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Abstract

Natural image matting refers to the process of estimating the foreground opacity, also known
as the alpha matte, of an input image and extracting the foreground layer. It is a fundamental
and challenging task in computer vision and finds applications in various fields related to image
processing such as film and image editing, advertising, and medical diagnosis. Numerous ap-
proaches have been proposed to address this challenge incorporating both traditional and deep
learning techniques. In this paper, we reproduce the paper ”A Closed Form Solution to Natural
Image Matting”, also referred to as ”Closed Form Matting”. The proposed algorithm is based
on local smoothness assumptions on foreground and background colors, the color-line model,
and provides a simple closed-form solution that requires sparse scribble constraints instead of
more cumbersome and hard-to-develop trimap constraints. We present extended derivations, a
Python-based implementation, an online demo, along with comparison on contemporary meth-
ods and ablation study on the effects of hyper-parameters.

Source Code

The source codes and documentation for the algorithms presented in this paper are available
here1. Usage instructions are included in the README.md file.

Keywords: alpha matte, closed form solution, image matting, interactive image editing

1 Introduction

Separating a foreground element of an image from its background for later compositing into a new
scene is one of the most basic and common tasks in visual effects production. This problem is typi-
cally called matting. This technique is particularly suitable for categories that have very fine details,
such as humans, animals, and plants. Image matting serves as an essential procedure for various
downstream tasks, including promotional advertising in practical e-commerce platforms, image edit-
ing for daily life entertainment, background replacing for online video conferences, and metaverse
applications such as virtual reality and game industries.

1https://github.com/reproductible-research/image-matting-with-a-closed-form-solution.git
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Image matting is probably the oldest visual effects problem in filmmaking, and the search for a
reliable automatic matting system has been ongoing since the early 1900s [21]. A major research
milestone was a family of effective techniques for matting against a blue background developed in
the Hollywood effects industry throughout the 1960s and 1970s. Such techniques have matured to
the point that blue- and green-screen matting is involved in almost every mass-market TV show or
movie.

On the other hand, putting an actor in front of a green screen to achieve an effect isn’t always
practical, and situations abound in which the foreground must be separated from the background in
a natural image. The computer vision and computer graphics communities have proposed methods
for semi-automatic matting with complex foregrounds and real-world backgrounds.

In this work, we reproduce the paper ”A Closed Form Solution to Natural Image Matting” [20],
also referred to as ”Closed Form Matting”. We begin by introducing matting terminology and the
basic mathematical problem (Section 2.1). Then we give a complete derivation of closed-form natural
image matting (Section 3) along with the algorithm (Section 3.5). Finally, we discuss ablation study,
comparisons with current methods, and aspects of complexity and reproducibility (Section 4).

2 Background

2.1 Problem Statement

We assume that a color image I is represented by a 3D discrete array of pixels, where I(x, y) is
a vector of (red, green, blue) values, usually in the range [0,1] or [0,255]. The matting problem
is to separate a given color image I into a foreground image F and a background image B. Our
fundamental assumption is that the three images are related by the matting equation:

I(x, y) = α(x, y)F (x, y) + (1− α(x, y))B(x, y), (1)

where α(x, y) is a number in [0, 1]. That is, the color at (x, y) in I is a mix between the colors
at the same position in F and B, where α(x, y) specifies the relative proportion of foreground versus
background. If α(x, y) is close to 0 , the pixel gets almost all of its color from the background, while
if α(x, y) is close to 1 , the pixel gets almost all of its color from the foreground. Figure 1 illustrates
the idea. We abbreviate Equation (1) as,

I = αF + (1− α)B, (2)

with the understanding that all the variables depend on the pixel location (x, y). Since α is a
function of (x, y), we can think of it as a grey-scale image, which is often called a matte or alpha
matte. Therefore, in the matting problem, we are given the image I and want to obtain the images
F , B, and α.

Fractional Value of Alpha At first, it may seem like α(x, y) should always be either 0 (that is,
the pixel is entirely background) or 1 (that is, the pixel is entirely foreground). However, this isn’t
the case for real images, especially around the edges of foreground objects. The main reason is that
the color of a pixel in a digital image comes from the total light intensity falling on a finite area
of a sensor; that is, each pixel contains contributions from many real- world optical rays. In lower
resolution images, it’s likely that some scene elements project to regions smaller than a pixel on the
image sensor. Therefore, the sensor area receives some light rays from the foreground object and some
from the background. Even high resolution digital images (i.e., ones in which a pixel corresponds to
a very small sensor area) contain fractional combinations of foreground and background in regions
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Figure 1: An illustration of the matting equation I = αF + (1− α)B. When α is 0, the image pixel
color comes from the background, and when α is 1, the image pixel color comes from the foreground.

like wisps of hair. Fractional values of α are also generated by motion of the camera or foreground
object, focal blur induced by the camera aperture, or transparency or translucency in parts of the
foreground. Thus, every image, no matter how high resolution, has fractional alpha values.

Understanding Matting with Image Segmentation Matting is closely related to a computer
vision problem called image segmentation, but they are not the same. In segmentation, the goal
is to separate an image into hard-edged pieces that snap together to reconstitute the whole, which
is the same as creating a binary (0′s and 1′s) alpha matte for each object. On the other hand, for
matting we expect that the foreground “piece” should have soft edges, so that pixels at the boundary
contain a combination of foreground and background colors. As illustrated in Figure 2, clipping a
hard-segmented object out of one image and placing it in another generally results in visual artifacts
that would be unacceptable in a production environment, while a continuous-valued alpha matte
produces a much better result.

Figure 2: Image segmentation is not the same as image matting. (a) An original image, in which
the foreground object has fuzzy boundaries. (b) (top) binary and (bottom) continuous alpha mattes
for the foreground object. (c) Composites of the foreground onto a different background using the
mattes. The hard-segmented result looks bad due to incorrect pixel mixing at the soft edges of the
object, while using the continuous alpha matte results in an image with fewer visual artifacts. (d)
Details of the composites in (c).
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Foreground-Background Ambiguity in Matting Unfortunately, the matting problem for a
given image can’t be uniquely solved, since there are many possible foreground/background expla-
nations for the observed colors. We can see this from Equation (2) directly, since it represents three
equations in seven unknowns at each pixel (the RGB values of F and B as well as the mixing pro-
portion α). This is a severely underconstrained problem, and we need to supply a matting algorithm
with additional assumptions or guides in order to recover mattes that agree with human perception
about how a scene should be separated. For example, the assumption that the background is known
(e.g., it is a constant blue or green), removes some of the ambiguity. However, we consider a situation
in which the background is complex and unknown and there is little external information other than
a few guides specified by the user.

In modern matting algorithms, these additional guides frequently take one of two forms. The
first is a trimap, defined as a coarse segmentation of the input image into regions that are definitely
foreground (F ), definitely background (B), or unknown (U). This segmentation can be visualized
as an image with white foreground, black background, and gray unknown regions (Figure 3b). An
alternative is a set of scribbles, which can be quickly sketched by a user to specify pixels that are
definitely foreground and definitely background (Figure 3c). Scribbles are generally easier for a user
to create, since every pixel of the original image doesn’t need to be explicitly labeled. On the other
hand, the matting algorithm must determine α for a much larger number of pixels.

Figure 3: An example of natural image, its user-drawn trimap, and user-drawn scribbles. (a) The
original image. (b) Trimap, in which black pixels represent certain background, white pixels represent
certain foreground, and gray pixels represent the unknown region for which fractional α values need
to be estimated. (c) Scribbles, in which black scribbles denote background pixels, and white scribbles
denote foreground regions. α must be estimated for the rest of the image pixels.

2.2 Related Works

2.2.1 Traditional Methods

Traditional methods use RGB image as inputs along with additional inputs such as trimaps. Based
on their usage of the additional inputs, they could be divided into two categories, sampling-based
methods and affinity-based methods. Sampling-based methods assume that the true α could be
inferred by analyzing nearby known pixels, i.e., via a model built using the colour features and
additional low-level pixel features. On the other hand, affinity-based methods, such as closed form
matting, infer the alpha of the ambiguous regions by propagating from the alpha values of the known
regions by calculating similarities in spatial and colour features[2].

Bayesian Matting [5] employ sets of spatially varying Gaussians to model the foreground and
background and then implements a maximum-likelihood criterion to find the optimal alpha. He et
al.[9] propose a global sampling method and models it as a correspondence problem to counter the
increase in computational complexity over local sampling methods. Among more recent method,
Feng et al.[7] employ K-means clustering to cluster foreground and background pixels in a spatially
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motivated bi-level method and solve for α using sparse coding techniques. KNN Matting [3] employs
k-nearest neighbors to incorporate non-locality into the method and derives a closed-form solution.
Grady et al.[8] proposed a random walk method that estimates the alpha values in the unknown
region as the probability that a random walker leaving those pixels first reaches a known foreground
pixel before striking a background pixel. Among more recent works, Aksoy et al.[1] designs a color-
mixture pixel-to-pixel information model to propagate opacity information from known to unknown
regions.

2.2.2 Deep Learning Methods

Deep learning has dramatically improved the state-of-the-arts in various learning problems in vi-
sion, speech, and language. It have also been successfully applied to natural image matting and
currently represents the state-of-the-art. In terms of the architecture employed, earliest attempts
were primarily convolutional neural networks (CNN). Attentions soon became popular for capturing
global context. Recent methods have also used GANs, transformers and diffusion networks. Earliest
approaches employed deep learning as an intermediary step in the matting pipeline. Cho et al. [4]
employed a CNN to refine the α obtained from closed form matting and KNN matting. More recent
methods could be categorized as a) trimap-based [26][13][14][17][15], and b) trimap-free/end-to-end
method [12][4][25]. More recently, however, interactive methods have also been proposed[25].

Deep Image Matting [26] uses two separate convolutional neural networks. The first one takes the
input image and the associated trimap to estimate the alpha. The second network is a smaller network
intended for refining the alpha produced by the first network. GCA[13] employs a convolutional neural
network in the form of UNet[22] along with guided cross attention (GCA) modules to better capture
the high level global opacity information based on the learned low level affinity derived from the
UNet feature maps and thus produce improved alpha matte. LFPNet [14] is a CNN based encoder-
decoder network with propagating and matting modules. The propagating module learns the context
alpha matte and associated feature map which is then added to the matting module to provide long
range context. AIMNet [12] is an end-to-end method that uses a modified ResNet34 backbone as
encoder and two decoder networks, one to capture high-level semantic context (in lieu of traditional
trimap inputs), and other to guide matte production. TIMI-Net [15] fully mines and integrates the
complementary global information from RGB image and trimap. The method utilised two encoder
networks, ResNet18 and ResNet34, for encoding the trimap and RGB image, respectively, and a
small upsamlpling CNN decoder. MatteFormer [17] is the first transformer-based method which
tokenizes the trimap to create global priors. The network itself is an encoder-decoder network with
skip connections between different parts of the encoder and decoder network. The encoder consists
of blocks derived from swin transformers and termed as Prior-Attentive Swin Transformer. Wei et
al. [25] employs a UNet based network that does away with trimaps and only requires sparse user
input to produce results comparable with the state-of-the-art. The network contains uncertainty
estimation modules that is helped by the user interaction inputs and guides the matte refinement.

3 Derivation

Computer Vision for Visual Effects (CVVE) [19] provides extensive analysis of matting as well as
compositing theory, which makes this book one of the most detailed reference materials in matting
field. This derivation is founded upon the principles outlined in the aforementioned reference.
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3.1 The Color Line Assumption

It has been observed that in many natural images, the foreground and background distributions look
similar to lines or skinny cigar shapes [16]. Hence, it is assumed that within a small window wj

around each pixel j, the sets of foreground and background intensities each lie on a straight line in
RGB space. That is, for each pixel i in wj,

Fi = βiF1 + (1− βi)F2

Bi = γiB1 + (1− γi)B2

(3)

Here, F1 and F2 are two points on the line of foreground colors, and βi represents the fraction
of the way a given foreground color Fi is between these two points. The same idea applies to the
background colors.

Under the color line assumption, the α value for every pixel in the window is simply related to
the intensity by

αi = a⊤Ii + b (4)

where a is a 3× 1 vector, b is a scalar, and the same a and b apply to every pixel in the window.
That is, we can compute α for each pixel in the window as a linear combination of the RGB values
at that pixel, plus an offset.

Proof. First we plug Equation (3) into the matting equation (2) to obtain:

Ii = αi (βiF1 + (1− βi)F2) + (1− αi) (γiB1 + (1− γi)B2) (5)

Expanding it, we get:

Ii = αiβiF1 + αiF2 − αiβiF2 + γiB1 − αiγiB1 +B2 − αiB2 − γiB2 + αiγiB2 (6)

Rearranging the terms, we get a 3× 3 system of linear equations as follows:

[
F2 −B2 F1 − F2 B1 −B2

]  αi

αiβi

(1− αi) γi

 = Ii −B2 (7)

Note that the 3× 3 matrix on the left-hand side only depends on F1, F2, B1, and B2, which we
assumed were constant in the window. We multiply by the inverse of this matrix on both sides, and
denote the rows of this inverse by r’s: αi

αiβi

(1− αi) γi

 =
[
F2 −B2 F1 − F2 B1 −B2

]−1
(Ii −B2)

=

 r⊤1
r⊤2
r⊤3

 (Ii −B2)

(8)

Taking just the first element of the vector on both sides, we see that,

αi = r⊤1 Ii − r⊤1 B2 (9)

which corresponds to Equation (4) with a = r1 and b = −r⊤1 B2.
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3.2 The Matting Laplacian

The assumption that the α values and colors inside a window are related by Equation (4) leads to a
natural cost function for the matting problem:

J ({αi, ai, bi, i = 1, . . . , N}) =
N∑
j=1

∑
i∈wj

(
αi −

(
a⊤j Ii + bj

))2
(10)

This cost function expresses the total error of the linearity assumption in Equation (4) over each
window. We want to minimize J to find αi at each pixel as well as the coefficients ai and bi for every
window wi around pixel i. For brevity, we’ll write the left-hand side as J(α, a, b), where α is an
N ×1 vector that collects all the α values in the image, and a and b represent the collections of affine
coefficients for each window. Since the windows between adjacent pixels overlap, the α estimates at
each pixel are not independent. We also add a regularization term to Equation (10):

J(α, a, b) =
N∑
j=1

∑
i∈wj

(
αi −

(
a⊤j Ii + bj

))2+ ε ∥aj∥22 (11)

This term prevents aj vector to become too large and acts to bias the mattes toward being
constant, since if a = 0, αi = bj within the whole window wj.

This formulation, however, still doesn’t help us solve the matting problem, since we still have
many more equations than unknowns (i.e., the five values of α, a, and b at each pixel). Hence, we
now try reducing the number of unknowns to exactly the number of pixels.

First, we rearrange Equation (11) as a matrix equation:

J(α, a, b) =
N∑
j=1

∥∥∥∥∥∥∥∥∥


Ij1 1
...

...

Ij⊤W 1√
εI3×3 0


[
aj
bj

]
−


αj
1
...

αj
W

03×1


∥∥∥∥∥∥∥∥∥
2

(12)

where W is the number of pixels in the window and
{
Ij1 , . . . , I

j
W

}
and

{
αj
1, . . . , α

j
W

}
represent the

ordered list of image colors and α values inside window j. More compactly, we can write Equation
(12) as

J(α, a, b) =
N∑
j=1

∥∥∥∥Gj

[
aj
bj

]
− ᾱj

∥∥∥∥2

(13)

where ᾱj is a (W + 3) × 1 vector containing the α’s in window j followed by three 0’s. If we
suppose that the matte is known, then this vector is constant and we can minimize Equation (12)
for the individual {aj, bj} as a standard linear system:[

a∗j
b∗j

]
=

(
G⊤

j Gj

)−1
G⊤

j ᾱj (14)

That is, the optimal a and b in each window for a given matte α are linear functions of the α
values. This means we can substitute Equation (14) into Equation (12) to get
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J(α) = min
a,b

J(α, a, b) (15)

= min
a,b

N∑
j=1

∥∥∥∥Gj

[
aj
bj

]
− ᾱj

∥∥∥∥2

(16)

=
N∑
j=1

∥∥∥∥Gj

[
a∗j
b∗j

]
− ᾱj

∥∥∥∥2

(17)

=
N∑
j=1

∥∥∥Gj

(
G⊤

j Gj

)−1
G⊤

j ᾱj − ᾱj

∥∥∥2

(18)

=
N∑
j=1

ᾱ⊤
j

[
I(W+3)×(W+3) −Gj

(
G⊤

j Gj

)−1
G⊤

j

]
ᾱj (19)

= α⊤Lα (20)

In the last equation, we’ve collected all of the equations for the windows into a single matrix
equation for the N × 1 vector α. The N ×N matrix L is called the matting Laplacian.

Simplifying Equation (19), we get the elements of the matting Laplacian as:

L(i, j) =
∑

k|(i,j)∈wk

[
δij −

1

W

(
1 + (Ii − µk)

⊤
(
Σk +

ε

W
I3×3

)−1

(Ij − µk)

)]
(21)

where µk and Σk are the mean and covariance matrix of the colors in window k and δij is
the Kronecker delta. Frequently, the windows are taken to be 3 × 3, so W = 9. The notation
k | (i, j) ∈ wk in Equation (21) means that we only sum over the windows k that contain both pixels
i and j; depending on the configuration of the pixels, there could be from 0 to 6 windows in the sum.

Alternately, we can write

L(i, j) =

{ ∑
k A(i, k) if i = j
−A(i, j) if i ̸= j

(22)

where

A(i, j) =
∑

k|(i,j)∈wk

1

W

[
1 + (Ii − µk)

⊤
(
Σk +

ε

W
I3×3

)−1

(Ij − µk)

]
(23)

The matrix A specified by Equation (23) is sometimes also referred as the matting affinity.
To minimize Equation (20), we set the derivative to 0:

min J(α) =⇒ ∂

∂α
J(α) = 0

=⇒ d

dα
= 2Lα = 0

=⇒ L(N×N)α(N×1) = 0(N×1)

(24)

That is, we simply need to find a vector in the nullspace of L.
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3.3 Constraining the Matte

Thus far we haven’t taken into account any user-supplied knowledge of where the matte values are
known; without this knowledge, the solution is ambiguous. For example, it turns out that any
constant α matte is in the nullspace of L. In fact, the dimension of the nullspace is large (e.g., each
of the matrices in the sum of Equation (19) has nullspace of dimension four [23]). Therefore, we
rely on user scribbles to denote known foreground and background pixels and constrain the solution.
That is, the problem becomes:

min α⊤Lα
s.t. αi = 1 i ∈ F

αi = 0 i ∈ B
(25)

Another way to phrase this is:

minα⊤Lα + λ (α− αK)
⊤D (α− αK) (26)

where αK is an N × 1 vector equal to 1 at known foreground pixels and 0 everywhere else, and
D is a diagonal matrix whose diagonal elements are equal to 1 when a user has specified a F or
B scribble at that pixel and 0 elsewhere. λ is set to be very large number (e.g., 100) so that the
solution is forced to agree closely with the user’s scribbles. Setting the derivative of Equation (26)
to 0 results in the sparse linear system:

(L+ λD)α = λαK (27)

3.4 Recovering F and B from α

After solving the linear system in Equation (27) we obtain α values but not estimates of F and B.
One way to get these estimates is to treat α and I as constant in the matting equation and solve it
for F and B. Since this problem is still underconstrained, literature [11] suggest incorporating the
expectation that F and B vary smoothly (i.e., have small derivatives), especially in places where the
matte has edges. The corresponding problem is:

min
Fi,Bi

N∑
i=1

∥Ii − (αiFi + (1− αi)Bi)∥2

+ |∇xαi|
(
∥∇xFi∥2 + ∥∇xBi∥2

)
+ |∇yαi|

(
∥∇yFi∥2 + ∥∇yBi∥2

) (28)

where the notation ∇xI represents the gradient of image I in the x direction, which is a scalar
for a grayscale image and a vector for a color image. Solving Equation (28) results in a sparse
linear system instead of a problem solved independently at every pixel, since the gradients force
interdependence between the pixels.
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3.5 Pseudocode

Algorithm 1 Computing Alpha (α)

Input: Image IW×H×3, Image with Scribbles SW×H×3, Regularization factor ϵ, Window Radius k
Output: Alpha Matting αW×H

1: Initialization:
2: Normalize I and S
3: S

′ ← I − S
4: PRIOR← 1 for foreground, 0 for background, 0.5 for unknown ▷ From S

′

5: CONST MAP← 1 for known pixels and 0 for unknowns
6: λ← 100 ▷ Confidence matrix: [0,100] for trimap
7: αk ← λ× CONST MAP ▷ Confidence conditioned on scribbles
8: D ← CONST MAP.diagonal ▷ Diagonal Matrix from CONST MAP
9: Computation:
10: L← COMPUTE LAPLACIAN(I,CONST MAP, ϵ, k)
11: α← (L+ λD)α = λαK as in Eq. (27)

Algorithm 2 Computing Matting Laplacian

Input:Image I, Constant Map, ϵ, window size k
Output: Matting Laplacian LW×H

1: procedure COMPUTE LAPLACIAN(I,CONST MAP, ϵ, k)
2: Initialization:
3: neigh size← (k × 2 + 1)2 ▷ Neighborhood size
4: h,w, c← I.shape ▷ height, width, channels
5: Calculate pair relations between unknown pixels as Pair Rel
6: Initialize row inds of length Pair Rel.length
7: Initialize col inds of length Pair Rel.length
8: Initialize value matrix V al Mat to save values
9: Computation:
10: for j = k to (w − k) do
11: for i = k to (h− k) do
12: if I[i, j] is known then
13: Continue ▷ Has a value 1 in a constant map
14: end if
15: Set window W of size (k × 2 + 1) around pixel(i, j)
16: µ← mean of W
17: σ ← variance of W

18: V al Mat[i, j]←
[
1 + (Ii − µ)⊤

(
σ2 + ϵ

neigh size
I3×3

)−1

(Ij − µ)

]
as given in Eq. (21)

19: Append i to row inds, j to col inds
20: end for
21: end for
22: Construct a sparse matrix A from values, row inds, and col inds, with shape w × h
23: Compute the sum of each row of matrix A as A

′

24: L← A− A
′

25: Return L
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4 Discussions

4.1 Implementation & Reproducibility

Implementation We implement the algorithm using Python in lieu of the original implementation
in MATLAB because Python is open source and hence accessible and reproducible.

We used a sparse representation to reduce the size of matrices containing many zeros, enabling
efficient memory usage and speeding up the calculation of alpha. Various libraries, in particular,
SciPy[24] and packages were employed to compute the sparse matrices and solve the sparse linear
system (Equation 24). The algorithm is detailed below in Algorithm 1.

Additionally, we integrated our Python implementation with the demonstration provided by the
IPOL journal. This integration ensures accessibility and usability for a wider audience, enabling
users to interact with the algorithm and explore its capabilities, such as distinguishing between the
background and foreground by incorporating minimal information about the two regions through
scribble input. Through this implementation process, our goal is to enhance our understanding of
the algorithm and facilitate its usage in practical applications.

Computational Complexity The time and space complexity of Closed Form Matting is depen-
dent on the type of solver employed. For a standard LU solver, as employed by SciPy’s default
UMFPACK[6], In the worst case, for a very dense matrix, for an input of size N = (w × h), where
w and h are the width and height of the input image, respectively, the time complexity for solving
such system would be of the order O(N

3
2 ). Hence, the worst case complexity of the algorithm would

be O(k2N + N
3
2 ), where k is the window size. Similarly, the space complexity for the an standard

LU solver, the UMFPACK, would be O(N3). Hence, for Closed Form Matting, the worst case space
complexity would be O(cN +N3) where c = 3 is the number of color channels. The worst case space
complexity, thus resolves to O(N3).

Reproducibility Translating the method as mentioned in the paper is challenging and ambiguous
on many details. The paper mentions window size as one of the hyperparameters. However, it does
not specify the relation between neighborhoods and window size and therefore, forces using ad hoc
formulae when computing matting Laplacian and thus makes it difficult for the implementation to
work on all kinds of images. Furthermore, the authors do not mention how to handle the boundary
pixels and whether to pad the image in some ways according to the window size or not. In spite
of all these shortcomings, since the method solves simple sparse linear system, the availability of
community vetted open source tools to do it makes the job easier and reproducible. However, there
are trade-offs among different sparse solver with respect to time and space complexity. Hence, an
standard UMFPACK solver is not suitable for using in the case of high-resolution image matting
where the system quickly runs out of memory. Hence, providing implementations that work in wider
types of inputs is challenging.

4.2 Experiments

We test the algorithm using different images in various scenarios and hyperparameters. We evaluate
our implementation with images used in the original paper to compare the results with the orig-
inal implementation(Table 1), as well as with other images to further assess the effectiveness and
robustness of the algorithm. The results are presented in Table 2.
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Table 1: Matting Examples of Images from the Original Paper

Original image Scribbled image Output alpha

Table 2: Matting Examples on New Images

Original image Scribbled image Output alpha
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4.2.1 Impact of Different Epsilon Values

As described in the original paper [20], ε is introduced as a form of regularization. We analyse the
impact of changing values of ε (ε = 10−2, ε = 10−3, ε = 10−4, ε = 10−5) and show its impact on the
accuracy of the matting Laplacian and the resulting alpha matte.

The reason behind the observed effect, Table 3, is that choosing higher values of ε affects the
influence of the covariance matrix, which captures the relationship between the color values of neigh-
boring pixels. Consequently, higher values of ε lead to greater smoothing, effectively reducing the
influence of local color variations on the computation of pixel similarities.

Table 3: Image Matting with different ϵ values

Original image ϵ=0.00001 ϵ=0.0001 ϵ=0.001 ϵ=0.01

4.2.2 Impact of Different Window Sizes

Choosing the right window size for closed-form matting can be a tricky problem, depending on the
resolution of the image and the fuzziness of the foreground object (which may not be the same in all
parts of the image).

The advantage of using large windows is that many distant pixels are related to each other;
however, space and time complexities increase significantly, making it less suitable for real-world
implementation.

We test the algorithm with two window sizes: 3×3, where we take only one neighbor on all sides,
and 9 × 9, where we take two neighbors from all sides around the pixel(See results in table 4). We
noticed that, in all the images we tested, a window size of 3 × 3 was sufficient to solve the system
and return a high-quality alpha matte.
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Table 4: Result with different window sizes

Original image Window size = 3x3 Window size = 9x9

4.2.3 Impact of Varying Amount of User Input

The amount of user input should affect both the quality of the matte as well the processing time of
the algorithm. This is because with an increase in useful constraints, the resulting matte is pushed
closer towards the ground truth α. Furthermore, with an increase in the amount of scribbles, the
Laplacian matrix gets more and more sparse, thus speeding up the computations.

This could be seen in Table (5), where we see that as we increase the amount of scribbles, the
matte gets progressively better. And with trimap, it is the best.

Table 5: Image Matting with different amount of scribbles

Original image Few scribbles More scribbles Most scribbles trimap

4.3 Comparison With Current Methods

4.3.1 Benchmarks

• Alphamatting.com: One of the earliest benchmark [20] in image matting, it contains 8 test
images of varying opacity. The ground truth alpha is hidden. Images and associated trimaps
are available in both low and high-resolutions.
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• Composition-1k: One of the standard benchmark [26], it is a large scale dataset created using
composition. It contains images with objects on simple backgrounds extracted and composited
onto new background images resulting into a dataset with 49300 training images and 1000 test
images.

• Distinction-646: Another large scale dataset [18] with 59, 600 training images and 1000 test
images, total 646 distinct foreground alpha mattes. Its primary contribution is to provide a
larger scale benchmark.

• AIM-500: It is a benchmark [12] aimed at end-to-end methods that don’t require trimap as part
of their input. It contains 500 diverse natural images covering all types along with manually
labeled alpha mattes, making it feasible to benchmark the generalization ability of AIM models.

4.3.2 Metrics

• Sum of Absolute Difference (SAD): This metric calculates the sum of the absolute difference
of corresponding pixels in each pair of images. This serves as a similarity metric between two
images and in the case of image matting, this serves as the ground truth matte and generated
matte.

• Mean Squared Error (MSE): It is a similar metric to that of SAD, however, instead of being
the sum of absolute difference, MSE is the average of the sum of squared difference values.

• Gradient (GRAD): Gradient is a metric that represents visual quality. It is the difference
between the computed alpha α and ground truth alpha α∗. Mathematically, it is

∑
i(∇α −

∇α∗)q, where ∇ represents the gradient operator, and q is a integer hyperparameter (often 2).
The gradient is obtained by convolving the alpha mattes with first-order Gaussian derivative
filters with a variance.

• Connectivity (CONN): It is another perceptive metric. It defines the degree of connectedness
based on the connectivity in binary threshold images computed from the grayscale alpha matte.
Mathematicaly, connectivity error of an alpha matte α with its corresponding ground truth α∗

is defined as
∑

i(ϕ(αi,Ω)− (ϕ(α∗
i ,Ω))

p where ϕ measures the degree of connectivity for pixel i
with transparency αi to a source region Ω, and p is an integer hyperparameter.

4.3.3 Results

We compare the results of Closed Form Matting with current deep learning based methods. In
Table (6), we compare the results of our method on the Composition-1K dataset and in Table (7),
we compare the results on the Alphametting.com dataset. We see that the quality of matting has
increased significantly across all metrics. We also observe that trimap-based methods have an edge
over end-to-end methods, even in the deep learning setting.
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Methods SAD MSE (10−3) GRAD CONN
Closed Form Matting 168.1 91 126.9 167.9
Deep Image Matting 50.9 14 31.0 50.8

GCA 35.2 9.1 16.9 32.5
TIMI-Net 29.1 6.0 11.5 25.4

MatteFormer 23.8 4.0 8.7 18.4
LPFNet 22.4 3.6 7.6 17.1
Wei et al. 7.9 3.5 4.6 6.7

Table 6: Comparison on the Composition-1K dataset. The lower the number for each metric, the
better the method.

Methods SAD MSE (10−3) GRAD CONN
Closed Form Matting 50 49.5 48.9 21.5
Deep Image Matting 18.5 21.5 26.3 22.3

GCA 16.5 17.4 16.1 24.6
TIMI-Net 5.4 6.2 7.3 9.7
LPFNet 4.5 4.5 3.3 12.6

Table 7: Comparison on the Alphamatting.com dataset. The lower the number for each metric, the
better the method.

4.4 Limitations

Singraju et al.[23], show that Closed Form Matting [10] does not always recover the ground truth
alpha mattes due to several reasons, a few of which are outlined below. Several of the method’s
limitations arise from it being a local method which results into the method not capturing structural
details that are more global in nature.

Violation of the color-line model Natural images don’t often satisfy the color line model. For
example, in the case of complex intensity variations, it is obvious that the color line model is too
simple to explain the image intensities. In such scenarios, one would have to resort to data driven
schemes for generating candidate foreground and background colors. Another violation of color lie
model occurs in images with fine-grained textures, as shown in Figure (8). The issue arises due to
the method being local and thus it fails to capture the global complexity of images. Furthermore,
in the cases when the intensity variations are much simpler than the color line, such as being locally
constant, the color line model provides an overfit.

Insufficient user interaction Recall that the system constructed in Equation (20) has a 4-
dimensional null space for each local image patch considered by the algorithm. Hence, high level user
interaction is required to resolve any ambiguities. One could potentially incorporate prior knowledge
in order to bias the system to- wards certain family of solutions. [6] biases the mattes to be locally
constant, which can prove to be unsatisfactory in practice. Furthermore, as seen in Figure (5), in the
absence of enough user scribble, the quality of matte is sub-par. Hence, a method that iteratively
takes user inputs to refine matte serves better.

Time and Memory Inefficiency The method suffers heavily with an increase in the input image
size, window size, as mentioned in the Section (4.1). This is also observed in Table (4) computation
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Table 8: Violation of color-line model due to, (up) texture in the image, and (down) complex intensity
variations

Original image Scribbled image Output alpha

where the increase in window size made the algorithm very slow. Finally, solving dense matrices is
still very challenging and since this method requires solving dense matrices, it quickly runs out of
memory on most consumer computing machines, due to its cubic space complexity with respect to
the input image dimensions.

5 Conclusions

Image matting is an important task in image editing and is inherently challenging due to being
severely constrained. Traditional methods relied on carefully hand-crafted techniques based on lo-
cal and global assumptions and tried to manage the trade-off between matte quality and compute
efficiency. More recent methods employ deep learning and significantly out-perform any traditional
methods. However, a theme common to both types of methods is the requirement of additional con-
straints and context in the form of scribbles or trimaps along with the input image, which severely
limits the usability in situations where trimaps are tedious and hard to develop and scribbles are
either difficult to get or are insufficient. We still don’t have a truly end-to-end method with state-
of-the-art performance.

In this work, we took an extensive look on Closed Form Matting. We demonstrated its workings,
subjected it to an ablation study, compared it with current deep learning methods, and analysed the
aspects of computational complexity and reproducibility. We visualized the limitations of color-line
assumption and the issues inherent with seeking user interactions for matting. We showed how it
is affected by the significant time and space complexity associated with solving large linear systems
and how it makes the method unusable in practice. We hope our work adds to the efforts in making
research reproducible and accessible.

References
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