
Published in Image Processing On Line on 2025–08–00.
Submitted on 2023–05–14, accepted on 2025–06–09.
ISSN 2105–1232 c© 2025 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
https://doi.org/10.5201/ipol.2025.485

20
21

/1
1/

21
v
0.

6
IP

O
L

ar
ti

cl
e

cl
as

s

CS-TRD: a Cross-Section Tree Ring Detection Method

Henry Marichal1, Diego Passarella2 and Gregory Randall1

1Instituto de Ingeniería Eléctrica, Facultad de Ingeniería, Universidad de la República,
Uruguay(henry.marichal@fing.edu.uy / randall@fing.edu.uy)

2Sede Tacuarembó, CENUR Noreste, Universidad de la República, Uruguay(diego.passarella@cut.edu.uy)

Communicated by Gabriele Facciolo and Miguel Colom Demo edited by Henry Marichal and Cyril Voisard

Abstract

This work describes a Tree Ring Detection method for complete Cross-Sections of Trees (CS-
TRD) that detects, processes, and connects edges corresponding to the tree’s growth rings. The
method relies on edge detection, and its parameters are set to default values and can be adjusted
as needed. The only required input is the location of the biological center of the tree, the pith,
which can be marked manually or using an automatic detection algorithm. CS-TRD achieves
an F-Score of 91% in the UruDendro dataset (of Pinus taeda) and 97% in the Kennel dataset
(of Abies alba) without specialized hardware requirements.

Source Code

A Python 3.11 implementation of CS-TRD is available on the web page of this article1. Usage
instructions are included in the README.md file of the archive. The associated online demo is
accessible through the website.

Keywords: image edge detection; dendrometry; tree ring detection

1 Introduction
Most of the available methods for dendrometry (the measurement of tree growth rings) use images
taken from cores (small cylinders that cross all the tree growth rings) instead of complete transverse
cross-sections. Figure 1 illustrates some core images. Using cores for analysis presents several ad-
vantages, as the rings are measured on a small portion of the trunk, which can be assumed to be
a sequence of bands with repetitive contrast, simplifying the image analysis. However, this method
provides limited information on annual tree growth because it results in a circular approximation
based on a rectangular section. In many cases, ring growth is not uniform along different orienta-
tions, leading to significant errors. Some applications require the study of the entire cross-section,
as in the case of examining the angular homogeneity of the ring-tree pattern to detect the so-called

1https://doi.org/10.5201/ipol.2025.485

Henry Marichal, Diego Passarella and Gregory Randall, CS-TRD: a Cross-Section Tree Ring Detection Method, Image Processing
On Line, 15 (2025), pp. 1–30. https://doi.org/10.5201/ipol.2025.485

https://doi.org/10.5201/ipol
https://doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
https://doi.org/10.5201/ipol.2025.485
https://doi.org/10.5201/ipol.2025.485
https://doi.org/10.5201/ipol.2025.485

Henry Marichal, Diego Passarella and Gregory Randall

Figure 1: Examples of core tree-ring images taken from a dataset with 239 images [6].

compression wood [4]. This is necessary because the lack of homogeneity in the growing pattern pro-
duces differential mechanical properties. On the downside, cross-section analysis implies the felling
of the tree and includes the challenge of generating a pattern of (almost) concentric closed curves
representing the tree rings. As Figure 2 shows, several factors increase the difficulty of the task.
Among them are wood knots, fungi appearing as black spots with shapes following radial directions,
and cracks that can be very wide.

This article presents a well-grounded method for automatically delineating tree rings on cross-
section RGB images. The approach leverages the tree’s cross-section structure and redundant infor-
mation on a radial profile for different angles around the tree’s pith.

The method is evaluated using two public datasets with different species and outperforms the
other publicly available comparable method [8] in terms of accuracy.

Section 2 briefly reviews previous work in the field. Section 3 describes the proposed automatic
cross-section tree-ring detection algorithm (CS-TRD). Section 4 presents in more detail the algo-
rithms, while Section 5 discusses implementation specifics. Section 6 presents the datasets used
for developing and testing the proposed approach and discusses some experimental results. Sec-
tion 7 concludes and propose future work. The supplementary material section includes additional
experiments to demonstrate the method’s relevance.

2 Previous Work
Tree ring detection is an old and essential problem in forestry. It has multiple applications in
dendrometry, dendrochronology, ecology, forest management, and other fields. Due to species-specific
idiosyncrasies, many practitioners still employ a manual approach, using a ruler or other manual
tree-ring measurement systems. This is a tedious and time-consuming task that requires an expert
operator.

Among the strategies proposed in recent years for the automation of tree ring delineation over
wood cross-section images, we can mention the classic image-processing approaches that try to detect
borders and then reconstruct the ring pattern [1, 16, 19, 10, 11, 12] and the algorithms based on deep
learning methods which try to learn the solution from the data [8]. Most methods are designed to
work with cores, for which a significantly greater number of datasets are available. Hence, the deep
learning methods are generally designed for core dendrometry [5, 17].

Cerda et al. [1] proposed a classic image processing approach for detecting entire growth rings
based on the Generalized Hough Transform. This work already suggests using the general geometrical
structure of the tree rings, which we use in our approach, as illustrated in Figure 3. Norell et
al. [16] use the Grey Weighted Polar Distance Transform to process end faces acquired in sawmill
environments. Still, the method implies using rectangular sections, including the pith, and avoiding
knots or other disturbances, diminishing the generality of the approach. Zhou et al. propose a much
simpler method [19], which resembles the traditional manual procedure where two perpendicular
lines across the slice are traced. The watershed method is applied to the profiles to obtain the
peaks corresponding to each ring. Henkel et al. employ an active contours approach [10] alone or in
conjunction with a Dual-Tree Complex Wavelet Transform [11], based on the evolution of a partial
differential equation that incorporates terms related to both the image content and the curve itself.
Many PDE-based algorithms are computationally intensive, making them challenging to implement

2

CS-TRD: a Cross-Section Tree Ring Detection Method

(a) F02a (b) F02b (c) F02c

(d) F02d (e) F02e (f) F03c

(g) F07b
(h) L02b

(i) L03c

Figure 2: Some examples of images from the UruDendro dataset. Note the variability of the images and the presence of
fungus (L02b), knots (F07b and L03c), and cracks (F02a, F02e, and L02b). The first five images are from the same tree
at different heights, as explained in Section 6.1.

3

Henry Marichal, Diego Passarella and Gregory Randall

in real-time applications. Makela et al. [12] proposed a method based on Jacobi Sets to detect the
ring pattern and pith location. All these methods rely on detecting the edges corresponding to the
tree rings and different strategies to reconstruct the pattern. In all cases, the pith is the center of a
general structure. Most of these works were tested against a small number of images (ranging from
2 to 20). Unfortunately, the code and used images are unavailable in these cases for testing and
comparing the results with other methodologies.

Deep learning approaches have become more prevalent in recent years and have naturally been
applied to this problem. Still, the scarcity of labeled data for a given species is a significant problem
in the area, as the methods must be tailored to the particularities of each species. Gillert et al. [8]
proposed a method for cross-section tree-ring detection, named Iterative Next Boundary Detection
Network (INBD), which was applied to high-resolution images of shrub cross-sections specially pre-
pared for microscopy observation. In this case, the images are not only of a particular species, but
also the microscopic resolution introduces specific characteristics. Starting from the pith, the method
infers the annual ring at each iteration step, detecting rings one by one from the medulla to the tree’s
bark. A problem can arise if an intermediate ring is badly processed. In those cases, the error propa-
gates and affects all the rings outward. The method was trained and tested on images obtained under
the specific conditions of microscopic photos of shrub species. This is a unique method that allows
us to access the code, allowing us to compare it with our approach. In Section 6.5, we illustrate the
results of applying their model to our datasets, training their method for our particular images.

Besides the INBD method, most deep-learning-based approaches are applied to core images. For
example, recently, Polek et al.[17] applied a deep learning approach to process cores of coniferous
species. Fabijańska et al. proposed both a classic image-processing approach [6] (based on linking
image gradient peak-detected pixels) and a convolutional neural network approach [5] for detecting
tree rings in core images. Comparing both methods, they reported a precision of 43% and a recall of
51% for the classical approach and a precision of 97%, and a recall of 96% for the deep learning one.
Without the code or the data, it is not possible to verify these claims with other species or datasets,
as their experiments concern three ring-porous wood species.

In short, existing deep learning-based methods are almost all for cores, and the absence of labeled
databases makes it difficult to use them on complete slices. Classical methods are generally based on
edge detection and construct rings from them. Most reported methods lack the code or the data to
verify their claims. Still, their analysis suggests that the presence of perturbations, such as fungus,
cracks, and knots, significantly affects the performance because the construction of each ring depends
on the previous ones. Therefore, an error in the pith or the rings closest to the center propagates to
the rest of the structure.

3 Proposed Approach

In this section, we present the main ideas of the method for tree-ring delineation over RGB cross-
section images, referred to as CS-TRD, the Cross-Section Tree-Ring Detector.

3.1 Assumptions

Our tree-ring detection algorithm is heavily based on the structural characteristics of the problem:

• The use of the whole horizontal cross-section of a tree (slice) instead of a wood dowel (or core),
as most dendrometry approaches do.

• The following properties generally define the rings on a slice:

4

CS-TRD: a Cross-Section Tree Ring Detection Method

(a)

Ni−1

pn

Ni

Ni+1

pn+1pn−1

(b)

Chk

Ni−1

Ni−1

ri−1 ri ri+1

Ni

Ni

Ni+1

Ni+1

Chk+1

(c)

Figure 3: (a) The whole structure, called spider web, is formed by a center (which corresponds to the slice pith), Nr rays
(in the drawing Nr = 18) and the rings (concentric curves). In the scheme, the rings are circles, but in practice, they can
be (strongly) deformed as long as they don’t intersect another ring. Each ray intersects a ring only once at a point called
node. (b) A curve is a set of connected points (small green dots). Some of those points are the intersection with rays,
named nodes (black dots). A chain is a set of connected nodes. In this case, the node Ni is the point pn. (c) Each Chain
Chk and Chk+1, intersects the rays ri−1, ri and ri+1 in nodes Ni−1, Ni and Ni+1.

1. The rings are roughly concentric, even if their shape is irregular. This means that two
rings cannot cross.

2. Several rays can be traced outwards from the slice pith. Those rays will cross each ring
only once.

3. We are interested only in the rings corresponding to the latewood (darker wood) to ear-
lywood (lighter wood) transitions, namely the annual rings.

The principal idea of the method proposed in this work is the definition and use of a general
structure formed by the rings, as explained in Section 3.2.

3.2 Definitions

To explain the approach, we need to define some key terms; see Figure 3. We call spider web the
global structure of the tree rings we are searching for, depicted in Figure 3a. It comprises a center,
associated with the slice’s pith, the origin of several rays. The rings are concentric and closed curves
that do not cross each other. Each ring is formed by a curve of connected points. Each ray crosses
a curve only once. The rings can be viewed as a curve of points with nodes in the intersection with
the rays. A chain is a set of connected nodes. As shown in Figure 3b, a curve is a set of chained
dots (small green dots in the figure, noted pn). Depending on the position of the curve concerning
the center, some of those points are nodes (larger black dots in the figure, denoted Ni hereafter).
The larger the number Nr of rays, the better the precision of the reconstruction of the rings. We fix
Nr = 360. Note that this is the ideal setting. In actual images, rings can disappear without forming
a closed curve, the rings can be strongly deformed, etc. Figure 3c illustrates the nomenclature used
in this paper: Chains Chk and Chk+1, intersect the rays ri−1, ri and ri+1 at nodes Ni−1, Ni and
Ni+1. The rays determine a sampling of the curves, producing chains, which merge to form a ring.

5

Henry Marichal, Diego Passarella and Gregory Randall

3.3 Approach

CS-TRD takes as input an image of the disk without background and the biological center of the disk
(pith) (see Figure 4b) and returns the annual rings (see Figure 4i). Figure 4 illustrates the output of
each stage of the method, which are fully described in Section 4. Briefly, it works as follows: from
the center (the pith), rays are traced (see Figure 3a). A Canny edge filtering is then applied to the
image (see Figure 4d), and by calculating the angle between the edge normals and the rays, most
edges that do not belong to the latewood to earlywood transitions are eliminated. At the end of this
stage, we obtain both noise and the ring edges of interest; additionally, some edges may be missing
because they were not detected (see Figure 4e). Until now, the method is similar to the one proposed
by Cerda et al. [1]; the more challenging step is grouping edges to form rings.

In the next stage, the obtained edges must enforce the spider web structure, which describes the
general properties of the annual rings. To achieve this, all edges are subsampled using the rays: for
each edge, we only retain the intersections between it and the respective rays (the nodes), forming
what we call chains (see Figure 4f).

The final stage involves grouping all chains that belong to the same ring by imposing the spider
web structure through a smoothness condition (see Figures 4g, 4h and Equation (5)). Chain grouping
is performed iteratively to connect chains near areas with stronger edge information. Once no more
chains are connected in the current neighborhood, the method moves on to the next region with
strong edge information. This iterative process, which prioritizes edge information along with the
smoothness condition, is the primary contribution of our method, which we describe in detail below.

4 Algorithm

In this section, the main algorithms of the method are described. Algorithm 1 describes the CS-TRD
method and Figure 4 illustrates its intermediate results. The input is an image of a tree slice. First,
we subtract the background, applying a deep learning-based approach [18] using a two-level nested
U-structure (U2Net).

Given the image without a background (shown in Figure 4b), we must identify the set of pixel
chains that represent the annual rings, characterized by transitions from dark to clear. We need
the spider web center c = (cy, cx) (i.e., the disk’s pith) as input. This fundamental point can be
manually marked or can be automatically detected [2]. Here, we assume the point is known, since
both options are available on the demo.

Algorithm 1: Tree-ring detection algorithm
Input: Imin, // input image
pith_location // pith’s coordinates, in pixels (cy, cx)
Output: tree-rings

1 image ← preprocessing(Imin) // resizing, grayscale conversion and image equalization
2 edges ← canny_devernay_edge_detector(image) // use Canny-Devernay detector [9]
3 edges ← filter_edges(edges, pith_location) // preserve edges orthogonal to the rays
4 chains ← sampling_edges(edges, pith_location) // re-sample edges (Algorithm 2)
5 chains ← merge_chains(chains) // merge and complete neighboring chains (Algorithm 3)
6 rings ← postprocessing(chains) // see Algorithm 7
7 return rings

6

CS-TRD: a Cross-Section Tree Ring Detection Method

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Principal steps of the CS-TRD algorithm: (a) Original image, (b) Background subtraction, (c) Pre-processed
image (resized, equalized, grayscale conversion), (d) Canny Devernay edge detector, (e) Edges filtered by the direction of
the gradient, (f) Detected chains, (g) Connected chains, (h) Post-processed chains and (i) Detected tree-rings.

7

Henry Marichal, Diego Passarella and Gregory Randall

4.1 Preprocessing

The first step in Algorithm 1 is to preprocess the input image to increase the method’s performance.
We resize the image to a fixed 1500× 1500 pixels size via Lanczos interpolation [7], then convert it
to grayscale, and a histogram equalization is applied (Figure 4c).

4.2 Canny-Devernay Edge Detector

Line 2 of Algorithm 1 corresponds to the edge detection stage. We apply the sub-pixel precision
Canny Devernay edge detector [3, 9]. The output of this step is a list of pixel chains corresponding
to the image edges. Besides some noise-derived ones, we can group those edges into three classes:

• EdgesT : produced by the tree growing process. It includes the edges that form the rings.
Considering a pith outward direction, they can be of two types: those produced by earlywood
to latewood transitions (clear to dark) and latewood to earlywood transitions (dark to clear).
We are interested in detecting the latter ones, hereon called annual rings.

• EdgesR: radial edges produced by cracks, fungi, or other phenomena.

• Other edges produced by wood knots and noise.

The Canny Devernay edge detector has three parameters: the standard deviation of the Gaussian
kernel σ, and the gradient modulus thresholds thlow and thhigh, for the hysteresis filtering of the edge
points. We only adjust the parameter σ; the other two are fixed (see Section 6.3.1). Figure 4d
shows the output of this stage. We slightly modified the Canny-Devernay filter implementation [9]
to obtain the matrices Gx and Gy, which contain the gradient components in the x and y directions,
respectively. These matrices are used in the filter_edges step.

4.3 Filtering the Edge Chains

Line 3 of Algorithm 1 corresponds to the edge filtering stage. Given the center c = (cy, cx) and a
point pi of an edge curve, the angle δ(~cpi, ~Gpi) between vector ~cpi and gradient vector ~Gpi at pi is

δ
(
~cpi, ~Gpi

)
= arccos

(
~cpi · ~Gpi

‖ ~cpi‖‖ ~Gpi‖

)
. (1)

We filter out all points pi for which δ(~cpi, ~Gpi) ≥ α. We fix α = 30 degrees.
Two edge groups are filtered out: the earlywood transitions of the gradients EdgesT set (pointing

inward), and the gradients EdgesR set, roughly normal to the rays. The algorithm produces a list of
edges, primarily the ring’s edges. The disk perimeter is placed in the last position. Figure 4e shows
the output of this stage.

4.4 Sampling Edges

Line 4 of Algorithm 1, is the edge sampling stage which produces the nodes depicted in Figure 3b.
We sample each curve of the edges list, computing the intersection with the rays defined in Figure 3a.
Algorithm 2 shows the method’s pseudocode. It has two parameters: Nr (360 by default) and mc,
the minimum number of nodes in a chain. As every chain has two endpoints, we fix mc = 2. The
algorithm produces a list chains (of Chain objects). This list includes two artificial chains, one of
type center with Nr nodes and the exact pith coordinates but different angular orientations, and

8

CS-TRD: a Cross-Section Tree Ring Detection Method

one corresponding to the border (disk’s perimeter). These artificial chains are advantageous for
the connecting chains stage, discussed in the next section, as they impose an inward and outward
boundary structure (see the supplementary material for more details). The attribute type of the
Chain object indicates whether it is an artificial or a standard chain.

The rays defined in Figure 3a (l_rays) are computed in line 1 of Algorithm 2. Edge curves
edges are sampled in the function intersections_between_rays_and_devernay_curves (line 2). To
do so, we calculate the intersection between each curve and each ray in l_rays using the intersection
method of the shapely library2 Finally, in line 4, two artificial chains (the pith and the bark) are
added to the chain list.

Algorithm 2: Sampling Edges
Input: edges, // list of curves
pith_location, // pith coordinates in pixels: center of the spider web
Parameters:
mc, // minimum length of a chain
Nr // number of total rays
Output: A list chains where each element is a chain

1 l_rays ← build_rays(Nr, pith_location)
2 chains ← intersections_between_rays_and_devernay_curves(pith_location, l_rays ,

edges, mc, Nr)
3 pith_chain, border_chain ← generate_virtual_chains(pith_location, Nr, chains)
4 chains ← chains ∪ pith_chain ∪ border_chain
5 return chains

Figure 4f shows the output of this step. Standard chains are in red, and center and border chains
are in black. Due to the sampling, there are fewer chains than edges. Figure 4e has more (noisy)
curves around the pith than Figure 4f. Some small curves with sampled lengths shorter than mc are
discarded. In that sense, this parameter filters out “short” chains.

Every chain has two endpoint nodes. Endpoint A is always the furthest node clockwise, while
endpoint B is the most distant node counterclockwise. Given an endpoint, a chain has two attributes:
outward and inward chains. Given the corresponding ray of a chain endpoint, we find the first chain
that intersects it going from the chain to the center along the ray (named inward) and the first
chain that intersects that ray moving away from the center (named outward). In Figure 5, chains
are superposed over the gray-level image. The ray at endpoint A is blue, and the nodes are red. The
visible chains for the black chain at endpoint A are in orange (outward) and yellow (inward).

Given EndPointj for the current chain Chj, and EndPointk for chain Chk, we can define:

• Euclidean distance
de =

√
(xj − xk)2 + (yj − yk)2, (2)

where (xj, yj) and (xk, yk) are the Cartesian coordinates of EndPointj and EndPointk.

• Radial Difference distance
drd = ‖rj − rk‖, (3)

rj is the Euclidean distance between EndPointj and the pith center, and rk is the Euclidean
distance between EndPointk and the pith center.

2S. Gillies, C. van der Wel, J. van den Bossche, M.W. Taves, J. Arnott, B.C. Ward and others. Shapely. https:
//doi.org/10.5281/zenodo.5597138. Accessed October 2023.

9

https://doi.org/10.5281/zenodo.5597138
https://doi.org/10.5281/zenodo.5597138

Henry Marichal, Diego Passarella and Gregory Randall

Figure 5: A given chain (in black) with two endpoints A and B. Its nodes (in red) appear at the intersection between the
Canny Devernay curve and the rays. The ray at endpoint A is in blue. Other chains detected by Canny Devernay are in
white. Endpoint A’s inward and outward chains are in yellow and orange, respectively.

• Angular distance
da = (θj − θk + 360)mod 360, (4)

where θj and θk are the ray’s direction supporting EndPointj and EndPointk (both in degrees),
respectively, mod refers to the modulus operation.

4.5 Merge Chains

We must now group the chains to form rings (Line 5 of Algorithm 1). As this section is a key part of
the algorithm, we will divide it into two subsections: one that explains the general idea of merging
chains and another that details the algorithms themselves.

4.5.1 General Logic of Chain Merging

The input of the algorithm is a set of chains. Some of these chains are spurious, produced by noise,
small cracks, knots, etc., but most are part of the desired rings, as seen in Figure 4f.

In general, a ring is composed of multiple chains. To merge them, we must determine whether
the endpoints of two given chains can be connected, as illustrated in Figure 6a. A support chain
(denoted as Ch0 in the figure) is used to decide whether the chains should be merged. In this context,
we use the terms “connect chains” and “merge chains” interchangeably.

To group chains that belong to the same ring, we proceed as follows:

1. We order the chains by length and begin by processing the longest, called Chain support, Chi.
Once we finish merging all the possible candidate chains related to that one, we do the same
with the next longest chain, and so on. The reason for processing the longest chains first is that
they contain more information about the tree ring structure, resulting in more robust results.
Longer chains are more likely to be an edge belonging to an annual tree ring. Since consecutive
rings have similar shapes, this iteration method propagates the shape of the longer chains.

2. We find the chains that are visible from the Chain support inwards (i.e., in the direction from
Chain support to the center). Here, visible means that a ray that goes through one candidate
chain endpoint crosses the chain support without crossing any other chains in between. The
set of candidate chains of the Chain support Chi is named candidatesChi . In Figure 7a this
set is candidatesCh0 = {Ch1, Ch2, Ch4, Ch5, Ch6}. Chain Ch3 is shadowed by Ch1 and Ch5
is not shadowed by Ch6 because at least one of its endpoints are visible from Ch0. The same
process is applied to the chains visible from the Chain support outward.

10

CS-TRD: a Cross-Section Tree Ring Detection Method

Ch1
Ch3

Ch0

B
A

Ch2A B

(a)

Ch1
Ch3

Ch0

B A

Ch2A B

(b)

Figure 6: An illustration of the connectivity issue. (a) The question is if endpoint A of Ch3 must be connected to endpoint
B of Ch2 (red line) or to endpoint B of Ch1 (blue line). In Figure (b), the same question can be posed for the connection
between endpoint B of Ch1 and endpoint A of Ch2. This connection is forbidden because Ch1 and Ch2 intersect (the
endpoints are on the same ray). Note that we represent the connections by line segments for clarity, but these are curves
in the image space, as we interpolate between chain endpoints in polar geometry. Each node is defined by an angle and
radial distance from the pith (see Equation (3)). Given the endpoints of the chains to be connected, we perform a linear
interpolation in polar space to link the chains. This approach ensures that the newly formed chains intersect with a radial
line, allowing each connection to have a node at the radial intersection.

Ch0

Ch1

Ch4
Ch6

Ch5Ch3

Ch2

(a)

δRi δRi+1

δNi

Ni
Ni−1

Ni+1

Chi

Chk

Chl
Chj

(b)

Chj

Chi

Chk

rsrs−1

N 0
k

N 2
kN 2

j N 1
k

rs+1

N 1
j N 0

j

N 3
k

(c)

Figure 7: Connectivity nomenclature. (a) For the chain support Ch0, the set of chain candidates is formed by Ch1, Ch2,
Ch4, Ch5 and Ch6. Chain Ch3 is shadowed by Ch1 but Ch5 is not shadowed by Ch6 because at least one endpoint of
Ch5 is visible from Ch0. Note that a chain becomes part of the candidate chains set if at least one of its endpoints is
visible from the chain support. (b) Quantities used to measure the connectivity between chains. δRi is the radial difference
between two successive chains along a ray ri and δNi is the radial difference between two successive nodes Ni and Ni+1.
Note that these nodes can be part of the same chain or be part of two different chains that may be merged. Chi is the
support chain. Chi visible chains are Chj , Chl and Chk. Chains Chj and Chk satisfy similarity conditions. (c) Chains
Chj and Chk are candidates to be connected, and Chi is the support chain. Nn

j (Nn
k) are the nodes of Chj (Chk), with

n = 0 for the endpoint to be connected, and rs represents the radial distance to the pith. In red are the nodes created by
an interpolation process between both endpoints.

11

Henry Marichal, Diego Passarella and Gregory Randall

3. We explore the set candidatesChi searching for connections between them. By construction,
the chain support is not a candidate for merging in this step. From the endpoint of a chain, we
move clockwise or counterclockwise depending on whether the endpoint is A or B. The next
endpoint of a non-intersecting chain in candidatesChi is a candidate to be connected to the
first one. We say that two chains intersect if there exists at least one ray that crosses both
chains. For example, in Figure 7a, Ch6 intersects with Ch5 but not with Ch4.

4. To decide if both chains must be connected, we must measure the connectivity goodness between
them, combining four criteria:

(a) Radial tolerance for connecting chains. The radial difference between the distance from
each chain to be merged (measured at the endpoint to be connected) and the support
chain must be small. For example, in Figure 7b, if we want to connect node Ni of Chl
and node Ni+1 of Chk, we must verify that

δRi ∗ (1− ThRadial_tolerance) ≤ δRi+1 ≤ δRi ∗ (1 + ThRadial_tolerance),

where ThRadial_tolerance is a parameter of the algorithm. We call this condition RadialTol.

(b) Similar radial distances of nodes in both chains. For each chain, we define a set of nodes.
For the chain Chj, this set is Nj = {N0

j , N
1
j , . . . , N

nnodes
j } where nnodes is the number of

nodes to be considered, fixed to nnodes = 20 (see Figure 7c). We use the whole chain
if it is shorter than nnodes. We measure δRi, the radial distance between each node
in the given chain and the corresponding node (same ray) in the support chain, as il-
lustrated in Figure 7b. This defines a set for each considered chain j and k: Setj =
{δR0

j , . . . , δR
nnodes
j } and Setk = {δR0

k, . . . , δR
nnodes
k }. We calculate their mean and standard

deviation Setj(µj, σj) and Setk(µk, σk). This defines a range of radial distances associated
with each chain: Rangej = (µj − ThDistribution_size ∗ σj, µj + ThDistribution_size ∗ σj) and
Rangek = (µk−ThDistribution_size∗σk, µk+ThDistribution_size∗σk), where ThDistribution_size is
a parameter. There must be a non-null intersection between both distributions to connect
both chains: Rangej ∩Rangek 6= 0. We call this condition SimilarRadialDist.

(c) Regularity of the derivative. Given two chains Chj and Chk which can be connected,
let’s call Chjk the set of interpolated nodes between them (red nodes in Figure 7c). The
new virtual chain created by the connection between Chj and Chk will encompass the
nodes of those two chains and Chjk. The parameter derivFromCenter controls how are
estimated the interpolated nodes between two chains, as the ones in red in Figure 7c.
If derivFromCenter = 1, the ray angle and radial distance from the center are used
to estimate the position of the interpolated nodes. If its value is 0, the estimation is
made by measuring the radial distance to the support chain. To test the regularity of
the derivative, we define a set of nodes for each concerned chain. For the chain Chj, this
set is {N0

j , N
1
j , . . . , N

nnodes
j } where nnodes = 20 is the number of nodes to be considered.

If the chain is shorter, we use all nodes. We compute the centered derivative in each
node for all chains, δN s = ‖rs+1−rs−1‖

2
, where rs is the radial distance of the node N s

to the center (i.e., the Euclidean distance between the node and the center). The set
of the existing chains nodes is Der(Chj, Chk) = {δN0

j , . . . , δN
nnodes
j , δN0

k , . . . , δN
nnodes
k }.

The condition RegularDeriv is asserted if the greatest derivative in the interpolated chain
is less than or equal to the greatest derivative in the neighboring chains, with tolerance
ThRegular_derivative

max(Der(Chjk)) ≤ max(Der(Chj, Chk))× ThRegular_derivative.

12

CS-TRD: a Cross-Section Tree Ring Detection Method

1 2 3 4 5 6 7 8 9
ThRadial_tolerance 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2
ThDistribution_size 2 2 3 3 3 3 2 3 3
ThRegular_derivative 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2
NeighbourdhoodSize 10 10 22 22 45 45 22 45 45
derivFromCenter 0 0 0 0 0 0 1 1 1

Table 1: Connectivity Parameters. Each column is the parameter set used on that iteration.

(d) Non-Overlapping Chain. Finally, no other chain must exist between the chains to be
connected. If another chain exists in between, it must be connected to the closer one. For
example, in Figure 7a, it is impossible to connect chains Ch3 and Ch5 because between
them appears Ch4. We call this condition ExistChainOverlapping.

Summarizing, in order to connect chains Chj and Chk, the following condition must be met

notExistChainOverlapping ∧ RegularDeriv ∧ (SimilarRadialDist ∨ RadialTol). (5)

where ∨ and ∧ stands for the logical or and and symbols, respectively, and the symbol not
stands for the logical not operator.

The method iterates, searching for connectivity between chains over different neighborhood
sizes. The parameter NeighbourdhoodSize defines the maximum allowed distance, measured in
degrees, for connecting two chains. We iterate this process for the whole image nine times. In
the first iteration, there are numerous small chains, but as the iterations progress, the relevant
chains become more extensive and less noisy. As the merging process advances, we relax the
parameters to connect more robust chains. Table 1 summarizes the parameters used in each
iteration.

5. We proceed in the same manner in the outward direction.

4.5.2 Algorithms Description

Algorithm 3 describes the pseudocode for the merge_chains method (line 5 in Algorithm 1). As
previously described, the method iterates over nine parameter combinations (see Table 1), which is
reflected in the for-loop from lines 1 to 16. For each parameter combination (represented by the
variable iteration), the algorithm iterates over all chains in the list chains, using each one as a
support chain to attempt merging with other chains, as described earlier. Once a full iteration is
completed, the process continues with the next parameter set. This procedure is shown between lines
2 and 12, where Chi denotes the support chain in the current iteration.

Given a support chain, the first step is to identify the visible chains (line 4). These are determined
in both outward and inward directions and stored in the lists l_s_outward and l_s_inward, respec-
tively. The merging process iterates over both sets (line 5). The exploration of candidate chains,
as detailed in Item 3, is performed within the for-loop from lines 6 to 11. For a given candidate
chain Chj the algorithm seeks a chain Chk from the set candidatesChi to merge with. The first step
(line 7) involves selecting the subset of non-intersecting chains concerning Chj from candidatesChi ;
these are grouped in the list valid_chains. Among these, the algorithm selects the one with the
smallest angular difference relative to Chj, within an angular neighborhood defined by the parameter
NeighbourhoodSize (see Table 1), which corresponds to the current iteration. This selected chain
is referred to as Chk. The endpoint of Chj to be connected is denoted as Ej.

13

Henry Marichal, Diego Passarella and Gregory Randall

If both chains satisfy the conditions specified in Equation (5) (line 9), they are merged (line 10).
After the merge, Chk is removed from the chains list, and the updated version of Chj replaces the
original in the list (line 11).

Once a complete iteration over chains for a given parameter set (iteration) has been performed,
the algorithm exits the main while-loop (lines 3 to 12). As a final step in the iteration, the algorithm
reviews all chains and completes those that contain more than 0.9 × Nr nodes, a fixed threshold.
To complete a chain, the algorithm finds the closest radial chain common to both of its endpoints
(Chi) and calls the close_chain method (see Algorithm 5). Completing a chain involves adding
new nodes via linear interpolation (see Section 4.5.3) until the chain reaches Nr nodes.

Algorithm 3: Merge Chains
Input: chains
Output: chains

1 for iteration in 1 to 9 do
2 Chi ← find_support_chain(chains)
3 while Chi do
4 l_s_outward, l_s_inward ← find_visible_chains(chains, Chi)
5 for candidatesChi in [l_s_outward, l_s_inward] do
6 for Chj in candidatesChi do
7 valid_chains ← find_non_intersection(candidatesChi , Chj)
8 Chk, Ej ← find_closest(valid_chains, Chj, iteration)
9 if connectivity_goodness_condition(Chj, Chk, iteration) then

/* Equation (5) is satisfied */
10 Chj ← merge_two_chains(Chj, Chk, Ej, Chi) // see Algorithm 4
11 chains ← update_chains_list(chains, Chj, Chk)

12 Chi ← find_support_chain(chains)

13 for chain in chains do
14 if chain_nodes(chain) ≥ 0.9×Nr then
15 Chi ← get_common_chain_to_both_borders(chain)
16 close_chain(chain, Chi) // see Algorithm 5

17 return chains

Algorithm 4 describes the logic for connecting chains Chj and Chk, given a support chain Chi.
Optionally, chains can also be connected using two support chains, as discussed in the following
section (see Section 4.6).

First, given the endpoint Ej of chain Chj, the corresponding endpoint Ek of chain Chk is identified
(line 1). Lines 2 to 6 describe the logic for generating new nodes based on one or two support chains.
This procedure is detailed in Section 4.5.3. Finally, in line 8, a new chain is created by concatenating
the nodes from Chj, the interpolated nodes, and the nodes from Chk.

Algorithm 5 describes the logic for completing the nodes of a chain using either one support
chain (Chi) or two (Chi and support2). First, the endpoints of the target chain (EA and EB) are
obtained. Then, new nodes are generated via linear interpolation, following the same procedure used
in Algorithm 4. Finally, if no overlapping chain exists (see Algorithm 6), the chain is completed.

Algorithm 6 describes another key method, corresponding to the term ExistChainOverlapping3

in Equation (5). This method checks whether any chains overlap with a given band (see Figure 8).
3The remaining terms in the equation involve straightforward calculations.

14

CS-TRD: a Cross-Section Tree Ring Detection Method

Algorithm 4: Merge Two Chains
Input: Chj, // current chain to be connected
Chk, // closest chain to be connected with Chj
Ej, //Chj endpoint to be connected
Chi, //support chain Chi
support2 // Optional. Second support chain.
Output: merged chain

1 Ek ← get_opposite_endpoint(Chj,Ej, Chk)
2 if support2 then
3 interpolated ← interpolate_nodes(Ej, Ek, Chi. support2)
4 end
5 else
6 interpolated ← interpolate_nodes(Ej, Ek, Chi)
7 end
8 merged ← Chj ∪ interpolated ∪ Chk
9 return merged

Algorithm 5: Close Chain
Input: chain, // Current chain to be connected
Chi, // Support chain Chi
support2, // Optional. Second support chain
Output: closed chain

1 EA, EB ← get_chain_endpoints(chain) //locate nodes belonging to
non-angularly-consecutive rays

2 if support2 then
3 interpolated ← interpolate_nodes(EA, EB, Chi. support2)
4 end
5 else
6 interpolated ← interpolate_nodes(EA, EB, Chi)
7 end
/* See Algorithm 6 */

8 if not exit_chain_overlapping(EA ∪ interpolated ∪ EB, chain, chain, Chi) then
9 closed_chain ← chain ∪ interpolated

10 end
11 else
12 closed_chain ← chain
13 end
14 return closed_chain

15

Henry Marichal, Diego Passarella and Gregory Randall

Chj

Chi

Chk

Figure 8: Red nodes are the interpolated ones between Chj and Chk chains. Blue nodes define the outer band (outward),
while green nodes define the inward band. Chi is the support chain.

An overlapping chain is defined as any chain that has at least one node within the band that does
not belong to either Chj or Chk.

The band itself is defined by a node list, nodes, which includes the (interpolated) red nodes
as well as the endpoints of chains Chj and Chk (Figure 8). This band is constructed using the
InfoVirtualBand class. The width of the band, denoted as band_width, is defined as a percentage
of the radial distance to the support chain Chi. If Chi is of type center, then band_width = 5%;
otherwise, it is set to 10%. These values are fixed.

The algorithm iterates over nodes, and for each node it generates two new nodes located on the
same ray but at different radial distances from the pith, as shown in Figure 8. For a given node
Ni ∈ nodes (red nodes), the radial distances of the corresponding band nodes are computed as
R
(
N
green/blue
i

)
← δRi ∗ (1 ± band_width) + R(Ni) where R(·) denotes the radial distance to the

pith, as defined in Equation (3). The nodes Ni (red), N green
i and N blue

i lie along the same ray. The
green and blue nodes are stored in the info_band object.

The function exist_chain_in_band_logic (line 2) returns the list of chains that intersect the
band defined by info_band. This is done by iterating over each chain and checking if any of its
nodes fall between the corresponding blue and green band nodes. Chains that intersect the band are
added to the list l_chains_in_band. If the length of this list is greater than zero, it indicates that
at least one overlapping chain exists within the specified band.

Algorithm 6: Exist Chain Overlapping
Input: nodes, // list of interpolated nodes plus the endpoints
Chj, // source chain. Check Figure 8
Chk, // destination chain. Check Figure 8
Chi, // support chain
Output: Boolean. True if exists a chain belonging to chains in the band

1 info_band ← InfoVirtualBand(nodes, Chj, Chk, Chi)
2 l_chains_in_band ← exist_chain_in_band_logic(info_band)
3 exist_chain ← len(l_chains_in_band) > 0
4 return exist_chain

4.5.3 Generating New Nodes

New nodes must be generated because the final chains cannot have holes. There are two situations
where new nodes are generated. One case is when two chains are connected (Algorithm 4). In general,

16

CS-TRD: a Cross-Section Tree Ring Detection Method

Chj

rljk

rli

δR0
j

N 0
j

N 0
kN l

jk

δR0
kδRl

jkChi

Chk

N j
i N jk

i
Nk

i

(a)

Chj

rjkoutward

δR0
j

δR0
k

δRl
jk

Choutward

Chk

rjinward
rjkinward

rjoutward

Chinward
rkinward

rkoutward

(b)

Figure 9: Nodes interpolation between chain endpoints. a) One support chain. b) Two support chains.

chains to be connected have an angular distance larger than two rays between the endpoints. A ray
defines a node, which gives the direction and distance to the pith. We know the rays that lie between
the endpoints that will be connected. Therefore, we linearly interpolate the position of the new nodes
between the endpoints (for each ray direction, θi, the radial distance for the new nodes is generated).
When a chain is completed, another similar situation is given (see Algorithm 5). In this case, node
interpolation is made between chain endpoints. Figure 9a illustrates the situation described above.
The angle of node N l

jk is known, θli. The radial distance to node N jk
i is rli. We must compute the

radial distance rljk. As known variables we have: δR0
j , which is the Euclidean distances between

nodes N0
j and N j

i , and δR0
k , which is the distance between nodes N0

k and Nk
i . Additionally, the

chain endpoint angles are also known θ0j and θ0k, and the radii. Therefore rljk is computed as{
δRl

jk = sign× δR0
j−δR0

k

da(θ0j ,θ
0
k)
θli

rljk = δRl
jk + rli

, (6)

where sign indicates if nodes are generated inward (-) or outward (+) from the support chain, and
da is the angular distance defined in Equation (4).

The other case occurs when node interpolation is performed between two support chains, as in
the Postprocessing step (see Section 4.6). In this case rljk is computed as (see Figure 9b)

δR0
j_ratio =

δR0
j

rjoutward−r
j
inward

δR0
k_ratio =

δR0
k

rjoutward−r
j
inward

δRl
jk =

(
δR0

j_ratio−δR0
k_ratio

da(θ0j ,θ
0
k)

θli + δR0
k_ratio

)
×
(
rjkoutward − rjkinward

)
rljk = δRl

jk + rjkinward

. (7)

Finally, once the Euclidean distance to the pith (rljk) is determined for direction θli, the node
cardinal coordinates must be computed: xi ← xpith + rljksin(θ

l
i) and yi ← ypith + rljkcos(θ

l
i).

4.6 Postprocessing

This final stage aims to complete the remaining chains, further relaxing the conditions. Many chains
are completed at this stage (i.e., with size = Nr). We call them rings. We still have some non-closed
chains that can be noisy or be part of a ring but have not been completed for some reason. We
use neighborhood chains to close or discard these remaining chains. Figure 10a illustrates a typical
situation, with the closed chains in blue and the non-closed ones in red. The method iterates from the

17

Henry Marichal, Diego Passarella and Gregory Randall

01

Ch1

Ch2

Ch0

23456

rl+1

rlrl−1
rm−1

rm rm+1

(a)

01

Ch1

Ch2

Ch0

23456

rl+1

rlrl−1
rm−1

rm rm+1

(b)

01

Ch1

Ch2

Ch0

23456

rl+1

rlrl−1
rm−1

rm rm+1

(c)

01

Ch1

Ch2

234567

rl+1

rlrl−1
rm−1

rm rm+1

(d)

Figure 10: Postprocessing general logic. a) The input is a list of chains, with completed chains in blue and incomplete chains
in red. Regions are labeled from 0 to 6. b) Chain Splitting. Chains Ch1 and Ch2 are split at the endpoints in rays rm and
rl to avoid intersections. c) Chain Connection. Chains that satisfy the connectivity goodness condition are connected. d)
Chain Completion and Region Addition. Chain Ch0 is complete, with a new region added.

innermost to the outermost region. In this example, regions 0, 1, and 2 do not contain any candidate
chains for connection. However, in region 3, intersecting chains, Ch0, Ch1, and Ch2, are present.
As shown in Figure 10b, chains are adjusted to eliminate intersections. Ch2’s endpoint intersects
Ch1 along ray rm, leading to split Ch1 into two subchains, with endpoints at rays rm−1 and rm+1.
A similar adjustment is applied to Ch2, split along ray rl. The next step consists of reconnecting
chains if the connectivity goodness conditions are satisfied (Equation (5) with Table 1’s last column
parameters). Figure 10c illustrates the reconnection of chains.

Finally, in the last step of postprocessing, if the angular length of the chains within the region
exceeds 180 degrees4, as illustrated in Figure 10c, we consider that these incomplete chains contain
sufficient information about the ring. The chains are completed in such cases, as shown in Figure 10d,
by interpolating between the region’s boundary rings in the positions of the existing chains (see
Section 4.5.3).

Algorithm 7 describes the logic of the postprocessing stage (line 6 in Algorithm 1). In line 1, the
regions are constructed. A region is defined by two complete chains (i.e., chains with a total number
of nodes equal to Nr) and the set of incomplete chains between them. In line 2, the first region is
extracted (the innermost one) to initiate the loop. The main loop, which iterates over the regions,
spans lines 3 to 22.

4This parameter is estimated based on the biological structure of the disk.

18

CS-TRD: a Cross-Section Tree Ring Detection Method

In line 4, ring1, ring2, and chains_in_region, the inner and outer rings, and the chains within
the region, respectively, are extracted. From lines 5 to 16, the algorithm iterates over the internal
chains in chains_in_region, attempting to connect them as described at the beginning of the section.
In line 7, all candidate chains (candidates) that intersect chain at its endpoints are identified. In
line 8, these intersecting chains are split. Then, in line 9, the subset of non-intersecting chains
within chains_in_region is selected. In line 10, the closest chain is chosen from sets candidates
and non_intersecting_chains.

If the candidate pair satisfies the connectivity conditions, the chains are merged (line 12). Unlike
in Algorithm 3, in this postprocessing stage, the non-overlapping-chain condition is not required
(i.e., the term not ExistChainOverlapping in Equation (5) is not enforced). In line 13, the list
chains_in_region is updated. In line 14, if chain has more than 0.9×Nr nodes (a fixed threshold),
it is completed.

Once all internal chains in the current region have been processed, the loop terminates. Finally,
any chain with an angular span exceeding 180 degrees is considered complete. For this purpose,
chains are first sorted in descending order (line 17). Then, the longest chain with more than 0.5×Nr
nodes is completed (see Algorithm 5). When a chain is completed, the for-loop between lines 18
and 21 is exited, and the region is split into two subregions (line 22). The inner subregion will be
processed in the next iteration. If no chain is completed, the algorithm proceeds to the next outer
region relative to the current one.

4.7 Pith Detection

The pith position is an input for the method. Users can set it manually or using the method proposed
by Decelle et al. [2] in the IPOL site or the method proposed by Marichal et al. [14].

5 Implementation Details

The implementation was made in Python 3.11. The README.md file in the code repository contains
all the information needed to run the code. The demo requires, as input, an image of a tree slice and
the pith position. Table 2 summarizes the method parameters, which the user can modify if needed.
As output, the method returns a JSON file with the tree-ring positions in Labelme format5. Note
that the values of parameters α, Nr, and mc are fixed once and for all.

6 Experiments and Results

6.1 Datasets

We use two datasets to evaluate the CS-TRD method.
The first one (UruDendro) is an online database [13] featuring images of cross-sections from

fourteen commercially grown 13- to 24-year-old Pinus taeda trees in northern Uruguay, collected
in February 2020. The disks are between 5 and 20 cm thick and were dried at room temperature
without further preparation, which resulted in the development of radial cracks and blue fungus
stains. Surfaces were smoothed with a handheld planer and a rotary sander. The dataset comprises
64 images of varying resolutions, ranging from 1000 to 3000 pixels in width. It contains challenging
features for automatic ring detection, including varying illumination and surface preparation, fungal
infections (blue stains), knots, missing bark, interruptions in outer rings, and radial cracking. At

5K. Wada. Labelme: Image Polygonal Annotation with Python. https://doi.org/10.5281/zenodo.5711226

19

https://doi.org/10.5281/zenodo.5711226

Henry Marichal, Diego Passarella and Gregory Randall

Algorithm 7: PostProcessing
Input: chains
Output: A list of post-processed chains

1 regions ← get_regions(chains)
2 current ← get_next_region()
3 while current do
4 ring1, chains_in_region, ring2 ← get_region_elements(current)

/* Merge chains in region */
5 chain ← get_next_chain(chains_in_region)
6 while chain do
7 candidates ← find_candidates_intersecting_chains(chain, chains_in_region)
8 candidates ← split_chains(chain, candidates)
9 non_intersecting_chains ← find_non_intersection(chains_in_region, chain)

10 Chk, Ej ← find_closest(non_intersecting_chains + candidates, chain)
11 if connectivity_goodness_condition(chain, Chk) then
12 chain ← merge_two_chains(chain, Chk, Ej, ring1, ring2) // see Algorithm 4
13 chains_in_region ← update_chains_list(chains_in_region,chain,Chk)

14 if chain_nodes(chain) ≥ 0.9×Nr then
15 close_chain(chain, ring1, ring2) // see Algorithm 5

16 chain ← get_next_chain(chains_in_region)
/* Close chains with an angle domain higher than 180 degrees */

17 chains_in_region ← sort_chains(chains_in_region)
18 for chain in chains_in_region do
19 if chain_nodes(chain) ≥ 0.5×Nr then
20 close_chain(chain, ring1, ring2) // see Algorithm 5
21 break

22 current ← get_next_region(current)

23 return chains

stage Parameter Description Default
Basic Edges detector –sigma Gaussian filtering σ 3

Preprocessing –height Rezised image height None
–width Rezised image width None

Filtering, sampling Pith Position Required
connect

Advanced Edges detector –th_low Gradient threshold low 5
–th_high Gradient threshold high 15

Edges filtering –alpha Collinearity threshold (α) 30o

Sampling –nr Number of rays (Nr) 360
–min_chain_lenght Minimum chain length (mc) 2

Table 2: Method parameters. The user can modify basic parameters in the demo.

20

CS-TRD: a Cross-Section Tree Ring Detection Method

(a) (b) (c)

Figure 11: Measuring the error of automatic detections for image F03d: (a) In green, the GT; in red, the detections produced
by the method. (b) Areas of influence of the GT rings. (c) Absolute error, in pixels, between the detections and the GT.

least two experts annotated each image sample using the Labelme tool5. We use the ring average
between experts’ annotations as ground truth. Figure 2 shows some images from the dataset.

The second dataset (Kennel) is proposed in [11], which made available a public set of 7 (1280×
1280 pixels) images of Abies alba along with a method for detecting tree rings (the code is not
available). We labeled the dataset with the same procedure as the UruDendro dataset, as we could
not process the annotations given by the authors.

6.2 Metrics

To assess the method, we developed a metric based on the one proposed by Kennel et al. [11]. To
determine if a ring is detected, we define a ring influence area as the set of pixels closer to that ring.
For each ray, the frontier is the midpoint between the nodes of consecutive ground truth (GT) rings.
Figure 11b shows the influence area for rings in disk F03d. Figure 11a shows the detections (in red)
and GT marks (in green) for the same image.

The influence region associates a detected curve with a GT ring. In both cases, nodes are
associated with the Nr rays. Given a GT ring, we compute the RMSE error (Equation (8)) for each
detection and assign the GT ring to the detection (DT) with the lowest RMSE

RMSE(GT,DT) =

√√√√ 1

Nr

Nr−1∑
i=0

(
rdi − rGTi

)2
, (8)

where rdi is the radial distance from the center to node i of the detected (DT) ring, and rGTi is the
same for the GT ring. As a reminder, the radial distance of nodei is defined as the Euclidean distance
between nodei and the pith (Equation (2)).

The closest detection may be far from the corresponding GT ring. To match a detected curve with
a GT ring, it is essential to ensure that the identified chain is the closest one to the ring and that it is
sufficiently close. We utilize the influence area of each GT ring (Figure 11b). Upon detecting a curve,
if the proportion of nodes from that chain that falls within the influence area of the nearest ring
exceeds a specified threshold parameter (th_pre = 60%, see Section 6.3.3), we assign the detected
curve to the corresponding GT ring. If it falls below the threshold, the detection is not associated
with any GT ring. In other words, for a detected curve to be assigned to a GT ring and be considered
a true positive, at least 60% of its nodes must be within the influence area of that GT ring.

21

Henry Marichal, Diego Passarella and Gregory Randall

Dataset Image Size (pixels) σ P R F RMSE Execution Time (sec.)
UruDendro 1500× 1500 3.0 0,93 0,86 0,89 3.89 17.3
Kennel 1500× 1500 2.5 0,97 0,97 0,97 2.4 11.1

Table 3: Mean performance and execution time for both datasets at the optimal σ and image resolution.

We define the absolute error Aεi (in pixels) for the node i as the absolute difference in pixels
between the GT ring and the detected ring associated with it

Aεi = |rdi − rGTi |, (9)

where rdi is the radial distance from the center to node i of the detected ring, and rGTi is the same for
the GT ring. Figure 11c shows the absolute error between the GT and the detected rings assigned to
them. Red represents a low error, while yellow, green, and blue represent increasing error levels. As
can be seen, the error is concentrated around the knot, affecting the precise detection of some rings.

Once all the detected chains are matched with the GT rings, we calculate the following values:

1. True Positive (TP): when the identified closed chain and the GT ring match.

2. False Positive (FP): when the identified closed chain doesn’t match any GT ring.

3. False Negative (FN): when a GT ring doesn’t match any detected closed chain.

Precision is given by P = TP
TP+FP

, Recall by R = TP
TP+FN

and the F-Score by F = 2P×R
P+R

.

6.3 Experiments

This section presents some experiments to help us better understand the method and its limitations.
Table 3 presents the results for the optimal values of σ and image resolution on both datasets.

For example, CS-TRD fails to detect one ring (FN = 1) in sample F03d (see Figure 11a), and the
other rings are correctly detected, leading to the displayed values of P , R, and F . The table also
compares the mean execution time by image and the RMSE error in pixels (Equation (8)) between
the detected and GT rings. All experiments were conducted on an Intel Core i5-10300H workstation
with 16GB of RAM. These are very good results, considering the diversity of the data and the
presence of perturbations.

6.3.1 Edge Detector Optimization Stage

The algorithm heavily relies on the edge detector stage. In the first experiment, we test different
σ values for the Canny Devernay edge detector to get the one that maximizes the F-Score for the
UruDendro dataset. This dataset exhibits significant variations in image resolution, enabling us to
investigate the overall performance across different input image dimensions. Results are presented in
Figures 12a and 12b. We compute the average F-Score for the original image sizes and then scale all
images in the dataset to 640×640, 1000×1000, and 1500×1500 pixels. The best result was achieved
for size 1500×1500 with σ = 3.0. Execution time varies with image size. The average execution time
for this size is 17 seconds. The execution time decreases as σ increases because fewer edge chains are
detected. Results for the same experiment on the Kennel dataset are shown in Figures 12c and 12d.
The best F-Score is achieved for 1500 × 1500 size with σ = 2.5. The lower optimal σ value can be
attributed to the Kennel dataset having images with more rings, averaging 30 rings per disk, while
the UruDendro dataset has 19 rings per disk on average. Table 3 summarizes this experiment.

22

CS-TRD: a Cross-Section Tree Ring Detection Method

(a) (b)

(c) (d)

Figure 12: Influence of the image size and edge detector σ parameter experiment. Each curve represents a different image
resolution: 640× 640, 1000× 1000, 1500× 1500, and the original resolution (in blue). (a) Average F1 vs. σ for different
image sizes of the UruDendro dataset. (b) Average execution time (in seconds) vs σ for different image sizes over the
UruDendro dataset. (c) Average F1 vs. σ for different image sizes of the Kennel dataset. (d) Average execution time (in
seconds) vs σ for different image sizes over the Kennel dataset.

6.3.2 Pith Position Sensibility

The next experiment assesses the method’s sensitivity to errors in the pith estimation. Figure 13a
shows 48 different pith positions used in this experiment (eight different pith positions across six
rays). These radially displaced pith positions are selected as follows:

• We define an error step along a ray as 25% of the distance, along each ray, between the pith
and the innermost ring.

• Three positions are marked inside ring 1, with errors 25%, 50%, and 75% off the GT center in
the ray direction.

• One position is marked on ring 1.

• Three positions are marked between the first and second rings, with a 25% of the distance
between both rings along each ray.

• Finally, another position is marked on ring 2.

We executed the algorithm for each disk and pith position of the UruDendro dataset (size of
1500× 1500 and σ = 3.0), resulting in 48 outcomes. We calculated the average RMSE and F-Score
measurements for the six-ray directions for each radially displaced pith position. This produced two
eight-coordinate vectors, one for RMSE and one for the F-Score. Figures 13b and 13c illustrate
the average F-score and RMSE for each error position across the dataset, respectively. The F-Score

23

Henry Marichal, Diego Passarella and Gregory Randall

decreases as the error in the pith estimation increases, while the RMSE is less sensitive to pith
position errors.

(a) Pith position grid (b) Average F-Score over the Uru-
Dendro dataset.

(c) Average RMSE over the UruDen-
dro dataset.

Figure 13: Pith position experiment. (a) Eight different pith positions are marked on six ray directions. We executed
CS-TRD for each pith position. GT rings are in green. (b and c) For each disk of the UruDendro dataset, we run the
method using the 48 different pith positions. Results are averaged over the six directions of the rays per error position. The
black curve represents the mean, while the blue curve represents the standard deviation.

6.3.3 Detection-to-ground-truth Assignation Threshold

In this experiment, we examine how performance changes with different values of the th_pre param-
eter, which determines the number of ring nodes within the influence area to be considered in the
detection-to-ground-truth assignment step. Figure 14 displays the results for the UruDendro and
Kennel datasets. As anticipated, higher precision leads to lower RMSE but lower F-score. Based on
these findings, we fixed th_pre = 60% as the default value, which appears to be a good compromise.

Figure 14: Performance metrics were computed for different values of the th_pre parameter. The first row displays the
results for the Urudendro dataset, and the second row shows the results for the Kennel dataset. The left column shows the
average F-score, and the right column shows the average RMSE.

24

CS-TRD: a Cross-Section Tree Ring Detection Method

6.4 Results

This section provides a quantitative analysis of the CS-TRD method’s performance on challenging
images in the datasets. Figure 15 illustrates some results of the CS-TRD over the UruDendro dataset.
Note the successful performance of CS-TRD on disks with cracks (F02b), knots (L03c), and fungus
(L02b). The mean F-Score for the whole dataset is 0.89 (Table 3), indicating the successful detection
of rings in complex images containing knots, fungus, and cracks.

(a) F02b (b) F07b (c) L02b

Figure 15: The CS-TRD method predicted detections (shown as blue curves) in some images of the UruDendro dataset.

The upper row of Figure 16 illustrates how the method performs in the presence of knots. For
disk F04c the method fails to detect the first and third rings and identifies a false ring over the knot.
Despite these errors, the method detected 19 rings, with only one false detection, and missed two
rings, resulting in an F1-Score of 93%. The lower row of Figure 16 shows the results for disk L09e.
Despite two significant cracks and several fungus stains, the method successfully detects 13 out of
15 rings, with one false detection. As a result, it achieves an F1-Score of 90%. The performance for
each sample in the UruDendro dataset can be found in Table 4 of the supplementary material.

Some results for the Kennel dataset are shown in Figure 17. The mean F-Score is 0.97 (Table 3).
At most, three rings are not detected per disk. In the worst case, one ring is mistakenly detected
per image, usually the last one (sometimes incomplete) or the core. In Figure 18, we illustrate the
example of disk AbiesAlba1. The edge parameter is set too high (σ = 2.5), causing the edge detector
to fail to detect the pith. Additionally, the red chain in Figure 18c is not closed because its size is
smaller than 180 degrees (fixed once and for all). However, the method effectively detects the rings
over the knot.

6.5 Comparison between CS-TRD and INBD Methods

The only other method with available code for automatically detecting tree rings in wood cross-
section images is the Iterative Next Boundary Detection Instance Segmentation (INBD) proposed by
Gillert et al. [8]. Note that this method was designed for Microscopy Images of Shrub Cross Sections,
which differ from the ones we are working on in terms of image resolution and species characteristics.
The image is segmented into the background, ring boundaries, and pith region using the INBD
method. Then, the circular image is transformed into polar coordinates using the pith’s center as
the origin. Image patches are then extracted iteratively, and rings are segmented individually from
the inner to the outer rings. Both stages employ a U-NET network. The ground truth pith location
is used as input in the experiments for the CS-TRD. To ensure a fair comparison, the second stage
of the INBD method is modified to take the pith boundary as input.

25

Henry Marichal, Diego Passarella and Gregory Randall

(a) Chains (b) Output (c) Gt and Detections

(d) Chains (e) Output (f) Gt and Detections

Figure 16: Upper row: CS-TRD result for disk F04c. Note the impact of the knot on the edge detection step. (a) chains,
(b) detected rings, (c) GT rings in green and detected rings in red. Lower row: CS-TRD result for disk L09e. The method
successfully detects almost all the rings (FN = 2 and FP = 0) despite the presence of cracks and fungus stains. (d) chains,
(e) detected rings, (f) GT rings in green, and detected rings in red.

(a) AbiesAlba1 (b) AbiesAlba2 (c) AbiesAlba3

Figure 17: CS-TRD results for images from the Kennel dataset with 1500× 1500 image size and σ = 2.5.

To train the INBD model with the UruDendro dataset, we randomly divided it into training,
validation, and test sets, each containing 40, 12, and 12 images, respectively. Gillert et al. trained
their model using the EH dataset, which comprises 82 images with 949 rings. Our UruDendro dataset
comprises 64 images and 1123 rings. For training the INBD model, each image is divided into patches
determined by successive rings in polar coordinates, ensuring that each patch includes an entire ring.

26

CS-TRD: a Cross-Section Tree Ring Detection Method

(a) Filter (b) Chains (c) Postprocessing

Figure 18: CS-TRD result for AbiesAlba1 image from the Kennel Dataset (zoom over pith center). a) Filter stage output,
b) Chain stage output, c) Postprocessing stage output. In a) and b), we can see that the method fails to detect edges for
the pith. The σ threshold may be too high to detect things at this resolution. In c) we can see that the red chain was not
closed due to a size smaller than the value 180 (see Algorithm 7).

Even though the EH dataset has more images, the UruDendro dataset has more rings per image.
Considering the total number of tree rings, both datasets are comparable.

The INBD method relies on two crucial hyperparameters: the number of iterations at each epoch
(n) and the image size factor (downsample). We seek the best-performing INBD model by exploring
a grid with n ∈ {1, 2, 3, 4} and downsample ∈ {0, 2, 4}. The model was trained using the UruDendro
training and validation sets. The model that exhibited the best performance on the validation set
was chosen. For training, we utilized the ClusterUy infrastructure [15], equipped with an Nvidia
Tesla P100 GPU with 12GB of RAM. The hyperparameters n = 3 and downsample = 0 yield the
best performance on the validation set.

Table 4 compares the performance of both methods using the test set from the UruDendro dataset.
When using the same CPU hardware, we observe that the INBD is faster, with an average of 7.5
seconds and 18 seconds for CS-TRD. In terms of performance, CS-TRD outperforms the INBD model
in precision, recall, and F-score. When considering the RMSE metric, CS-TRD performs slightly
better than INBD, with a difference of 2.7 pixels. As a reference, the mean difference between human
annotators on the UruDendro dataset is around 2.5 pixels.

Method P ↑ R ↑ F ↑ RMSE (pixels) ↓ Time CPU (seconds) ↓
INBD 0.75 0.84 0.79 5.7 7.5

CS-TRD 0.96 0.90 0.93 2.09 18

Table 4: Comparative results between INBD and CS-TRD methods over the test set of images from the UruDendro dataset.
The same HW was used to compare the execution times. ↑ (↓) indicates that higher (lower) values are better.

Figure 19 illustrates a qualitative comparison between both methods for two disks of the Uru-
Dendro dataset. Subfigures a, c, e, and g superpose the red detected and green ground truth rings.
Subfigures b, d, f, and h depict the absolute radial error between the automatic detections and the
GT disks. The upper row shows the results for disk F03b. CS-TRD produced 20 True Positives, 1
False Positive, and 3 False Negatives, compared to 19 True Positives, 3 False Positives, and 4 False
Negatives for INBD. The INBD method is iterative, and an error produced in a specific ring is
propagated to the following rings outward, as seen in subfigure d. This significantly increases the
RMSE error (9.2 for the INBD vs. 1.1 for the CS-TRD). The lower row of Figure 19 illustrates the
results for a disk with a high amount of fungus stains (L02b), for which INBD produces numerous
false detections (20).

27

Henry Marichal, Diego Passarella and Gregory Randall

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: Upper row, results of CS-TRD (left) and INBD (right) methods for disk F03b of UruDendro. In (a) and (c), ring
detections are shown in red, and GT rings in green. In (b) and (d), the absolute radial error between ring detections and GT
rings is displayed. Red indicates a low error, and blue indicates a high error. A white band indicates that no detection was
made for a given ground truth ring. Results of the CS-TRD (left) and INBD (right) methods for disk L02b of UruDendro
are shown in the lower row. In (e) and (g), ring detections are shown in red, and GT rings in green. In (f) and (h), the
absolute radial error between the ring detections and the GT rings is displayed (red indicates a low error, and blue indicates
a high error). A white band indicates that no detection was made for a given ground truth ring.

6.6 Supplementary Material

In the supplementary material, additional experiments are conducted to justify the decisions made
during the algorithm design. We demonstrate how the method performs if the artificial chains are
not included, modifying Equation (5), and at different iterations in Table 1. Additionally, more
illustrative examples are provided for the UruDendro and Kennel datasets.

7 Conclusions and Future Work

We presented an automatic method for detecting tree rings in cross-section wood images. It achieves
an F-Score of 97% in the Kennel dataset and 91% in the more complex UruDendro dataset. The
CS-TRD method outperforms state-of-the-art deep learning methods, such as INBD [8], in the Pinus
taeda species. It performs well even in the presence of fungus, cracks, and knots, and in two different
species (Abies alba and Pinus taeda). The method achieves an average execution time of 17 seconds
on the UruDendro dataset and 11 seconds on the Kennel dataset, using an Intel Core i5-10300H
workstation with 16 GB of RAM (without GPU). Compared to the time each annotator needs
to manually delineate every disk, which is 3 hours on average, this is a vast improvement. CS-
TRD can be fully implemented in C++ to accelerate the execution time compared to the Python
implementation6. This will allow using the method in real-time applications. In the future, we
plan to include the automatic pith detection, extend the method to other tree species, and explore

6https://medium.com/agents-and-robots/the-bitter-truth-python-3-11-vs-cython-vs-c-performance-for-
simulations-babc85cdfef5

28

CS-TRD: a Cross-Section Tree Ring Detection Method

machine-learning techniques to improve the results.

Image Credits

Images from the UruDendro dataset.
Images taken from [6]

Images from the Kennel dataset.

References
[1] M. Cerda, N. Hitschfeld-Kahler, and D. Mery, Robust Tree-Ring Detection, in Advances in

Image and Video Technology, Second Pacific Rim Symposium, (PSIVT), D. Mery and L. Rueda, eds.,
vol. 4872 of Lecture Notes in Computer Science, Springer, 2007, pp. 575–585, https://doi.org/10.
1007/978-3-540-77129-6_50.

[2] R. Decelle, P. Ngo, I. Debled-Rennesson, F. Mothe, and F. Longuetaud, Ant Colony
Optimization for Estimating Pith Position on Images of Tree Log Ends, Image Processing On Line, 12
(2022), pp. 558–581, https://doi.org/10.5201/ipol.2022.338.

[3] F. Devernay, A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy, tech.
report, Inria Research Report 2724, Sophia Antipolis, 1995.

[4] P. Duncker, Detection and Grading of Compression Wood, Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2014, pp. 201–224, https://doi.org/10.1007/978-3-642-10814-3_7.

[5] A. Fabijańska and M. Danek, DeepDendro -- A Tree Rings Detector Based on a Deep Convolutional
Neural Network, Computers and Electronics in Agriculture, 150 (2018), pp. 353–363, https://doi.org/
10.1016/j.compag.2018.05.005.

[6] A. Fabijańska, M. Danek, J. Barniak, and A. Piórkowski, Towards Automatic Tree Rings
Detection in Images of Scanned Wood Samples, Computers and Electronics in Agriculture, 140 (2017),
pp. 279–289, https://doi.org/10.1016/j.compag.2017.06.006.

[7] P. Getreuer, Linear Methods for Image Interpolation, Image Processing On Line, 1 (2011), pp. 238–
259, https://doi.org/10.5201/ipol.2011.g_lmii.

[8] A. Gillert, G. Resente, A. Anadon-Rosell, M. Wilmking, and U. F. Von Lukas, Itera-
tive Next Boundary Detection for Instance Segmentation of Tree Rings in Microscopy Images of Shrub
Cross Sections, in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023,
pp. 14540–14548, https://doi.org/10.1109/CVPR52729.2023.01397.

[9] R. Grompone von Gioi and G. Randall, A Sub-Pixel Edge Detector: an Implementation of the
Canny/Devernay Algorithm, Image Processing On Line, 7 (2017), pp. 347–372, https://doi.org/10.
5201/ipol.2017.216.

[10] M. Henke and B. Sloboda, Semiautomatic Tree Ring Segmentation Using Active Contours and an
Optimised Gradient Operator, Forestry Journal, 60 (2014), pp. 185 – 190, https://doi.org/10.2478/
forj-2014-0020.

[11] P. Kennel, P. Borianne, and G. Subsol, An Automated Method for Tree-Ring Delineation Based
on Active Contours Guided by DT-CWT Complex Coefficients in Photographic Images: Application to
Abies Alba Wood Slice Images, Computers and Electronics in Agriculture, 118 (2015), pp. 204–214,
https://doi.org/10.1016/j.compag.2015.09.009.

29

https://doi.org/10.1007/978-3-540-77129-6_50
https://doi.org/10.1007/978-3-540-77129-6_50
https://doi.org/10.5201/ipol.2022.338
https://doi.org/10.1007/978-3-642-10814-3_7
https://doi.org/10.1016/j.compag.2018.05.005
https://doi.org/10.1016/j.compag.2018.05.005
https://doi.org/10.1016/j.compag.2017.06.006
https://doi.org/10.5201/ipol.2011.g_lmii
https://doi.org/10.1109/CVPR52729.2023.01397
https://doi.org/10.5201/ipol.2017.216
https://doi.org/10.5201/ipol.2017.216
https://doi.org/10.2478/forj-2014-0020
https://doi.org/10.2478/forj-2014-0020
https://doi.org/10.1016/j.compag.2015.09.009

Henry Marichal, Diego Passarella and Gregory Randall

[12] K. Makela, T. Ophelders, M. Quigley, E. Munch, D. Chitwood, and A. Dowtin, Automatic
Tree Ring Detection Using Jacobi Sets, ArXiv, (2020), https://doi.org/10.48550/arxiv.2010.08691.

[13] H. Marichal, D. Passarella, C. Lucas, L. Profumo, V. Casaravilla, M. N. R. Galli,
S. Ambite, and G. Randall, UruDendro, a Public Dataset of 64 Cross-Section Images and Manual
Annual Ring Delineations of Pinus Taeda L., Annals of Forest Science, 82 (2025), p. 25, https://doi.
org/10.1186/s13595-025-01296-5.

[14] H. Marichal, D. Passarella, and G. Randall, Automatic Wood Pith Detector: Local Orientation
Estimation and Robust Accumulation, in International Conference on Pattern Recognition (ICPR), 2025,
pp. 1–15, https://doi.org/10.1007/978-3-031-78447-7_1.

[15] S. Nesmachnow and S. Iturriaga, Cluster-UY: Collaborative Scientific High Performance Com-
puting in Uruguay, in Supercomputing, Cham, 2019, Springer International Publishing, pp. 188–202,
https://doi.org/10.1007/978-3-030-38043-4_16.

[16] K. Norell, J. Lindblad, and S. Svensson, Grey Weighted Polar Distance Transform for Out-
lining Circular and Approximately Circular Objects, International Conference on Image Analysis and
Processing (ICIAP), (2007), pp. 647–652, https://doi.org/10.1109/ICIAP.2007.4362850.

[17] M. Poláček, A. H. Arizpe, P. Hüther, L. Weidlich, S. Steindl, and K. L. Swarts, Automa-
tion of Tree-Ring Detection and Measurements Using Deep Learning, Methods in Ecology and Evolution,
14 (2023), pp. 2233–2242, https://doi.org/10.1111/2041-210X.14183.

[18] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, U2-Net: Going
Deeper with Nested U-Structure for Salient Object Detection, Pattern Recognition, 106 (2020), p. 107404,
https://doi.org/10.1016/j.patcog.2020.107404.

[19] H. Zhou, R. Feng, H. hong Huang, E. pei Lin, and J. lin Yu, Method of Tree-Ring Image
Analysis for Dendrochronology, Optical Engineering, 51 (2012), p. 077202, https://doi.org/10.1117/
1.OE.51.7.077202.

30

https://doi.org/10.48550/arxiv.2010.08691
https://doi.org/10.1186/s13595-025-01296-5
https://doi.org/10.1186/s13595-025-01296-5
https://doi.org/10.1007/978-3-031-78447-7_1
https://doi.org/10.1007/978-3-030-38043-4_16
https://doi.org/10.1109/ICIAP.2007.4362850
https://doi.org/10.1111/2041-210X.14183
https://doi.org/10.1016/j.patcog.2020.107404
https://doi.org/10.1117/1.OE.51.7.077202
https://doi.org/10.1117/1.OE.51.7.077202

	Introduction
	Previous Work
	Proposed Approach
	Assumptions
	Definitions
	Approach

	Algorithm
	Preprocessing
	Canny-Devernay Edge Detector
	Filtering the Edge Chains
	Sampling Edges
	Merge Chains
	General Logic of Chain Merging
	Algorithms Description
	Generating New Nodes

	Postprocessing
	Pith Detection

	Implementation Details
	Experiments and Results
	Datasets
	Metrics
	Experiments
	Edge Detector Optimization Stage
	Pith Position Sensibility
	Detection-to-ground-truth Assignation Threshold

	Results
	Comparison between CS-TRD and INBD Methods
	Supplementary Material

	Conclusions and Future Work

