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Abstract

Recently, the field of image and video denoising has undergone a revolution
thanks to deep learning approaches. These methods outperform traditional model-
based approaches in almost every image/video restoration problem. In this paper,
we propose an implementation of a recent approach proposed for video denoising,
namely Efficient Multi-stage Video Denoising method (EMVD) [22]. The method
has a lightweight and interpretable architecture consisting of three stages: temporal
fusion, denoising, and refinement stages. We reproduce this method and propose
three modifications aimed at improving its performance. (1) We apply motion
compensation to make better use of temporal redundancy, (2) we apply variance
stabilization to help this lightweight network deal with signal-dependent noise and
(3) we decouple occlusion detection and fusion weights prediction. We evaluate the
original method and the proposed modifications on a task of raw video denoising.

Keywords: Video denoising, recurrent methods, convolutional neural network

1 Introduction

Digital images/videos have reached a high importance in our world. They are widely
used in many fields, like computed tomography (CT) image for medical purpose, SAR
or optical image for remote sensing purpose, and they are also ubiquitous in our daily
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life due to the popularity of smartphones. Digital images/videos are inevitably corrupted
by the nature of imaging process, like the photon counting. This results in strong noise
which reduces the visual quality and limits further usage of images/videos, specially in
low light imaging conditions. As a consequence, it is necessary to perform restoration
techniques to improve the quality of images/videos. Denoising, aiming at estimating the
true value at every pixel, is one of the most important steps among the whole pipeline,
whose outputs have a direct effect on the rest of the pipeline. In the last few past decades,
many methods have been proposed for this denoising purpose. The classical approach for
addressing denoising problems is based on mathematical modeling of signal and noise.
Research in the past decades have produced many elegant models which are capable of
obtaining good results. More recently, along with the development of the computational
power of GPUs, models based on deep neural networks emerged as the new state of the
art, drawing almost all the attention of the community.

1.1 Related works

Image denoising Image denoising is a long-standing problem and there are a variety
of methods that have been proposed for addressing it before deep learning, for example,
PDE and variational methods [6, 25], transformed domain methods [9], and patch-based
methods [3, 10]. The latter give good denoising results and were the state of the art
for more than a decade, albeit sometimes demanding of huge computational cost [16]. In
recent years, methods based on neural networks have outperformed model-based method,
which brought a revolution to this field. Probably the first neural network based methods
that gave competitive results was proposed in [5], where the authors used a multilayer
perceptron trained to denoise 17×17 patches. This is a heavy architecture, using fully
connected layers with 2048 hidden features, which makes it computationally demand-
ing. DnCNN [31], as well as FFDnet [32] which is an improved version of DnCNN, have
achieved great success in this domain since they are proposed in 2017. They adopted con-
volutional layers, ReLU activation and batch normalization, residual learning, which are
common techniques in network structure designing. Recently, the popular Transformer
has gained much attention in computer vision community, and it has also been exploited
for image processing [20,21].

Video denoising In the context of video denoising, making use of temporal redun-
dancy is of critical importance. This characteristic of videos should facilitate denoising
performance compared with single image denoising, as it provides additional information.
To enforce temporal consistence in final denoising results, two factors are usually consid-
ered: use 3D spatio-temporal receptive fields and/or use motion compensation to better
exploit temporal redundancy. In fact, algorithms for video processing take advantages of
them explicitly or implicitly.

Deep learning based methods have been applied to video denoising since 2016 when
in [7] the authors proposed to address video denoising adopting recurrent neural network.
But it was not until very recently that they became the state of the art. In recent years,
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Figure 1: non-Recurrent v.s. Recurrent. A non-recurrent method processes many frames
(past and future) to denoise reference frame, while a recurrent method takes the previous
output, together with current noisy frame as input.

several convolutional neural network (CNN) based methods have been proposed, e.g.
VNLnet [11], DVDnet [27], ViDeNN [8], fastDVDnet [28] and VRT [20]. These methods
either take several consecutive frames as input, or search for similar patches among a
large temporal-spatio volume, which requires a lot of computational resources.

Recurrent methods Efficiency is a key aspect for practical video restoration. In
spite of their good performance, deep learning based methods require a large number
of operations per pixels, which becomes prohibitively for their application in real case
scenarios. Yet, methods in most current existing literature focus on quality rather than
efficiency. Traditional approaches for real-time applications often rely on recurrence:
a recurrent method receives as input its own output for the previous frame or more
generally, an encoding of it, see Figure 1. This allows to incorporate information from
past frames, without incurring in excessive cost [1, 14]. This can reduce computational
cost and memory cost. Moreover, by incorporating past frames, temporal consistency is
enforced in a natural and direct way. Recurrent CNNs for video processing have attracted
attention [18,26], but most of them focused on super resolution rather than denoising.

The first recurrent CNN for video-resolution was proposed in [17], where a heavy set of
temporal connections was used, including forward and backward subnetworks. In [15,26],
the authors proposed to use recurrence for video super-resolution. A small difference
between these two is that [26] used frame-recurrence, while [15] proposed to exploit an
encoding of the frame, namely a hidden state. In addition to exploit recurrence differently,
there are also other strategies used and worth mentioning. For example, in [18], the
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authors use recurrence to conduct super-resolution in a streaming way similar to [15,26].
Moreover, they proposed to decompose each frame into two components, the detail and
structure components, and adapt different hidden state to each reference frame. This
strategy also plays a role in the method we want to analyse.

Recurrent methods are also applied to other video recognition tasks, like [12, 13] for
action recognition and image captioning. But rarely can they be found in video denoising,
and most of the existing methods are still prohibitively complex for real-time application.
An exception is the frame-recurrent approach proposed in [22]: Efficient Multi-Stage
Video Denoising (EMVD). It has a very low computational cost and and still reports a
performance comparable to other state-of-the-art methods.

In this work we propose an implementation of EMVD, and study its performance. We
also proposed to improve it through three modifications.

Noise model. Most methods in signal processing assume additive white Gaussian noise
(AWGN). While it is true that central-limit theorem supports the Gaussian distribution
of random errors, data acquired in real applications can seldom be described with good
approximation by AWGN model.

Two main sources of noise in imaging process are shot noise and thermal noise, which
lead to a Poisson-Gaussion model. Denoting clean and noisy images as y and z respec-
tively, this model can be approximated by the following signal-dependent heteroskedastic
Gaussian model:

z(x) = y(x) + σ(y(x))η(x), (1)

where σ(y(x)) =
√
ay(x) + b and η(x) ∼ N (0, 1). In this approximation, z|y follows a

Gaussian distribution, i.e. N (y(x), σ2(y(x))).

The main difference between these model and AWGN is that here the noise variance
is not a constant but depends on signal. The noise model for video denoising introduces
an additional temporal index, which is formulated as follows:

zt(x) = yt(x) + σ(yt(x))ηt(x), (2)

where x ∈ X ⊂ N2 denotes the spatial position in frame, and t ∈ T ⊂ N denotes the
temporal index of the frame in a video sequence.

In this paper, we focus on RAW image processing. In practice, the image acquired
by the sensor is different from the processed RGB image that we see. Each pixel in
the sensor can only capture a single color channel. Half of the sensor pixels capture
only green channel, a quarter only the red channel and the remaining quarter the blue
channel. Pixels for three different color in the sensor are arranged in a specific pattern
called Bayer pattern. Images of this type are called mosaicked images. For each pixel,
only one color is known, so we need to find other two missing colors. This problem is
called demosaicking. We will store an W × H raw image as a W/2 × H/2 image with
4 channels which is sometimes called a packed raw. Two channels correspond to the red
and blue pixels in the Bayer pattern and the remaining two green pixels.
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Figure 2: The architecture of the EMVD method (single scale version).

2 Review of EMVD method

The EMVD method is composed of 3 convolutional networks, which correspond to
3 processing stages: temporal fusion, pre-denoising and refinement. The input data is
mapped into a transformed domain by a color and a frequency trainable transforms. The
structure of a single scale EMVD is illustrated in Figure 2

2.1 Trainable transforms

Each noisy frame zt is pre-processed by linear orthogonal trainable color and frequency
transforms. They are both implemented as convolutional operations. The kernel for color
transform Tc is a matrix M ∈ RC×C , where C is the number of channels (4 for a packed
RAW frame). It aims at decorrelating the color to luminance-chrominance representation.
The inverse operation is also a convolution with kernel initialized asM ′ =MT . The initial
value is as follows, based on the opponents transform [4]:

M =


0.5 0.5 0.5 0.5
−0.5 0.5 0.5 −0.5
0.65 0.2784 −0.2784 −0.65
−0.2784 0.65 −0.65 0.2784

 (3)

The frequency transform Tf decorrelates the input frequencies into four half-resolution
components: low-pass LL subband and three high-pass LH, HL, HH subbands. At the
output of the network the inverse transforms are applied. Four n × n kernels which
are the outer product of some chosen wavelet decomposition and reconstruction filters,
denoted by ψ and ϕ respectively. In our case, we use Haar transform as initialization,
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Algorithm 1: EMVD: recurrent method for video denoising

Input: Noisy frames {zt}Tt=0, Optical flows {vt}Tt=0

Output: A sequence of estimation {ŷt}Tt=1

1 Function EMVD(zt, ȳt−1):
2 zt ← CT(zt) ; // color transform Tc
3 zt ← FT(zt) ; // frequency transform Tf
4 σ̂2

t ← σ2(zt|LL);
5 γt ← FCNN(|zt|LL − ȳt−1|LL|, σ̂2

t ) ; // compute fusion weight

6 ȳt ← zt(1− γt) + ȳt−1γt ; // update temporal fusion

7 σ̄2
t ← γ2t σ̄

2
t−1 + (1− γt)2σ2

t ; // and its variance accordingly

8 ỹt ← DCNN(ȳt, xt|LL, σ̄
2
t ) ; // compute pre-denoising result

9 ωt ← RCNN(ỹt, ȳt, σ̄
2
t ) ; // compute refine weight

10 ŷt ← ȳtωt + ỹt(1− ωt);
11 ŷt ← invFT(ŷt) ; // inverse color transform T −1

c

12 ŷt ← invCT(ŷt) ; // inverse frequency transform T −1
f

13 return ŷt

14 ȳ0 ← CT(z0) ; // Initialize temporal fusion

15 σ̄2
0 ← σ(ȳ0|LL) ; // and variance of it

16 for t← 1 to T do
17 ȳt−1 ← warp-bicubic(ȳt−1,vt−1) ; // warp temporal fusion to current

noisy frame

18 ȳt−1 ← FT(ȳt−1) ; // frequency transform Tf
19 ŷt = EMVD(zt, ȳt−1);
20 ȳt ← invFT(ȳt) ; // inverse temporal fusion for next warp
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and corresponding filters are as follows:

ϕ =

(
ϕL

ϕH

)
=

(√
2
2

√
2
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2
2
−
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2
2

)
∈ R2×2,

ψ =

(
ψL

ψH

)
=

(√
2
2

√
2
2√

2
2
−

√
2
2

)
∈ R2×2

To enforce the invertiblity of the transforms during training, two additional loss terms
are added (the complete loss will be described later):

Lc = ∥MMT − IC∥2F , Lf = ∥ψϕT − I2∥2F . (4)

2.2 Temporal fusion

EMVD achieves temporal denoising by keeping running frame average ȳt and its cor-
responding variance map σ̄2. Mathematically, it can be represented as:

ȳt = ȳt−1 ⊙ γt + zt ⊙ (1− γt), (5)

σ̄2
t = σ̄2

t−1 ⊙ γ2t + σ2
t ⊙ (1− γt)2, (6)

where ⊙ denotes the element-wise product. The average weight γt satisfies γt(x) ∈ (0, 1)
for any given pixel position x. It is given by a fusion CNN (denoted as FCNN in the
following), which takes as input the absolute value of the difference between the LL
subbands of zt and previous average ȳt−1, together with the input’s noise variance map
σ2
t :

γt = FCNN(|zLL|t − ȳLL|t−1|, σ̂2
t ), (7)

where the estimated variance of input noisy frame zt, computed as σ̂2
t = σ2(zLL|t). To

ensure fusion weights between 0 and 1, the output layer is followed by a sigmoid activation
function Sigmoid(z) = 1

1+e−z .

The FCNN is expected to complete two tasks: 1) detecting miss-alignments between
the two frames; 2) predicting reasonable weights for temporal averaging. The fusion
weights allow noise reduction at locations where zt and ȳt−1 are well aligned, and prevent
averaging if changes are detected. In these locations, the output should coincide with the
noisy input zt. We initialize the previous fused image with the first noisy observation,
i.e. ȳ0 = z0.

2.3 Pre-denoising

The second stage is called pre-denoising, where a spatial denoising is applied to the
temporal fusion ȳt. The pre-denoising is given by a denoising network, called DCNN,
which takes as input the temporal average and its variance map, plus the LL subband of
the noisy frame:

ỹt = DCNN(ȳt, zLL|t, σ̄
2
t ). (8)
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Here ỹt is the pre-denoised image, and σ̄2
t is the noise variance of the temporal fusion ȳt.

The LL subband of current noisy frame zLL|t is also included as an input because it is
expected for the network to acquire valuable structure information from this unprocessed
input. The update of σ̄2

t is given as in (5).

2.4 Refinement

The refinement stage performs a convex combination between the pre-denoised frame
ỹt and the temporal fusion ȳt. The weights are computed by a refinement network RCNN:

ωt = RCNN(ỹt, ȳt, σ̄
2
t ) (9)

ŷt = ȳt ⊙ ωt + ỹt ⊙ (1− ωt). (10)

As with the fusion network, a sigmoid activation function at the end of the network
ensures that the weights are between 0 and 1. Since the image obtained after the pre-
denoising stage could lose details and generate some artifacts(specially because the goal
is to use shallow networks), this stage aims at adding high-frequency information back
from the fused image ȳt.

Together with the fusion expression (5) in the processing pipeline, the output ŷt can
be expressed as follows

ŷt = ȳt−1 ⊙ γt ⊙ ωt + zt ⊙ (1− γt)⊙ ωt + ỹt ⊙ (1− ωt).

This shows that the final output is a convex combination of the noisy frame, the previous
temporal average and the output of the denoising network. This also provides a way to
justify which component plays the most important role by investigating how much its
output counts in the final output.

2.5 CNN blocks

Following the author’s suggestion on efficiency, we adopt a simple structure, where
in default, all three networks are of three convolutional layers, with 16 hidden features.
See Figure 3. Except for the last convolutional layer, other two are followed by a ReLU
activation function. The output layer of fusion and refinement are followed by a sigmoid
function, to ensure the values of weight are mapped to [0, 1], while there is no activation
function applied to the output layer of denoising network.

2.6 Multiscale structure

The Haar transform can also be applied to the LL subbands of transformed images. In
that way, we get an architecture with multiscale structure, see Figure 4. Results obtained
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Conv 3×3
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Conv 3×3
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Output

Output
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Figure 3: CNN blocks used in EMVD. Output layers of fusion and refinement are acti-
vated by a sigmoid, while no activation function applied to the output of denoising.

at this coarser scale can be used as guides for the computations in the upper scale. In
the EMVD method, pipelines at coarser scale are similar to the finest scale, except for
excluding the refinement stage. The inputs of the coarser scale include the LL subbands
of both recurrent fused feature and current noisy frame, and the output are fusion weights
and pre-denoised frame after inverse Haar transform. Fusion weights are upsampled and
concatenated to the inputs of fusion stage at an upper scale, and the denoised frame is
used as a guidance in the denoising stage of an upper scale. Denoting these two by γco

and ycoLL, we have new equations for fusion and denoising at a finer scale:

γt = FCNN(|zLL|t − ȳLL|t−1|, σ̂2
t ) =⇒γt = FCNN(|zLL|t − ȳLL|t−1|, σ̂2

t , γ
co)

ỹt = DCNN(ȳt, zLL|t, σ̄
2
t ) =⇒ỹt = DCNN(ȳt, zLL|t, σ̄

2
t , y

co
LL).

The EMVD with multi-scale structure is shown in Figure 4. The shaded part shows the
forward pass at a lower scale.

3 Improvement on EMVD

3.1 Motion compensation.

Since the temporal fusion (5) is just a temporal average, a good frame alignment is
essential to attain good results. This is especially true for videos with camera motion. In
our experiment, we use the REDS dataset [23], which is captured by a hand-held camera,
resulting in a lot of motion in these sequences. We choose the TV − ℓ1 method [24, 30]
to compute the optical flow between the noisy frames t and t− 1, which we use to warp
the previous temporal average ȳt−1 and align it to zt. This will enable us to make better
use of temporal redundancy.
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Figure 4: EMVD multiscale network architecture. The shaded part shows the work
pipeline in coarser scale.

3.2 Variance stabilization.

The noise in the RAW video can be approximated as a heteroscedastic Gaussian with
signal-dependent variance. A variance stabilizing transform (VST) can transform this
noise to a standard AWGN. VSTs are a common way to adapt a AWGN denoiser to real
noise. With learning-based methods, VSTs are not necessary anymore, as it has been
shown that the networks can handle signal dependent noise. However, since the networks
in EMVD are rather small, stabilizing the variance might help. The procedure of applying
VST involves three steps: First, transform the noisy data by a nonlinear VST which is
designed for a specific noise model. Then, we denoise such transformed data. Finally, we
apply an inverse VST to the denoised data, obtaining data in the original range.

For the signal-dependent Gaussian noise we assume nt(x) ∼ N (0, ayt(x) + b), and we
use the following VST: f(x) = 2

a

√
ax+ b. After the VST, we have approximately AWGN

with unit variance. We invert the VST with the algebraic inverse f−1(x) = ax2

4
− b

a
. This

inverse is known to introduce a bias for dark values [?], but since the bias is deterministic,
the network can learn to compensate it.

3.3 Decoupling occlusion detection and fusion weights predic-
tion.

In the original paper [22], the fusion network FCNN aims at estimating the combina-
tion weight between temporal fusion and current noisy. These weights fulfill two goals:
(1) They have to avoid using the motion compensated ȳt−1 in locations where the align-
ment failed, and (2) in the regions where the alignment is accurate, the weight has to be
chosen to determine an optimal temporal fusion. For the latter, it is reasonable to give
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as input to the fusion network both the estimated variances of the current noisy frame
σ2
t and of temporal fusion σ̄2

t−1. Indeed, for a pixel x, and assuming that ȳt−1(x) is an
unbiased estimatior of yt−1(x), the ratio

V(zt(x))
V(ȳt−1(x)) + V(zt(x))

leads to an optimal convex combination in the MSE sense.

We tried two ways to exploit the variance of temporal fusion σ̄2
t−1 described in the

following.

As a direct input. The fusion weights will be predicted as follows:

γt = FCNN(|zLL|t − ȳLL|t−1|, σ̂2
t , σ̄

2
t−1), (11)

and the update of variance of fusion keeps the same:

σ̄2
t = σ̄2

t−1(1− γt)2 + σ2
t γ

2
t . (12)

However, it is problematic to add σ̄2
t−1 as a direct input to FCNN: the obtained fusion

weights γt suffered from severe artefacts – mostly horizontal and vertical short black line
segements. Moreover, once these artifacts appear, they remain for several frames and
move consistently with the motion in the video. This can be explained from equations (13)
and (12). The FCNN tends to give small value to γt where the fusion variance σ̄2

t−1 is
relatively high. This is consistent with the equation for the optimal weights. Once there
is a low value in γt, it will output σ̄

2
t with a high value, which in turn will create a low

fusion weight when processing the next frame. Since the dark artefacts sometimes form
periodic arrengements, We tried to regularize this fusion weight image with a TV (Total
Variation) loss. However, the artefacts are always noticeable.

As a multiplicative correction. Instead of giving σ̄2
t−1 as a direct input FCNN, we

propose to decouple the miss-alignment detection from the fusion weight computation.
To that aim, we first run the fusion network as in [22] and then we multiply its output
by an the optimal fusion weights. Mathematically, the fusion weights will be predicted
as follows:

γocct = FCNN(|zLL|t − ȳLL|t−1|, σ̂2
t ). (13)

γ̄t−1 = γocct ×
σ2
t

σ̄2
t−1 + σ2

t

(14)

γt = 1− γ̄t−1 (15)

The reasoning is that in this way the FCNN can focus on producing a (approximately)
binary miss-alignment map. When there are no occlusions, we apply the weights that
minimize the MSE of the temporal fusion. However, since ȳt is not the final output of
the network, it might be that the best weights for the network are not those of variance
ratio (Eq. (14)). If this optimal value is smaller than the variance ratio, the FCNN can
correct it via the product with γocct .
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4 Experiments

4.1 Dataset

The dataset we use in the training is from the REDS [23] public dataset. The original
videos are RGB captured at 30 frames per second. This dataset consists of 270 sequences
with 90 frames of size 1280 × 720 pixels, split into 240 sequences for training and 30 of
them for testing and validation. To simulate RAW data, we use an unprocessing pipeline
similar to that of [2] . This unprocessing consist in inverting the main steps of an image
camera pipeline:

1. inverse tone mapping

2. inverse Gamma curve

3. inverse color matrix

4. inverse white balance

5. apply Bayer pattern.

After unprocessing, we add noise of two levels to the RAW sequences, using noise model
which are estimated from the CRVD dataset [29], ISO3200 and ISO12800. In our exper-
iments, each frame is stored in the packed RAW way, in which a W × H raw image is
stored as a W/2×H/2 image with 4 channels, one channel for red, one channel for blue,
and the other two for green (packed RAW images).

4.2 Training

Loss function: The total loss is the sum of three parts: loss for color transform Lf ,
loss for frequency transform Lc, and L1 loss as image reconstruction criterion in the
training Lim. Since our network is recurrent, we need to apply it over several frames
in order to train it, and backpropagate the gradient from the last output throughout
all the applications of the network. We use the term unrollings to each application of
the network during training. The final loss is a weighted sum of outputs produced for
each unrolling. Mathematically, the image reconstruction loss for n unrollings can be
formulated as:

Lim({ŷt}t=1,...,n) =
n∑

t=1

wtℓ(yt, ŷt), ℓ(yt, ŷt) = ||yt − ŷt||1 (16)

where
∑n

t=1wt = 1, yt and ŷt stand for the i-th clean and denoised frame, respectively.
To speed up the training, we use the following strategy: we put 100% weight on the first
unrolling in the first 20 epochs, i.e.

w1 = 1, wi = 0,∀i ̸= 1.

In this way, only the first unrolling will be penalized:

Lim({ŷt}t=1,...,n) = ℓ(y1, ŷ1),

12



meaning that the network is trained as a non-recurrent network. In the next 5 epochs,
we use a gradual transition weight schedule, increasing the weights on the last unrolling.
The final distribution of weights puts 90% of the weights on the last unrolling, and the
remaining 10% weights is split on the rest unrollings uniformly, i.e.

wt =
1

10(n− 1)
, t = 1, 2, . . . , n− 1, wn =

9

10
.

The reason why we prefer putting most of the weight on the last unrolling is that, the
network will be applied to a large number of frames to denoise in the testing. Though it
is never trained for that number of unrollings. The last unrolling is assumed to be the
closest one to the steady state operation of the network which is mostly used in testing.

We found that the pre-denoising network may not learn what it is supposed to: it
may conduct a residual learning, other than a spatial denoising. To avoid this unex-
pected result, we add L1 loss to the output of pre-denoising network. Thus the image
reconstruction loss reads:

Lim({ỹt, ŷt}t=1,...,n) =
n∑

t=1

wt(||yt − ŷt||1 + λ||yt − ỹt||1). (17)

Dataloader Reading from the hard-drive is slow. To avoid this, we use a dataloader
that pre-loads a section of the dataset into RAM. This speeds up training (at the expense
of requiring a large amount of RAM memory). At the beginning of each epoch we load
into RAM a random segment of 10 consecutive frames (for more unrollings, we load
more frames, as explained in the subsequent text) from each sequence in the training set,
together with the optical flows. From these spatio-temporal volumes, we define a set of
3D crops with a stride of 3 pixels in all dimensions (x, y and t). During the entire epoch,
the mini-batches sampled at random from these set of crops. The crops have a spatial
size of 136 × 136 with a number of frames dictated by the network and the number of
unrollings. The network processes each 3D crop in the mini-batch and returns an output
consisting of n frames for a recurrent network trained with n unrollings. The number of
unrollings describes the number of frames being denoised by the network. This concept
appears in the recurrent network, determined by the number of frames and previous
recurrent features we use. For example, in our case, the common settings are we take
5 consecutive frames, and just use one recurrent feature. This results in 4 frames to be
denoised, thus 4 unrollings.

Optimizer and learning rate: We use the Adam optimizer [19] to update the weights.
The total training takes 100 epochs. During the first 70 epochs, the network is trained
with a fixed learning rate (typically 2e-4) and in the following 30 epochs, the learning
rate would be reduced at each epoch linearly to 0.

For the noise maps, we mention that they are of only one channel, even if the RAW
image is stored with four channels. This is because after the color transform (3), there
will be a channel carrying most of the information (the one computed using the first row),
it is reasonable to make use this transformed channel to estimate the variance.
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ISO stage full w/o VST w/o VR w/o warp only warp (TV-ℓ1)

12800
final 36.205 36.322 36.247 35.661 36.239

pre-denoise 35.019 35.274 34.836 34.839 34.988
fusion 30.310 30.736 29.971 27.876 30.371

3200
final 40.948 40.775 40.771 40.242 40.868

pre-denoise 39.094 38.545 37.807 37.574 38.661
fusion 38.366 38.543 38.161 35.845 38.331

Table 1: Ablation study for proposed improvements, small network, two ISOs.

ISO stage full w/o VST w/o VR w/o warp only warp (TV-ℓ1)

12800
final 37.740 37.772 37.784 37.097 37.836

pre-denoise 37.657 37.673 37.666 36.969 37.752
fusion 30.270 30.292 30.038 27.809 30.139

3200
final 42.123 42.039 42.120 41.634 42.020

pre-denoise 41.916 41.767 41.890 41.362 41.364
fusion 38.079 38.469 37.919 35.743 38.388

Table 2: Ablation study for proposed improvements, big network, two ISOs.

4.3 Experimental results

We report the ablation study on the proposed modifications in Table 1 and 2. We
compared the following settings:

full All three proposed modifications are applied in this setting.

w/o VST The variance stabilization is removed from full, to illustrate the usefulness.

w/o VR The variance ratio is removed from full, to compare the usefulness of it.

w/o warp The variance ratio is removed from full.

only warp Only motion compensation is applied. This one is considered as the original
version in [22], since the dataset in our experiments contains a lot of motions.

To assess how the network capacity would influence the performance, we consider the
EMVD with two network configurations, one with small capacity with 3 layers and 16
features for each one of the three networks (Table 1), the other one with a big capacity
has 5 layers and 64 features for all three networks (Table 2).

In the tables we report the PSNR values for the three stages of the method: temporal
fusion, pre-denoising and the final refined result. Figure 5 shows an example of the results
tested for both ISOs, using the small networks with all the proposed modifications. All
three stages’ outputs are included. Noise remains in temporal fusion, and it is removed
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Figure 5: Visual results of all stages. From left to right: fusion, pre-denosied, final. The
first two rows show ISO 3200, and the last two are for ISO 12800.
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after the pre-denoising stage. Details are added back in the final output, compared to
the oversmoothed pre-denoised frame.

In all cases, warping leads to a significant improvement. This is reasonable, since there
is a lot of camera motion in the REDS dataset. Without temporal alignment, the fusion
weights are mostly 0, meaning that the network just performs a single image denoising
with no temporal aggregation. Figure 6 compares the outputs with and without warping.
It is obvious there is almost no temporal denoising in fusion stage. This also can be
observed in the PSNR value of fusion output in Tables 2 and 1. Indeed, the original
version of the method (which does not consider motion estimation) was intended to be
use on sequences taken with a static camera thus having a static background.

For the other modifications, i.e. VST and the multiplication by the variance ratio
(VR), we obtain very similar PSNR values. In Figure 7 we compare the results of adopting
only warping with those where the VST and variance ratio are added respectively. For
the sake of space, we just show visual results of ISO 3200. The impact of the VST is
very hard to notice. The variance ratio yields a temporal fusion which has less noise in
smooth areas such as the sky. This is consistent with the PSNR measures, which show
that the variance ratio leads to 0.2-0.4 dB gains in the output of temporal fusion for ISO
12800, depending on the capacity of networks. However, it is very hard to notice any
difference in the final results.

It is of interest to inspect how the temporal fusion is improved. In the last row of
Figure 7 and in Figure 8, we show different fusion weights under different settings. We
can see that without the VST, the fusion weights are more correlated with the image
content. This is to be expected, as the variance is proportional to the image. It can also
be observed that when adding the product with the variance ratio, the fusion weights
tend to be higher (e.g. in the sky), which implies a stronger temporal averaging.

The EMVD is a light-weighted network designed for real-time applications. The
small configuration gives quite good results. It is not surprising that big networks im-
prove PSNR values of the pre-denoised and the final result. However, the PSNR values
of temporal fusion are almost the same as those given by the small network. From this
observation, the way of using convex combination to reduce temporal noise has reached
its limit, and it follows that the only way to improve the final performance is by improv-
ing the spatial denoising. Indeed with a bigger pre-denoising network, it is possible to
perform a better spatial denoising. We show in Figure 9 two pairs of refinement weights
images where only capacity of networks changed. The refinement weights choose between
the temporal fusion and the pre-denoised images. The ones corresponding with the big
networks put more weight on pre-denoised one rather than the temporal fusion. This
illustrates the importance of the spatial pre-denoising network in the result.

Lastly, we consider how the number of unrollings will influence the performance. It is
possible that the limited performance of the temporal fusion is due to the fact that during
the training with 4 unrollings, the network is only applied to short videos of 5 frames.
We compare how the number of unrollings affects denoising preformance in Table 3 by
listing the final PSNR values, together with those of intermediate results. There is an
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Figure 6: Comparison between results given by using warping or not, ISO 3200. From
left to right, top row: noisy frame; temporal fusion without warping; temporal fusion
with warping; second row: final result without warping; final result with warping; third
row: fusion weight without warping; fusion weight with warping.
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Figure 7: Effect of the VST and variance ratio, ISO 3200. From top to bottom: results
of the temporal fusion, final results and fusion map. From left to right: only warping;
VST added; variance ratio added. Note that in the fusion map we use a larger crop to
show a larger context.

Figure 8: Comparison between fusion weights under different settings. From left to right:
no VR, no VST, full.
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Figure 9: Comparison between refine weights under different configurations. Left: small;
right: big.

# of unrolls 1 4 8
final 40.557 40.868 40.916

pre-denoise 36.123 38.661 39.602
fusion 37.756 38.331 38.481

Table 3: Performance of different number of unrollings. ISO3200, small network. Only
warping is applied in this comparison.

obvious improvement from 1 unrolling to 4 unrollings, especially for the temporal fusion
result, since we get to recurrent denoising from single image denoising. However, the
improvement is much smaller if we increase the number of unrollings from 4 to 8.

5 Conclusion

In this paper, we propose an implementation of the EMVD method, a lightweight
and interpretable recurrent video denoising CNN. Moreover, we proposed to improve this
method in three ways, including applying VST, incorporating the variance of temporal
fusion in the computation of the fusion weights, and motion compensation. Among these,
the latter makes significant improvement, which stresses the importance of using temporal
redundancy in video processing. While the other modifications do not improve the final
PSNR, they have a positive influence on the temporal average.
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