speci�cally, suppose Y is a zero-mean Gaussian process over an index set X with covariance
E [Y (s)Y (t)] = k1(s, t) for all (s, t) ∈ X 2. Let

F (s) =
m∑
i=1

θiϕi(s) + b1/2Y (s) for all s ∈ X ,

where the linearly independent, deterministic basis functions ϕi are known and the parameters θi
and b1/2 are unknown but �xed. Suppose we have a collection of n noisy observations Xi of bounded
linear functionals L1, . . . ,Ln applied to F (for instance, evaluation or observation through certain

57The raw data were accessed July 31, 2022, from the GML Data Finder (https://gml.noaa.gov/
dv/data/index.php?parameter_name=Carbon%2BDioxide&type=Flask&frequency=Monthly%2BAverages), and the
positions of and CO2 measurements taken at the 44 sites with available December 2021 monthly av-
erage data are available in one convenient spreadsheet (https://www.kaggle.com/datasets/maxdunitz/
scattered-spherical-data-mean-monthly-co2-dec21/).
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instruments at points in X or means taken over regions in X )

Xi = LiF + ϵi, for i = 1, . . . , n,

where the measurement error is independently and identically distributed: ϵi ∼ N (0, σ2I). Our goal
is to estimate L0F given our observations the X1, . . . , Xn. Let H1 be the RKHS of the kernel k1,
H0 = span {ϕ1, . . . ϕm}, H = H0 ⊕ H1 and P1 be the orthogonal projection from H onto H1. Solve
the spline smoothing problem (identical to (33), with λ = σ2/(nb)) using the representer theorem
(Proposition 2.60)

f ∗ = argmin
f∈H

1

n

n∑
i=1

(Xi − Lif)
2 +

σ2

nb
||P1f ||2H1

.

Then L0f
∗ is the minimum variance, linear, unbiased with respect to θ estimate L̂0F of L0F . That

is,

L0f
∗ = argmin

β∈Rn

E
[
L̂0F − L0F

]2
subject to L̂0F =

n∑
i=1

βixi and E
[
(L̂0F − L0F )|θ

]
= 0.

Remark 4.3. Using this theorem, we can recover and extend some classic quadrature rules. (See [38,
80, 81, 158].) In Example 2.6, the representer of evaluation at x was 1·≤x and the kernel associ-
ated with the RKHS is k(x, x′) = ⟨1·≤x,1·≤x′⟩L2([0,1]) = min(x, x′), which is the kernel of a Wiener
process (Brownian motion) W . Thus, W is the stationary, zero-mean stochastic process, satis�es
W (0) = 0 and has stationary, independent increments (see [135, 158]). Given a set of observations
at t1, . . . , tn, the spline smoothing interpolant is the �rst-order hold, which is easy to see, since, by
the representer theorem (Proposition 2.60), f ∈ span {1·≤t1 , . . . ,1·≤tn}. From Theorem 4.2, we can
see that if we model the prior on a signal f as Brownian motion W , that is, as a Gaussian process
with kernel k(x, x′) =

∫ 1

0
G1(x, u)G1(x

′, u) du = min(x, x′), then our Bayesian posterior mean esti-
mate of

∫ 1

0
f(t) dt given measurements {f(ti)}mi=1 is the area under the spline �t, which corresponds

to the standard trapezoidal rule applied to these measurements. If we model the prior on f as once-
integrated58 Brownian motion, with measurements subject to i.i.d. Gaussian noise, then Bayes's rule
is equivalent to �tting a natural cubic spline to the observed data and integrating that [38, 60].

This theorem, we reiterate, extends beyond Bayesian quadrature (deriving rules to approximate
an integral by taking a linear combination of (noisy) function samples) to encapsulate the use of
arbitrary bounded linear functional evaluations to approximate another arbitrary bounded linear
functional. It associates with each spline smoothing problem a Bayesian estimation problem, where
the penalized RKHS space H1 has the same kernel as the Gaussian process prior's covariance and the
unpenalized RKHS space H0 corresponds to a deterministic process. The duality between RKHS and
Gaussian processes�identi�ed by Parzen [112], Wahba's thesis supervisor, using work from Loève,

58The m − 1th integrated Wiener process Xm−1(t) =
∫ 1

0
Gm(t, u) dW (u), where Gm(t, u) =

(t−u)m−1
+

(m−1)! as de�ned in

Section 2.6.1. Thus, the once-integrated Wiener process is X1(t) =
∫ 1

0
G2(t, u) dW (u) =

∫ 1

0
(t− u)+ dW (u). From the

stationary independent increments property of Wiener processes, it can be seen that the m − 1th integrated process
Xm−1 has covariance

E[Xm−1(s)Xm−1(t)] = E
[∫ 1

0

Gm(s, u) dW (u)

∫ 1

0

Gm(t, u) dW (u)

]
=

∫ 1

0

Gm(s, u)Gm(t, u) dW (u) = k1(s, t),

where k1 is the reproducing kernel for the space H1 (de�ned in (41)) associated with the natural polynomial splines

of order m, whose squared norm is
∫ 1

0
(f (m)(x))2 dx. For the once-integrated Wiener process X1, E[X1(x)X1(y)] =

xymin(x, y)− x+y
2 min(x, y)2 + 1

3 min(x, y)3 (see Algorithm 4).
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Parzen's supervisor�can be used as a con�dence check for our modeling assumptions. In this article,
we started with wiggliness penalty seminorm and identi�ed the corresponding spaces H0 and H1

and the kernel k1; do these choices seem reasonable when framed as probabilistic assumptions?
Additionally, the theorem can aid the design or deployment of measurement instruments to survey
a natural process that can pro�tably be modeled as a Gaussian process.

Important technical clari�cations are given in the note by Angelika van der Linde-Ploumbidis [152];
the posterior variances of the Bayesian estimates of a linear functional given observations of other
linear functionals are particularly in�uenced by modeling assumptions. For example, one can arrive
at di�erent error bars on the value of an integral even if the posterior mean is given by the same
quadrature rule. A comprehensive, modern review of the connections between Gaussian processes
and kernel methods is given in [76]; see also [145].

5 IPOL Demo

The IPOL demo59 takes as input a csv �le with three columns: one called ``latitudes'', which
stores string representations of �oating-point numbers corresponding to each observation's latitude
(degrees in [−90, 90]); one called ``longitudes'', which gives the observations' longitudes (degrees
in [−180, 180)); and one called ``observations'', which stores the real-valued samples to interpo-
late. Alternatively, one can give a png image, which will be interpreted as samples of the grayscale
image value at regularly spaced points under an equirectangular projection, and from which 200
samples will be selected uniformly at random60 to construct the thin-plate spline.

Due to computational time constraints on the demo server, if a csv �le with more than N =
200 samples is provided, the demo randomly selects a subset of N data points and proceeds. As
implemented, the limiting computational step is not the inversion of the modi�ed Gram matrix K
used to solve the linear system (38) but rather the evaluations of the polylogarithm (to 15 decimal
places of precision, using mpmath) and their conversion to �oating point numbers. To speed up the
demo, we precompute the values of Li3(x) and Li2(x) for x ∈ linspace(-1,1,2e6+1) and quantize
cos(γ) to the nearest multiple of 1e-6 before computing Lis(cos(γ)). As with the modi�ed Gram
matrix's inverse, these polylogarithm evaluations can be precomputed in applications with a �xed set
of measurement locations (or, as we have done, an arbitrary set of measurement locations quantized
to �xed precision) and a �xed set of points at which to evaluate the resulting interpolating surface
(or its image after applying a bounded linear operator).

5.1 Comparison with Planar Thin-plate Spline Interpolant

We also output, for the sake of comparison, the result of a thin-plate spline smoother (Algorithm 7)
of order 2 (that is, using J2,R2 in Equation (52)) for the same penalty parameter λ and the image
displaying the pixelwise error between the two methods. We compute the spherical mean of the
interpolating surface f

1

4π

∫ 2π

0

∫ π

0

f(θ, ϕ) sin(θ) dθ . dϕ (64)

Using the order-2 planar thin-plate spline expansion

f(θ, ϕ) = α0 + α1θ + α2ϕ+
N∑
i=1

αi+2 ∥(θ, ϕ)− (θi, ϕi)∥2R2 ln ∥(θ, ϕ)− (θi, ϕi)∥R2 ,

59https://doi.org/10.5201/ipol.2026.451
60We take random vectors in R3, project them on the sphere (if the norm is not too small), and �nd the corresponding

pixel in which it lies.
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we compute the interpolant's spherical mean (64) by noting

1

4π

∫ 2π

0

∫ π

0

α0 sin(θ) dθ dϕ = α0

1

4π

∫ 2π

0

∫ π

0

α1θ sin(θ) dθ dϕ =
π

2
α1

1

4π

∫ 2π

0

∫ π

0

α2ϕ sin(θ) dθ dϕ = πα2,

and precomputing on quantized measurement locations (θi, ϕi) ∈ [0, π]× [0, 2π]

1

4π

∫ 2π

0

∫ π

0

∥(θ, ϕ)− (θi, ϕi)∥2R2 ln ∥(θ, ϕ)− (θi, ϕi)∥R2 sin(θ) dθ dϕ = wi.

The integral (64) may be given as a linear combination of the weights α learned in �tting the spline
with Algorithm 7

1

4π

∫ 2π

0

∫ π

0

f(θ, ϕ) sin(θ) dθ dϕ = α0 +
π

2
α1 + πα2 +

N∑
i=1

wiαi+2. (65)

We use this procedure to output the mean value of the interpolating surface.

5.2 Comparison with Natural Cubic Spline Interpolant of Data Versus
Sine Latitude

Finally, we use a natural cubic spline �t (Algorithm 4) to �t the observations, plotted in one di-
mension, against sine latitude, as in Example 4.1. Note that these sine latitude data are de�ned on
[−1, 1], not [0, 1], as was the case in Algorithm 4. We adapt that algorithm with a reparameteri-
zation; see Remark 2.62 for details. The basis functions of H0 are mapped to 1 and 1 + x and the
kernel of the space of wiggly functions

k1[0,1](x, y) = xymin(x, y)− x+ y

2
min(x, y)2 +

1

3
min(x, y),

becomes

k1[−1,1](x, y) = xy(min(x, y) + 1)− x+ y

2
(min(x, y)2 + 1) +

1

3
(min(x, y)3 + 1).

Integrating this natural cubic spline �t, we estimate the global mean of the inputted data. In some
use cases, this is actually quite reasonable: horizontal winds ensure roughly constant measurement
values at each latitude parallel; if this assumption does not hold, this approach to estimating the
global mean may still be of use if the measurements are su�ciently rich and varied that the spline
�t approximates the average observation value at each (sine) latitude parallel.

We precompute the area under the representers of evaluation at xi of the natural cubic spline on
[−1, 1], ∫ 1

−1

k1(x, xi) dx =
1

24
x4i −

1

6
x3i +

1

4
x2i +

7

6
xi +

17

24
,

so that the integral (63) can be computed from the natural cubic spline �t u term by term

u(sin(θ)) = α0 + α1(1 + sin(θ)) +
N∑
i=1

αi+1k
1(sin(θ), sin(θi)),
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and hence

mean(u(sin(θ))) = α0+α1+
N∑
i=1

αi+1

2

(
1

24
sin(θi)

4 − 1

6
sin(θi)

3 +
1

4
sin(θi)

2 +
7

6
sin(θi) +

17

24

)
. (66)

The demo places each spherical mean estimate on the image corresponding to the interpolant used
to produce the estimate.

6 Discussion

6.1 Challenges

Kernel methods for interpolation, smoothing, and solving inverse problems based on scattered data
are useful only insofar as (38) can be solved in practice, which means their scalability is limited by the
size and conditioning of the Gram matrices (whose size grows quadratically with the number of data
points). While solving (38) clearly poses challenges for machine learning practitioners working with
large data sets, those seeking, for instance, to interpolate or compute averages of sparse measurements
taken over a sphere or region thereof�a common task in geosciences [67] and graphics [23]�are likely
to arrive at a solution to (38) without di�culty.

Classic techniques for dealing with large ill-conditioned Gram matrices include taking care to
choose an appropriate solver [59] for (38), using only a random subset of the data, and �nding low-
rank approximations of the Gram matrix. For the latter task, the Nyström method is a common
choice and implemented in popular software packages such scikit-learn [53, 113]. Wood suggested
using the Lanczos algorithm, though this too poses numerical stability challenges [167].

New techniques for �nding low-rank approximations of n × n Gram matrices or k × k Gram
matrices, with k′ < n, that perform well are contributing to a resurgence in the popularity of RKHS
interpolation methods, such as Gaussian process interpolation [9, 28, 33, 115, 165]. For instance,
rather than forming a Gram matrix (K)i,j = k(xi, xj) from a data set {xi}ni=1 and {yi}ni=1, one uses
automatic di�erentiation to choose a set of control points {x′j}k

′
j=1 and {y′j}k

′
j=1�not necessarily among

the data one has access to�such that spline �t learned by solving (38), namely

σ(x) =
m∑
j=1

djϕj(x) +
k′∑
i=1

cik
1(x, x′i),

to these control points minimizes some loss on the data set one has access to. The Gaussian process
literature calls the sample locations found via such an approach �inducing variables� [65]. In practice,
it is much easier to optimize over {x′i}k

′
i=1, {y′i}k

′
i=1, and λ than {x′i}k

′
i=1, c, and d, due to the greater

interpretability (unless K is exceptionally well-conditioned more reasonable gradients) of the former.
When trying to �t splines to many examples, it can be more e�cient to use neural networks to learn
the inducing points from the examples61.

Such techniques are useful not just after data acquisition but can be used prospectively, with
domain knowledge or simulated data, to optimize the design of instrument arrays or the deployment
of sensors in the �eld. When considering the problem of estimating an interpolating surface of
greenhouse gas concentrations across a spherical model of Earth, knowledge of areas with signi�cant
greenhouse gas exchange or high variance can be used to identify new sensor locations.

61We update Isaac Jacob Schoenberg's [130] dictum that �polynomials are wonderful even after they are cut into
pieces, but the cutting must be done with care�. The cutting can be done with keras.
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6.2 Extensions

Discontinuities�for instance, along coastlines, mountain ranges, or fronts�can be encoded via the
decomposition principle, explained in detail in [157]. Other forms of nonlinearities�present in the
observation functionals in (33), rather than the native space H�are discussed in [110, 157, 169].
Convex constraints such as monotonicity can be incorporated into the smoothing problem (33) with
techniques such as [10, 166].

Splines for vector-valued functions on the sphere have also been considered; see [138] for an
application to estimating Earth's magnetic �eld based on scattered measurements. Moreover, splines
have been adapted to sphere-like surfaces, most often using mesh methods in practice, though a wide
variety of techniques are available [2, 35, 45, 92].

6.3 Other Splines on the Sphere

Of course, thin-plate splines (and Wahba's approximation thereof) are far from being the only splines
from which scattered data �tting applications can pro�t. A veritable zoo of such functions can be
found in Chapter 10.6 of [78], along with further development of RKHS theory, as well as in [43]. The
characterization and study of positive-de�nite [129] and strictly positive-de�nite functions [171, 26]
on the sphere remains an active research area, with many applications to machine learning (as these
are the correlation functions of isotropic Gaussian processes) [12, 56, 71, 108, 170].

6.4 Other Implementations

Wood has implemented several splines on the sphere, including the thin-plate �pseudo-splines�
in [154], for the R programming language in the library mgcv [168].
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